sched.c 224 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <linux/cpuacct.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #include "sched_cpupri.h"
  78. #include "workqueue_sched.h"
  79. #include "sched_autogroup.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. /*
  83. * Convert user-nice values [ -20 ... 0 ... 19 ]
  84. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  85. * and back.
  86. */
  87. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  88. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  89. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  90. /*
  91. * 'User priority' is the nice value converted to something we
  92. * can work with better when scaling various scheduler parameters,
  93. * it's a [ 0 ... 39 ] range.
  94. */
  95. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  96. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  97. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  98. /*
  99. * Helpers for converting nanosecond timing to jiffy resolution
  100. */
  101. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  102. #define NICE_0_LOAD SCHED_LOAD_SCALE
  103. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  104. /*
  105. * These are the 'tuning knobs' of the scheduler:
  106. *
  107. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  108. * Timeslices get refilled after they expire.
  109. */
  110. #define DEF_TIMESLICE (100 * HZ / 1000)
  111. /*
  112. * single value that denotes runtime == period, ie unlimited time.
  113. */
  114. #define RUNTIME_INF ((u64)~0ULL)
  115. static inline int rt_policy(int policy)
  116. {
  117. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  118. return 1;
  119. return 0;
  120. }
  121. static inline int task_has_rt_policy(struct task_struct *p)
  122. {
  123. return rt_policy(p->policy);
  124. }
  125. /*
  126. * This is the priority-queue data structure of the RT scheduling class:
  127. */
  128. struct rt_prio_array {
  129. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  130. struct list_head queue[MAX_RT_PRIO];
  131. };
  132. struct rt_bandwidth {
  133. /* nests inside the rq lock: */
  134. raw_spinlock_t rt_runtime_lock;
  135. ktime_t rt_period;
  136. u64 rt_runtime;
  137. struct hrtimer rt_period_timer;
  138. };
  139. static struct rt_bandwidth def_rt_bandwidth;
  140. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  141. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  142. {
  143. struct rt_bandwidth *rt_b =
  144. container_of(timer, struct rt_bandwidth, rt_period_timer);
  145. ktime_t now;
  146. int overrun;
  147. int idle = 0;
  148. for (;;) {
  149. now = hrtimer_cb_get_time(timer);
  150. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  151. if (!overrun)
  152. break;
  153. idle = do_sched_rt_period_timer(rt_b, overrun);
  154. }
  155. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  156. }
  157. static
  158. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  159. {
  160. rt_b->rt_period = ns_to_ktime(period);
  161. rt_b->rt_runtime = runtime;
  162. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  163. hrtimer_init(&rt_b->rt_period_timer,
  164. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  165. rt_b->rt_period_timer.function = sched_rt_period_timer;
  166. }
  167. static inline int rt_bandwidth_enabled(void)
  168. {
  169. return sysctl_sched_rt_runtime >= 0;
  170. }
  171. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  172. {
  173. ktime_t now;
  174. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  175. return;
  176. if (hrtimer_active(&rt_b->rt_period_timer))
  177. return;
  178. raw_spin_lock(&rt_b->rt_runtime_lock);
  179. for (;;) {
  180. unsigned long delta;
  181. ktime_t soft, hard;
  182. if (hrtimer_active(&rt_b->rt_period_timer))
  183. break;
  184. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  185. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  186. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  187. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  188. delta = ktime_to_ns(ktime_sub(hard, soft));
  189. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  190. HRTIMER_MODE_ABS_PINNED, 0);
  191. }
  192. raw_spin_unlock(&rt_b->rt_runtime_lock);
  193. }
  194. #ifdef CONFIG_RT_GROUP_SCHED
  195. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  196. {
  197. hrtimer_cancel(&rt_b->rt_period_timer);
  198. }
  199. #endif
  200. /*
  201. * sched_domains_mutex serializes calls to init_sched_domains,
  202. * detach_destroy_domains and partition_sched_domains.
  203. */
  204. static DEFINE_MUTEX(sched_domains_mutex);
  205. #ifdef CONFIG_CGROUP_SCHED
  206. #include <linux/cgroup.h>
  207. struct cfs_rq;
  208. static LIST_HEAD(task_groups);
  209. /* task group related information */
  210. struct task_group {
  211. struct cgroup_subsys_state css;
  212. #ifdef CONFIG_FAIR_GROUP_SCHED
  213. /* schedulable entities of this group on each cpu */
  214. struct sched_entity **se;
  215. /* runqueue "owned" by this group on each cpu */
  216. struct cfs_rq **cfs_rq;
  217. unsigned long shares;
  218. atomic_t load_weight;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. #ifdef CONFIG_SCHED_AUTOGROUP
  231. struct autogroup *autogroup;
  232. #endif
  233. };
  234. /* task_group_lock serializes the addition/removal of task groups */
  235. static DEFINE_SPINLOCK(task_group_lock);
  236. #ifdef CONFIG_FAIR_GROUP_SCHED
  237. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  238. /*
  239. * A weight of 0 or 1 can cause arithmetics problems.
  240. * A weight of a cfs_rq is the sum of weights of which entities
  241. * are queued on this cfs_rq, so a weight of a entity should not be
  242. * too large, so as the shares value of a task group.
  243. * (The default weight is 1024 - so there's no practical
  244. * limitation from this.)
  245. */
  246. #define MIN_SHARES (1UL << 1)
  247. #define MAX_SHARES (1UL << 18)
  248. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  249. #endif
  250. /* Default task group.
  251. * Every task in system belong to this group at bootup.
  252. */
  253. struct task_group root_task_group;
  254. #endif /* CONFIG_CGROUP_SCHED */
  255. /* CFS-related fields in a runqueue */
  256. struct cfs_rq {
  257. struct load_weight load;
  258. unsigned long nr_running;
  259. u64 exec_clock;
  260. u64 min_vruntime;
  261. #ifndef CONFIG_64BIT
  262. u64 min_vruntime_copy;
  263. #endif
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last, *skip;
  273. #ifdef CONFIG_SCHED_DEBUG
  274. unsigned int nr_spread_over;
  275. #endif
  276. #ifdef CONFIG_FAIR_GROUP_SCHED
  277. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  278. /*
  279. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  280. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  281. * (like users, containers etc.)
  282. *
  283. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  284. * list is used during load balance.
  285. */
  286. int on_list;
  287. struct list_head leaf_cfs_rq_list;
  288. struct task_group *tg; /* group that "owns" this runqueue */
  289. #ifdef CONFIG_SMP
  290. /*
  291. * the part of load.weight contributed by tasks
  292. */
  293. unsigned long task_weight;
  294. /*
  295. * h_load = weight * f(tg)
  296. *
  297. * Where f(tg) is the recursive weight fraction assigned to
  298. * this group.
  299. */
  300. unsigned long h_load;
  301. /*
  302. * Maintaining per-cpu shares distribution for group scheduling
  303. *
  304. * load_stamp is the last time we updated the load average
  305. * load_last is the last time we updated the load average and saw load
  306. * load_unacc_exec_time is currently unaccounted execution time
  307. */
  308. u64 load_avg;
  309. u64 load_period;
  310. u64 load_stamp, load_last, load_unacc_exec_time;
  311. unsigned long load_contribution;
  312. #endif
  313. #endif
  314. };
  315. /* Real-Time classes' related field in a runqueue: */
  316. struct rt_rq {
  317. struct rt_prio_array active;
  318. unsigned long rt_nr_running;
  319. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  320. struct {
  321. int curr; /* highest queued rt task prio */
  322. #ifdef CONFIG_SMP
  323. int next; /* next highest */
  324. #endif
  325. } highest_prio;
  326. #endif
  327. #ifdef CONFIG_SMP
  328. unsigned long rt_nr_migratory;
  329. unsigned long rt_nr_total;
  330. int overloaded;
  331. struct plist_head pushable_tasks;
  332. #endif
  333. int rt_throttled;
  334. u64 rt_time;
  335. u64 rt_runtime;
  336. /* Nests inside the rq lock: */
  337. raw_spinlock_t rt_runtime_lock;
  338. #ifdef CONFIG_RT_GROUP_SCHED
  339. unsigned long rt_nr_boosted;
  340. struct rq *rq;
  341. struct list_head leaf_rt_rq_list;
  342. struct task_group *tg;
  343. #endif
  344. };
  345. #ifdef CONFIG_SMP
  346. /*
  347. * We add the notion of a root-domain which will be used to define per-domain
  348. * variables. Each exclusive cpuset essentially defines an island domain by
  349. * fully partitioning the member cpus from any other cpuset. Whenever a new
  350. * exclusive cpuset is created, we also create and attach a new root-domain
  351. * object.
  352. *
  353. */
  354. struct root_domain {
  355. atomic_t refcount;
  356. struct rcu_head rcu;
  357. cpumask_var_t span;
  358. cpumask_var_t online;
  359. /*
  360. * The "RT overload" flag: it gets set if a CPU has more than
  361. * one runnable RT task.
  362. */
  363. cpumask_var_t rto_mask;
  364. atomic_t rto_count;
  365. struct cpupri cpupri;
  366. };
  367. /*
  368. * By default the system creates a single root-domain with all cpus as
  369. * members (mimicking the global state we have today).
  370. */
  371. static struct root_domain def_root_domain;
  372. #endif /* CONFIG_SMP */
  373. /*
  374. * This is the main, per-CPU runqueue data structure.
  375. *
  376. * Locking rule: those places that want to lock multiple runqueues
  377. * (such as the load balancing or the thread migration code), lock
  378. * acquire operations must be ordered by ascending &runqueue.
  379. */
  380. struct rq {
  381. /* runqueue lock: */
  382. raw_spinlock_t lock;
  383. /*
  384. * nr_running and cpu_load should be in the same cacheline because
  385. * remote CPUs use both these fields when doing load calculation.
  386. */
  387. unsigned long nr_running;
  388. #define CPU_LOAD_IDX_MAX 5
  389. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  390. unsigned long last_load_update_tick;
  391. #ifdef CONFIG_NO_HZ
  392. u64 nohz_stamp;
  393. unsigned char nohz_balance_kick;
  394. #endif
  395. int skip_clock_update;
  396. /* capture load from *all* tasks on this cpu: */
  397. struct load_weight load;
  398. unsigned long nr_load_updates;
  399. u64 nr_switches;
  400. struct cfs_rq cfs;
  401. struct rt_rq rt;
  402. #ifdef CONFIG_FAIR_GROUP_SCHED
  403. /* list of leaf cfs_rq on this cpu: */
  404. struct list_head leaf_cfs_rq_list;
  405. #endif
  406. #ifdef CONFIG_RT_GROUP_SCHED
  407. struct list_head leaf_rt_rq_list;
  408. #endif
  409. /*
  410. * This is part of a global counter where only the total sum
  411. * over all CPUs matters. A task can increase this counter on
  412. * one CPU and if it got migrated afterwards it may decrease
  413. * it on another CPU. Always updated under the runqueue lock:
  414. */
  415. unsigned long nr_uninterruptible;
  416. struct task_struct *curr, *idle, *stop;
  417. unsigned long next_balance;
  418. struct mm_struct *prev_mm;
  419. u64 clock;
  420. u64 clock_task;
  421. atomic_t nr_iowait;
  422. #ifdef CONFIG_SMP
  423. struct root_domain *rd;
  424. struct sched_domain *sd;
  425. unsigned long cpu_power;
  426. unsigned char idle_at_tick;
  427. /* For active balancing */
  428. int post_schedule;
  429. int active_balance;
  430. int push_cpu;
  431. struct cpu_stop_work active_balance_work;
  432. /* cpu of this runqueue: */
  433. int cpu;
  434. int online;
  435. unsigned long avg_load_per_task;
  436. u64 rt_avg;
  437. u64 age_stamp;
  438. u64 idle_stamp;
  439. u64 avg_idle;
  440. #endif
  441. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  442. u64 prev_irq_time;
  443. #endif
  444. /* calc_load related fields */
  445. unsigned long calc_load_update;
  446. long calc_load_active;
  447. #ifdef CONFIG_SCHED_HRTICK
  448. #ifdef CONFIG_SMP
  449. int hrtick_csd_pending;
  450. struct call_single_data hrtick_csd;
  451. #endif
  452. struct hrtimer hrtick_timer;
  453. #endif
  454. #ifdef CONFIG_SCHEDSTATS
  455. /* latency stats */
  456. struct sched_info rq_sched_info;
  457. unsigned long long rq_cpu_time;
  458. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  459. /* sys_sched_yield() stats */
  460. unsigned int yld_count;
  461. /* schedule() stats */
  462. unsigned int sched_switch;
  463. unsigned int sched_count;
  464. unsigned int sched_goidle;
  465. /* try_to_wake_up() stats */
  466. unsigned int ttwu_count;
  467. unsigned int ttwu_local;
  468. #endif
  469. #ifdef CONFIG_SMP
  470. struct task_struct *wake_list;
  471. #endif
  472. };
  473. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  474. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  475. static inline int cpu_of(struct rq *rq)
  476. {
  477. #ifdef CONFIG_SMP
  478. return rq->cpu;
  479. #else
  480. return 0;
  481. #endif
  482. }
  483. #define rcu_dereference_check_sched_domain(p) \
  484. rcu_dereference_check((p), \
  485. rcu_read_lock_held() || \
  486. lockdep_is_held(&sched_domains_mutex))
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  501. #ifdef CONFIG_CGROUP_SCHED
  502. /*
  503. * Return the group to which this tasks belongs.
  504. *
  505. * We use task_subsys_state_check() and extend the RCU verification with
  506. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  507. * task it moves into the cgroup. Therefore by holding either of those locks,
  508. * we pin the task to the current cgroup.
  509. */
  510. static inline struct task_group *task_group(struct task_struct *p)
  511. {
  512. struct task_group *tg;
  513. struct cgroup_subsys_state *css;
  514. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  515. lockdep_is_held(&p->pi_lock) ||
  516. lockdep_is_held(&task_rq(p)->lock));
  517. tg = container_of(css, struct task_group, css);
  518. return autogroup_task_group(p, tg);
  519. }
  520. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  521. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  522. {
  523. #ifdef CONFIG_FAIR_GROUP_SCHED
  524. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  525. p->se.parent = task_group(p)->se[cpu];
  526. #endif
  527. #ifdef CONFIG_RT_GROUP_SCHED
  528. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  529. p->rt.parent = task_group(p)->rt_se[cpu];
  530. #endif
  531. }
  532. #else /* CONFIG_CGROUP_SCHED */
  533. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  534. static inline struct task_group *task_group(struct task_struct *p)
  535. {
  536. return NULL;
  537. }
  538. #endif /* CONFIG_CGROUP_SCHED */
  539. static void update_rq_clock_task(struct rq *rq, s64 delta);
  540. static void update_rq_clock(struct rq *rq)
  541. {
  542. s64 delta;
  543. if (rq->skip_clock_update > 0)
  544. return;
  545. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  546. rq->clock += delta;
  547. update_rq_clock_task(rq, delta);
  548. }
  549. /*
  550. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  551. */
  552. #ifdef CONFIG_SCHED_DEBUG
  553. # define const_debug __read_mostly
  554. #else
  555. # define const_debug static const
  556. #endif
  557. /**
  558. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  559. * @cpu: the processor in question.
  560. *
  561. * This interface allows printk to be called with the runqueue lock
  562. * held and know whether or not it is OK to wake up the klogd.
  563. */
  564. int runqueue_is_locked(int cpu)
  565. {
  566. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  567. }
  568. /*
  569. * Debugging: various feature bits
  570. */
  571. #define SCHED_FEAT(name, enabled) \
  572. __SCHED_FEAT_##name ,
  573. enum {
  574. #include "sched_features.h"
  575. };
  576. #undef SCHED_FEAT
  577. #define SCHED_FEAT(name, enabled) \
  578. (1UL << __SCHED_FEAT_##name) * enabled |
  579. const_debug unsigned int sysctl_sched_features =
  580. #include "sched_features.h"
  581. 0;
  582. #undef SCHED_FEAT
  583. #ifdef CONFIG_SCHED_DEBUG
  584. #define SCHED_FEAT(name, enabled) \
  585. #name ,
  586. static __read_mostly char *sched_feat_names[] = {
  587. #include "sched_features.h"
  588. NULL
  589. };
  590. #undef SCHED_FEAT
  591. static int sched_feat_show(struct seq_file *m, void *v)
  592. {
  593. int i;
  594. for (i = 0; sched_feat_names[i]; i++) {
  595. if (!(sysctl_sched_features & (1UL << i)))
  596. seq_puts(m, "NO_");
  597. seq_printf(m, "%s ", sched_feat_names[i]);
  598. }
  599. seq_puts(m, "\n");
  600. return 0;
  601. }
  602. static ssize_t
  603. sched_feat_write(struct file *filp, const char __user *ubuf,
  604. size_t cnt, loff_t *ppos)
  605. {
  606. char buf[64];
  607. char *cmp;
  608. int neg = 0;
  609. int i;
  610. if (cnt > 63)
  611. cnt = 63;
  612. if (copy_from_user(&buf, ubuf, cnt))
  613. return -EFAULT;
  614. buf[cnt] = 0;
  615. cmp = strstrip(buf);
  616. if (strncmp(cmp, "NO_", 3) == 0) {
  617. neg = 1;
  618. cmp += 3;
  619. }
  620. for (i = 0; sched_feat_names[i]; i++) {
  621. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  622. if (neg)
  623. sysctl_sched_features &= ~(1UL << i);
  624. else
  625. sysctl_sched_features |= (1UL << i);
  626. break;
  627. }
  628. }
  629. if (!sched_feat_names[i])
  630. return -EINVAL;
  631. *ppos += cnt;
  632. return cnt;
  633. }
  634. static int sched_feat_open(struct inode *inode, struct file *filp)
  635. {
  636. return single_open(filp, sched_feat_show, NULL);
  637. }
  638. static const struct file_operations sched_feat_fops = {
  639. .open = sched_feat_open,
  640. .write = sched_feat_write,
  641. .read = seq_read,
  642. .llseek = seq_lseek,
  643. .release = single_release,
  644. };
  645. static __init int sched_init_debug(void)
  646. {
  647. debugfs_create_file("sched_features", 0644, NULL, NULL,
  648. &sched_feat_fops);
  649. return 0;
  650. }
  651. late_initcall(sched_init_debug);
  652. #endif
  653. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  654. /*
  655. * Number of tasks to iterate in a single balance run.
  656. * Limited because this is done with IRQs disabled.
  657. */
  658. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  659. /*
  660. * period over which we average the RT time consumption, measured
  661. * in ms.
  662. *
  663. * default: 1s
  664. */
  665. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  666. /*
  667. * period over which we measure -rt task cpu usage in us.
  668. * default: 1s
  669. */
  670. unsigned int sysctl_sched_rt_period = 1000000;
  671. static __read_mostly int scheduler_running;
  672. /*
  673. * part of the period that we allow rt tasks to run in us.
  674. * default: 0.95s
  675. */
  676. int sysctl_sched_rt_runtime = 950000;
  677. static inline u64 global_rt_period(void)
  678. {
  679. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  680. }
  681. static inline u64 global_rt_runtime(void)
  682. {
  683. if (sysctl_sched_rt_runtime < 0)
  684. return RUNTIME_INF;
  685. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  686. }
  687. #ifndef prepare_arch_switch
  688. # define prepare_arch_switch(next) do { } while (0)
  689. #endif
  690. #ifndef finish_arch_switch
  691. # define finish_arch_switch(prev) do { } while (0)
  692. #endif
  693. static inline int task_current(struct rq *rq, struct task_struct *p)
  694. {
  695. return rq->curr == p;
  696. }
  697. static inline int task_running(struct rq *rq, struct task_struct *p)
  698. {
  699. #ifdef CONFIG_SMP
  700. return p->on_cpu;
  701. #else
  702. return task_current(rq, p);
  703. #endif
  704. }
  705. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  706. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  707. {
  708. #ifdef CONFIG_SMP
  709. /*
  710. * We can optimise this out completely for !SMP, because the
  711. * SMP rebalancing from interrupt is the only thing that cares
  712. * here.
  713. */
  714. next->on_cpu = 1;
  715. #endif
  716. }
  717. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  718. {
  719. #ifdef CONFIG_SMP
  720. /*
  721. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  722. * We must ensure this doesn't happen until the switch is completely
  723. * finished.
  724. */
  725. smp_wmb();
  726. prev->on_cpu = 0;
  727. #endif
  728. #ifdef CONFIG_DEBUG_SPINLOCK
  729. /* this is a valid case when another task releases the spinlock */
  730. rq->lock.owner = current;
  731. #endif
  732. /*
  733. * If we are tracking spinlock dependencies then we have to
  734. * fix up the runqueue lock - which gets 'carried over' from
  735. * prev into current:
  736. */
  737. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  738. raw_spin_unlock_irq(&rq->lock);
  739. }
  740. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  741. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  742. {
  743. #ifdef CONFIG_SMP
  744. /*
  745. * We can optimise this out completely for !SMP, because the
  746. * SMP rebalancing from interrupt is the only thing that cares
  747. * here.
  748. */
  749. next->on_cpu = 1;
  750. #endif
  751. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  752. raw_spin_unlock_irq(&rq->lock);
  753. #else
  754. raw_spin_unlock(&rq->lock);
  755. #endif
  756. }
  757. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  758. {
  759. #ifdef CONFIG_SMP
  760. /*
  761. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  762. * We must ensure this doesn't happen until the switch is completely
  763. * finished.
  764. */
  765. smp_wmb();
  766. prev->on_cpu = 0;
  767. #endif
  768. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  769. local_irq_enable();
  770. #endif
  771. }
  772. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  773. /*
  774. * __task_rq_lock - lock the rq @p resides on.
  775. */
  776. static inline struct rq *__task_rq_lock(struct task_struct *p)
  777. __acquires(rq->lock)
  778. {
  779. struct rq *rq;
  780. lockdep_assert_held(&p->pi_lock);
  781. for (;;) {
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  791. */
  792. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  793. __acquires(p->pi_lock)
  794. __acquires(rq->lock)
  795. {
  796. struct rq *rq;
  797. for (;;) {
  798. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  799. rq = task_rq(p);
  800. raw_spin_lock(&rq->lock);
  801. if (likely(rq == task_rq(p)))
  802. return rq;
  803. raw_spin_unlock(&rq->lock);
  804. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  805. }
  806. }
  807. static void __task_rq_unlock(struct rq *rq)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock(&rq->lock);
  811. }
  812. static inline void
  813. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  814. __releases(rq->lock)
  815. __releases(p->pi_lock)
  816. {
  817. raw_spin_unlock(&rq->lock);
  818. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  819. }
  820. /*
  821. * this_rq_lock - lock this runqueue and disable interrupts.
  822. */
  823. static struct rq *this_rq_lock(void)
  824. __acquires(rq->lock)
  825. {
  826. struct rq *rq;
  827. local_irq_disable();
  828. rq = this_rq();
  829. raw_spin_lock(&rq->lock);
  830. return rq;
  831. }
  832. #ifdef CONFIG_SCHED_HRTICK
  833. /*
  834. * Use HR-timers to deliver accurate preemption points.
  835. *
  836. * Its all a bit involved since we cannot program an hrt while holding the
  837. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  838. * reschedule event.
  839. *
  840. * When we get rescheduled we reprogram the hrtick_timer outside of the
  841. * rq->lock.
  842. */
  843. /*
  844. * Use hrtick when:
  845. * - enabled by features
  846. * - hrtimer is actually high res
  847. */
  848. static inline int hrtick_enabled(struct rq *rq)
  849. {
  850. if (!sched_feat(HRTICK))
  851. return 0;
  852. if (!cpu_active(cpu_of(rq)))
  853. return 0;
  854. return hrtimer_is_hres_active(&rq->hrtick_timer);
  855. }
  856. static void hrtick_clear(struct rq *rq)
  857. {
  858. if (hrtimer_active(&rq->hrtick_timer))
  859. hrtimer_cancel(&rq->hrtick_timer);
  860. }
  861. /*
  862. * High-resolution timer tick.
  863. * Runs from hardirq context with interrupts disabled.
  864. */
  865. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  866. {
  867. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  868. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  869. raw_spin_lock(&rq->lock);
  870. update_rq_clock(rq);
  871. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  872. raw_spin_unlock(&rq->lock);
  873. return HRTIMER_NORESTART;
  874. }
  875. #ifdef CONFIG_SMP
  876. /*
  877. * called from hardirq (IPI) context
  878. */
  879. static void __hrtick_start(void *arg)
  880. {
  881. struct rq *rq = arg;
  882. raw_spin_lock(&rq->lock);
  883. hrtimer_restart(&rq->hrtick_timer);
  884. rq->hrtick_csd_pending = 0;
  885. raw_spin_unlock(&rq->lock);
  886. }
  887. /*
  888. * Called to set the hrtick timer state.
  889. *
  890. * called with rq->lock held and irqs disabled
  891. */
  892. static void hrtick_start(struct rq *rq, u64 delay)
  893. {
  894. struct hrtimer *timer = &rq->hrtick_timer;
  895. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  896. hrtimer_set_expires(timer, time);
  897. if (rq == this_rq()) {
  898. hrtimer_restart(timer);
  899. } else if (!rq->hrtick_csd_pending) {
  900. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  901. rq->hrtick_csd_pending = 1;
  902. }
  903. }
  904. static int
  905. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  906. {
  907. int cpu = (int)(long)hcpu;
  908. switch (action) {
  909. case CPU_UP_CANCELED:
  910. case CPU_UP_CANCELED_FROZEN:
  911. case CPU_DOWN_PREPARE:
  912. case CPU_DOWN_PREPARE_FROZEN:
  913. case CPU_DEAD:
  914. case CPU_DEAD_FROZEN:
  915. hrtick_clear(cpu_rq(cpu));
  916. return NOTIFY_OK;
  917. }
  918. return NOTIFY_DONE;
  919. }
  920. static __init void init_hrtick(void)
  921. {
  922. hotcpu_notifier(hotplug_hrtick, 0);
  923. }
  924. #else
  925. /*
  926. * Called to set the hrtick timer state.
  927. *
  928. * called with rq->lock held and irqs disabled
  929. */
  930. static void hrtick_start(struct rq *rq, u64 delay)
  931. {
  932. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  933. HRTIMER_MODE_REL_PINNED, 0);
  934. }
  935. static inline void init_hrtick(void)
  936. {
  937. }
  938. #endif /* CONFIG_SMP */
  939. static void init_rq_hrtick(struct rq *rq)
  940. {
  941. #ifdef CONFIG_SMP
  942. rq->hrtick_csd_pending = 0;
  943. rq->hrtick_csd.flags = 0;
  944. rq->hrtick_csd.func = __hrtick_start;
  945. rq->hrtick_csd.info = rq;
  946. #endif
  947. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  948. rq->hrtick_timer.function = hrtick;
  949. }
  950. #else /* CONFIG_SCHED_HRTICK */
  951. static inline void hrtick_clear(struct rq *rq)
  952. {
  953. }
  954. static inline void init_rq_hrtick(struct rq *rq)
  955. {
  956. }
  957. static inline void init_hrtick(void)
  958. {
  959. }
  960. #endif /* CONFIG_SCHED_HRTICK */
  961. /*
  962. * resched_task - mark a task 'to be rescheduled now'.
  963. *
  964. * On UP this means the setting of the need_resched flag, on SMP it
  965. * might also involve a cross-CPU call to trigger the scheduler on
  966. * the target CPU.
  967. */
  968. #ifdef CONFIG_SMP
  969. #ifndef tsk_is_polling
  970. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  971. #endif
  972. static void resched_task(struct task_struct *p)
  973. {
  974. int cpu;
  975. assert_raw_spin_locked(&task_rq(p)->lock);
  976. if (test_tsk_need_resched(p))
  977. return;
  978. set_tsk_need_resched(p);
  979. cpu = task_cpu(p);
  980. if (cpu == smp_processor_id())
  981. return;
  982. /* NEED_RESCHED must be visible before we test polling */
  983. smp_mb();
  984. if (!tsk_is_polling(p))
  985. smp_send_reschedule(cpu);
  986. }
  987. static void resched_cpu(int cpu)
  988. {
  989. struct rq *rq = cpu_rq(cpu);
  990. unsigned long flags;
  991. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  992. return;
  993. resched_task(cpu_curr(cpu));
  994. raw_spin_unlock_irqrestore(&rq->lock, flags);
  995. }
  996. #ifdef CONFIG_NO_HZ
  997. /*
  998. * In the semi idle case, use the nearest busy cpu for migrating timers
  999. * from an idle cpu. This is good for power-savings.
  1000. *
  1001. * We don't do similar optimization for completely idle system, as
  1002. * selecting an idle cpu will add more delays to the timers than intended
  1003. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1004. */
  1005. int get_nohz_timer_target(void)
  1006. {
  1007. int cpu = smp_processor_id();
  1008. int i;
  1009. struct sched_domain *sd;
  1010. rcu_read_lock();
  1011. for_each_domain(cpu, sd) {
  1012. for_each_cpu(i, sched_domain_span(sd)) {
  1013. if (!idle_cpu(i)) {
  1014. cpu = i;
  1015. goto unlock;
  1016. }
  1017. }
  1018. }
  1019. unlock:
  1020. rcu_read_unlock();
  1021. return cpu;
  1022. }
  1023. /*
  1024. * When add_timer_on() enqueues a timer into the timer wheel of an
  1025. * idle CPU then this timer might expire before the next timer event
  1026. * which is scheduled to wake up that CPU. In case of a completely
  1027. * idle system the next event might even be infinite time into the
  1028. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1029. * leaves the inner idle loop so the newly added timer is taken into
  1030. * account when the CPU goes back to idle and evaluates the timer
  1031. * wheel for the next timer event.
  1032. */
  1033. void wake_up_idle_cpu(int cpu)
  1034. {
  1035. struct rq *rq = cpu_rq(cpu);
  1036. if (cpu == smp_processor_id())
  1037. return;
  1038. /*
  1039. * This is safe, as this function is called with the timer
  1040. * wheel base lock of (cpu) held. When the CPU is on the way
  1041. * to idle and has not yet set rq->curr to idle then it will
  1042. * be serialized on the timer wheel base lock and take the new
  1043. * timer into account automatically.
  1044. */
  1045. if (rq->curr != rq->idle)
  1046. return;
  1047. /*
  1048. * We can set TIF_RESCHED on the idle task of the other CPU
  1049. * lockless. The worst case is that the other CPU runs the
  1050. * idle task through an additional NOOP schedule()
  1051. */
  1052. set_tsk_need_resched(rq->idle);
  1053. /* NEED_RESCHED must be visible before we test polling */
  1054. smp_mb();
  1055. if (!tsk_is_polling(rq->idle))
  1056. smp_send_reschedule(cpu);
  1057. }
  1058. #endif /* CONFIG_NO_HZ */
  1059. static u64 sched_avg_period(void)
  1060. {
  1061. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1062. }
  1063. static void sched_avg_update(struct rq *rq)
  1064. {
  1065. s64 period = sched_avg_period();
  1066. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1067. /*
  1068. * Inline assembly required to prevent the compiler
  1069. * optimising this loop into a divmod call.
  1070. * See __iter_div_u64_rem() for another example of this.
  1071. */
  1072. asm("" : "+rm" (rq->age_stamp));
  1073. rq->age_stamp += period;
  1074. rq->rt_avg /= 2;
  1075. }
  1076. }
  1077. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1078. {
  1079. rq->rt_avg += rt_delta;
  1080. sched_avg_update(rq);
  1081. }
  1082. #else /* !CONFIG_SMP */
  1083. static void resched_task(struct task_struct *p)
  1084. {
  1085. assert_raw_spin_locked(&task_rq(p)->lock);
  1086. set_tsk_need_resched(p);
  1087. }
  1088. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1089. {
  1090. }
  1091. static void sched_avg_update(struct rq *rq)
  1092. {
  1093. }
  1094. #endif /* CONFIG_SMP */
  1095. #if BITS_PER_LONG == 32
  1096. # define WMULT_CONST (~0UL)
  1097. #else
  1098. # define WMULT_CONST (1UL << 32)
  1099. #endif
  1100. #define WMULT_SHIFT 32
  1101. /*
  1102. * Shift right and round:
  1103. */
  1104. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1105. /*
  1106. * delta *= weight / lw
  1107. */
  1108. static unsigned long
  1109. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1110. struct load_weight *lw)
  1111. {
  1112. u64 tmp;
  1113. /*
  1114. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1115. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1116. * 2^SCHED_LOAD_RESOLUTION.
  1117. */
  1118. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1119. tmp = (u64)delta_exec * scale_load_down(weight);
  1120. else
  1121. tmp = (u64)delta_exec;
  1122. if (!lw->inv_weight) {
  1123. unsigned long w = scale_load_down(lw->weight);
  1124. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1125. lw->inv_weight = 1;
  1126. else if (unlikely(!w))
  1127. lw->inv_weight = WMULT_CONST;
  1128. else
  1129. lw->inv_weight = WMULT_CONST / w;
  1130. }
  1131. /*
  1132. * Check whether we'd overflow the 64-bit multiplication:
  1133. */
  1134. if (unlikely(tmp > WMULT_CONST))
  1135. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1136. WMULT_SHIFT/2);
  1137. else
  1138. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1139. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1140. }
  1141. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1142. {
  1143. lw->weight += inc;
  1144. lw->inv_weight = 0;
  1145. }
  1146. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1147. {
  1148. lw->weight -= dec;
  1149. lw->inv_weight = 0;
  1150. }
  1151. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1152. {
  1153. lw->weight = w;
  1154. lw->inv_weight = 0;
  1155. }
  1156. /*
  1157. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1158. * of tasks with abnormal "nice" values across CPUs the contribution that
  1159. * each task makes to its run queue's load is weighted according to its
  1160. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1161. * scaled version of the new time slice allocation that they receive on time
  1162. * slice expiry etc.
  1163. */
  1164. #define WEIGHT_IDLEPRIO 3
  1165. #define WMULT_IDLEPRIO 1431655765
  1166. /*
  1167. * Nice levels are multiplicative, with a gentle 10% change for every
  1168. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1169. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1170. * that remained on nice 0.
  1171. *
  1172. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1173. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1174. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1175. * If a task goes up by ~10% and another task goes down by ~10% then
  1176. * the relative distance between them is ~25%.)
  1177. */
  1178. static const int prio_to_weight[40] = {
  1179. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1180. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1181. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1182. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1183. /* 0 */ 1024, 820, 655, 526, 423,
  1184. /* 5 */ 335, 272, 215, 172, 137,
  1185. /* 10 */ 110, 87, 70, 56, 45,
  1186. /* 15 */ 36, 29, 23, 18, 15,
  1187. };
  1188. /*
  1189. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1190. *
  1191. * In cases where the weight does not change often, we can use the
  1192. * precalculated inverse to speed up arithmetics by turning divisions
  1193. * into multiplications:
  1194. */
  1195. static const u32 prio_to_wmult[40] = {
  1196. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1197. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1198. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1199. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1200. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1201. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1202. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1203. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1204. };
  1205. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1206. enum cpuacct_stat_index {
  1207. CPUACCT_STAT_USER, /* ... user mode */
  1208. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1209. CPUACCT_STAT_NSTATS,
  1210. };
  1211. #ifdef CONFIG_CGROUP_CPUACCT
  1212. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1213. static void cpuacct_update_stats(struct task_struct *tsk,
  1214. enum cpuacct_stat_index idx, cputime_t val);
  1215. #else
  1216. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1217. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1218. enum cpuacct_stat_index idx, cputime_t val) {}
  1219. #endif
  1220. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1221. {
  1222. update_load_add(&rq->load, load);
  1223. }
  1224. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1225. {
  1226. update_load_sub(&rq->load, load);
  1227. }
  1228. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1229. typedef int (*tg_visitor)(struct task_group *, void *);
  1230. /*
  1231. * Iterate the full tree, calling @down when first entering a node and @up when
  1232. * leaving it for the final time.
  1233. */
  1234. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1235. {
  1236. struct task_group *parent, *child;
  1237. int ret;
  1238. rcu_read_lock();
  1239. parent = &root_task_group;
  1240. down:
  1241. ret = (*down)(parent, data);
  1242. if (ret)
  1243. goto out_unlock;
  1244. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1245. parent = child;
  1246. goto down;
  1247. up:
  1248. continue;
  1249. }
  1250. ret = (*up)(parent, data);
  1251. if (ret)
  1252. goto out_unlock;
  1253. child = parent;
  1254. parent = parent->parent;
  1255. if (parent)
  1256. goto up;
  1257. out_unlock:
  1258. rcu_read_unlock();
  1259. return ret;
  1260. }
  1261. static int tg_nop(struct task_group *tg, void *data)
  1262. {
  1263. return 0;
  1264. }
  1265. #endif
  1266. #ifdef CONFIG_SMP
  1267. /* Used instead of source_load when we know the type == 0 */
  1268. static unsigned long weighted_cpuload(const int cpu)
  1269. {
  1270. return cpu_rq(cpu)->load.weight;
  1271. }
  1272. /*
  1273. * Return a low guess at the load of a migration-source cpu weighted
  1274. * according to the scheduling class and "nice" value.
  1275. *
  1276. * We want to under-estimate the load of migration sources, to
  1277. * balance conservatively.
  1278. */
  1279. static unsigned long source_load(int cpu, int type)
  1280. {
  1281. struct rq *rq = cpu_rq(cpu);
  1282. unsigned long total = weighted_cpuload(cpu);
  1283. if (type == 0 || !sched_feat(LB_BIAS))
  1284. return total;
  1285. return min(rq->cpu_load[type-1], total);
  1286. }
  1287. /*
  1288. * Return a high guess at the load of a migration-target cpu weighted
  1289. * according to the scheduling class and "nice" value.
  1290. */
  1291. static unsigned long target_load(int cpu, int type)
  1292. {
  1293. struct rq *rq = cpu_rq(cpu);
  1294. unsigned long total = weighted_cpuload(cpu);
  1295. if (type == 0 || !sched_feat(LB_BIAS))
  1296. return total;
  1297. return max(rq->cpu_load[type-1], total);
  1298. }
  1299. static unsigned long power_of(int cpu)
  1300. {
  1301. return cpu_rq(cpu)->cpu_power;
  1302. }
  1303. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1304. static unsigned long cpu_avg_load_per_task(int cpu)
  1305. {
  1306. struct rq *rq = cpu_rq(cpu);
  1307. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1308. if (nr_running)
  1309. rq->avg_load_per_task = rq->load.weight / nr_running;
  1310. else
  1311. rq->avg_load_per_task = 0;
  1312. return rq->avg_load_per_task;
  1313. }
  1314. #ifdef CONFIG_FAIR_GROUP_SCHED
  1315. /*
  1316. * Compute the cpu's hierarchical load factor for each task group.
  1317. * This needs to be done in a top-down fashion because the load of a child
  1318. * group is a fraction of its parents load.
  1319. */
  1320. static int tg_load_down(struct task_group *tg, void *data)
  1321. {
  1322. unsigned long load;
  1323. long cpu = (long)data;
  1324. if (!tg->parent) {
  1325. load = cpu_rq(cpu)->load.weight;
  1326. } else {
  1327. load = tg->parent->cfs_rq[cpu]->h_load;
  1328. load *= tg->se[cpu]->load.weight;
  1329. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1330. }
  1331. tg->cfs_rq[cpu]->h_load = load;
  1332. return 0;
  1333. }
  1334. static void update_h_load(long cpu)
  1335. {
  1336. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1337. }
  1338. #endif
  1339. #ifdef CONFIG_PREEMPT
  1340. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1341. /*
  1342. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1343. * way at the expense of forcing extra atomic operations in all
  1344. * invocations. This assures that the double_lock is acquired using the
  1345. * same underlying policy as the spinlock_t on this architecture, which
  1346. * reduces latency compared to the unfair variant below. However, it
  1347. * also adds more overhead and therefore may reduce throughput.
  1348. */
  1349. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1350. __releases(this_rq->lock)
  1351. __acquires(busiest->lock)
  1352. __acquires(this_rq->lock)
  1353. {
  1354. raw_spin_unlock(&this_rq->lock);
  1355. double_rq_lock(this_rq, busiest);
  1356. return 1;
  1357. }
  1358. #else
  1359. /*
  1360. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1361. * latency by eliminating extra atomic operations when the locks are
  1362. * already in proper order on entry. This favors lower cpu-ids and will
  1363. * grant the double lock to lower cpus over higher ids under contention,
  1364. * regardless of entry order into the function.
  1365. */
  1366. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1367. __releases(this_rq->lock)
  1368. __acquires(busiest->lock)
  1369. __acquires(this_rq->lock)
  1370. {
  1371. int ret = 0;
  1372. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1373. if (busiest < this_rq) {
  1374. raw_spin_unlock(&this_rq->lock);
  1375. raw_spin_lock(&busiest->lock);
  1376. raw_spin_lock_nested(&this_rq->lock,
  1377. SINGLE_DEPTH_NESTING);
  1378. ret = 1;
  1379. } else
  1380. raw_spin_lock_nested(&busiest->lock,
  1381. SINGLE_DEPTH_NESTING);
  1382. }
  1383. return ret;
  1384. }
  1385. #endif /* CONFIG_PREEMPT */
  1386. /*
  1387. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1388. */
  1389. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1390. {
  1391. if (unlikely(!irqs_disabled())) {
  1392. /* printk() doesn't work good under rq->lock */
  1393. raw_spin_unlock(&this_rq->lock);
  1394. BUG_ON(1);
  1395. }
  1396. return _double_lock_balance(this_rq, busiest);
  1397. }
  1398. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1399. __releases(busiest->lock)
  1400. {
  1401. raw_spin_unlock(&busiest->lock);
  1402. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1403. }
  1404. /*
  1405. * double_rq_lock - safely lock two runqueues
  1406. *
  1407. * Note this does not disable interrupts like task_rq_lock,
  1408. * you need to do so manually before calling.
  1409. */
  1410. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1411. __acquires(rq1->lock)
  1412. __acquires(rq2->lock)
  1413. {
  1414. BUG_ON(!irqs_disabled());
  1415. if (rq1 == rq2) {
  1416. raw_spin_lock(&rq1->lock);
  1417. __acquire(rq2->lock); /* Fake it out ;) */
  1418. } else {
  1419. if (rq1 < rq2) {
  1420. raw_spin_lock(&rq1->lock);
  1421. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1422. } else {
  1423. raw_spin_lock(&rq2->lock);
  1424. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1425. }
  1426. }
  1427. }
  1428. /*
  1429. * double_rq_unlock - safely unlock two runqueues
  1430. *
  1431. * Note this does not restore interrupts like task_rq_unlock,
  1432. * you need to do so manually after calling.
  1433. */
  1434. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1435. __releases(rq1->lock)
  1436. __releases(rq2->lock)
  1437. {
  1438. raw_spin_unlock(&rq1->lock);
  1439. if (rq1 != rq2)
  1440. raw_spin_unlock(&rq2->lock);
  1441. else
  1442. __release(rq2->lock);
  1443. }
  1444. #else /* CONFIG_SMP */
  1445. /*
  1446. * double_rq_lock - safely lock two runqueues
  1447. *
  1448. * Note this does not disable interrupts like task_rq_lock,
  1449. * you need to do so manually before calling.
  1450. */
  1451. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1452. __acquires(rq1->lock)
  1453. __acquires(rq2->lock)
  1454. {
  1455. BUG_ON(!irqs_disabled());
  1456. BUG_ON(rq1 != rq2);
  1457. raw_spin_lock(&rq1->lock);
  1458. __acquire(rq2->lock); /* Fake it out ;) */
  1459. }
  1460. /*
  1461. * double_rq_unlock - safely unlock two runqueues
  1462. *
  1463. * Note this does not restore interrupts like task_rq_unlock,
  1464. * you need to do so manually after calling.
  1465. */
  1466. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1467. __releases(rq1->lock)
  1468. __releases(rq2->lock)
  1469. {
  1470. BUG_ON(rq1 != rq2);
  1471. raw_spin_unlock(&rq1->lock);
  1472. __release(rq2->lock);
  1473. }
  1474. #endif
  1475. static void calc_load_account_idle(struct rq *this_rq);
  1476. static void update_sysctl(void);
  1477. static int get_update_sysctl_factor(void);
  1478. static void update_cpu_load(struct rq *this_rq);
  1479. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1480. {
  1481. set_task_rq(p, cpu);
  1482. #ifdef CONFIG_SMP
  1483. /*
  1484. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1485. * successfuly executed on another CPU. We must ensure that updates of
  1486. * per-task data have been completed by this moment.
  1487. */
  1488. smp_wmb();
  1489. task_thread_info(p)->cpu = cpu;
  1490. #endif
  1491. }
  1492. static const struct sched_class rt_sched_class;
  1493. #define sched_class_highest (&stop_sched_class)
  1494. #define for_each_class(class) \
  1495. for (class = sched_class_highest; class; class = class->next)
  1496. #include "sched_stats.h"
  1497. static void inc_nr_running(struct rq *rq)
  1498. {
  1499. rq->nr_running++;
  1500. }
  1501. static void dec_nr_running(struct rq *rq)
  1502. {
  1503. rq->nr_running--;
  1504. }
  1505. static void set_load_weight(struct task_struct *p)
  1506. {
  1507. int prio = p->static_prio - MAX_RT_PRIO;
  1508. struct load_weight *load = &p->se.load;
  1509. /*
  1510. * SCHED_IDLE tasks get minimal weight:
  1511. */
  1512. if (p->policy == SCHED_IDLE) {
  1513. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1514. load->inv_weight = WMULT_IDLEPRIO;
  1515. return;
  1516. }
  1517. load->weight = scale_load(prio_to_weight[prio]);
  1518. load->inv_weight = prio_to_wmult[prio];
  1519. }
  1520. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1521. {
  1522. update_rq_clock(rq);
  1523. sched_info_queued(p);
  1524. p->sched_class->enqueue_task(rq, p, flags);
  1525. }
  1526. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1527. {
  1528. update_rq_clock(rq);
  1529. sched_info_dequeued(p);
  1530. p->sched_class->dequeue_task(rq, p, flags);
  1531. }
  1532. /*
  1533. * activate_task - move a task to the runqueue.
  1534. */
  1535. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1536. {
  1537. if (task_contributes_to_load(p))
  1538. rq->nr_uninterruptible--;
  1539. enqueue_task(rq, p, flags);
  1540. inc_nr_running(rq);
  1541. }
  1542. /*
  1543. * deactivate_task - remove a task from the runqueue.
  1544. */
  1545. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1546. {
  1547. if (task_contributes_to_load(p))
  1548. rq->nr_uninterruptible++;
  1549. dequeue_task(rq, p, flags);
  1550. dec_nr_running(rq);
  1551. }
  1552. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1553. /*
  1554. * There are no locks covering percpu hardirq/softirq time.
  1555. * They are only modified in account_system_vtime, on corresponding CPU
  1556. * with interrupts disabled. So, writes are safe.
  1557. * They are read and saved off onto struct rq in update_rq_clock().
  1558. * This may result in other CPU reading this CPU's irq time and can
  1559. * race with irq/account_system_vtime on this CPU. We would either get old
  1560. * or new value with a side effect of accounting a slice of irq time to wrong
  1561. * task when irq is in progress while we read rq->clock. That is a worthy
  1562. * compromise in place of having locks on each irq in account_system_time.
  1563. */
  1564. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1565. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1566. static DEFINE_PER_CPU(u64, irq_start_time);
  1567. static int sched_clock_irqtime;
  1568. void enable_sched_clock_irqtime(void)
  1569. {
  1570. sched_clock_irqtime = 1;
  1571. }
  1572. void disable_sched_clock_irqtime(void)
  1573. {
  1574. sched_clock_irqtime = 0;
  1575. }
  1576. #ifndef CONFIG_64BIT
  1577. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1578. static inline void irq_time_write_begin(void)
  1579. {
  1580. __this_cpu_inc(irq_time_seq.sequence);
  1581. smp_wmb();
  1582. }
  1583. static inline void irq_time_write_end(void)
  1584. {
  1585. smp_wmb();
  1586. __this_cpu_inc(irq_time_seq.sequence);
  1587. }
  1588. static inline u64 irq_time_read(int cpu)
  1589. {
  1590. u64 irq_time;
  1591. unsigned seq;
  1592. do {
  1593. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1594. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1595. per_cpu(cpu_hardirq_time, cpu);
  1596. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1597. return irq_time;
  1598. }
  1599. #else /* CONFIG_64BIT */
  1600. static inline void irq_time_write_begin(void)
  1601. {
  1602. }
  1603. static inline void irq_time_write_end(void)
  1604. {
  1605. }
  1606. static inline u64 irq_time_read(int cpu)
  1607. {
  1608. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1609. }
  1610. #endif /* CONFIG_64BIT */
  1611. /*
  1612. * Called before incrementing preempt_count on {soft,}irq_enter
  1613. * and before decrementing preempt_count on {soft,}irq_exit.
  1614. */
  1615. void account_system_vtime(struct task_struct *curr)
  1616. {
  1617. unsigned long flags;
  1618. s64 delta;
  1619. int cpu;
  1620. if (!sched_clock_irqtime)
  1621. return;
  1622. local_irq_save(flags);
  1623. cpu = smp_processor_id();
  1624. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1625. __this_cpu_add(irq_start_time, delta);
  1626. irq_time_write_begin();
  1627. /*
  1628. * We do not account for softirq time from ksoftirqd here.
  1629. * We want to continue accounting softirq time to ksoftirqd thread
  1630. * in that case, so as not to confuse scheduler with a special task
  1631. * that do not consume any time, but still wants to run.
  1632. */
  1633. if (hardirq_count())
  1634. __this_cpu_add(cpu_hardirq_time, delta);
  1635. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1636. __this_cpu_add(cpu_softirq_time, delta);
  1637. irq_time_write_end();
  1638. local_irq_restore(flags);
  1639. }
  1640. EXPORT_SYMBOL_GPL(account_system_vtime);
  1641. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1642. {
  1643. s64 irq_delta;
  1644. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1645. /*
  1646. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1647. * this case when a previous update_rq_clock() happened inside a
  1648. * {soft,}irq region.
  1649. *
  1650. * When this happens, we stop ->clock_task and only update the
  1651. * prev_irq_time stamp to account for the part that fit, so that a next
  1652. * update will consume the rest. This ensures ->clock_task is
  1653. * monotonic.
  1654. *
  1655. * It does however cause some slight miss-attribution of {soft,}irq
  1656. * time, a more accurate solution would be to update the irq_time using
  1657. * the current rq->clock timestamp, except that would require using
  1658. * atomic ops.
  1659. */
  1660. if (irq_delta > delta)
  1661. irq_delta = delta;
  1662. rq->prev_irq_time += irq_delta;
  1663. delta -= irq_delta;
  1664. rq->clock_task += delta;
  1665. if (irq_delta && sched_feat(NONIRQ_POWER))
  1666. sched_rt_avg_update(rq, irq_delta);
  1667. }
  1668. static int irqtime_account_hi_update(void)
  1669. {
  1670. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1671. unsigned long flags;
  1672. u64 latest_ns;
  1673. int ret = 0;
  1674. local_irq_save(flags);
  1675. latest_ns = this_cpu_read(cpu_hardirq_time);
  1676. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1677. ret = 1;
  1678. local_irq_restore(flags);
  1679. return ret;
  1680. }
  1681. static int irqtime_account_si_update(void)
  1682. {
  1683. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1684. unsigned long flags;
  1685. u64 latest_ns;
  1686. int ret = 0;
  1687. local_irq_save(flags);
  1688. latest_ns = this_cpu_read(cpu_softirq_time);
  1689. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1690. ret = 1;
  1691. local_irq_restore(flags);
  1692. return ret;
  1693. }
  1694. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1695. #define sched_clock_irqtime (0)
  1696. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1697. {
  1698. rq->clock_task += delta;
  1699. }
  1700. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1701. #include "sched_idletask.c"
  1702. #include "sched_fair.c"
  1703. #include "sched_rt.c"
  1704. #include "sched_autogroup.c"
  1705. #include "sched_stoptask.c"
  1706. #ifdef CONFIG_SCHED_DEBUG
  1707. # include "sched_debug.c"
  1708. #endif
  1709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1710. {
  1711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1713. if (stop) {
  1714. /*
  1715. * Make it appear like a SCHED_FIFO task, its something
  1716. * userspace knows about and won't get confused about.
  1717. *
  1718. * Also, it will make PI more or less work without too
  1719. * much confusion -- but then, stop work should not
  1720. * rely on PI working anyway.
  1721. */
  1722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1723. stop->sched_class = &stop_sched_class;
  1724. }
  1725. cpu_rq(cpu)->stop = stop;
  1726. if (old_stop) {
  1727. /*
  1728. * Reset it back to a normal scheduling class so that
  1729. * it can die in pieces.
  1730. */
  1731. old_stop->sched_class = &rt_sched_class;
  1732. }
  1733. }
  1734. /*
  1735. * __normal_prio - return the priority that is based on the static prio
  1736. */
  1737. static inline int __normal_prio(struct task_struct *p)
  1738. {
  1739. return p->static_prio;
  1740. }
  1741. /*
  1742. * Calculate the expected normal priority: i.e. priority
  1743. * without taking RT-inheritance into account. Might be
  1744. * boosted by interactivity modifiers. Changes upon fork,
  1745. * setprio syscalls, and whenever the interactivity
  1746. * estimator recalculates.
  1747. */
  1748. static inline int normal_prio(struct task_struct *p)
  1749. {
  1750. int prio;
  1751. if (task_has_rt_policy(p))
  1752. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1753. else
  1754. prio = __normal_prio(p);
  1755. return prio;
  1756. }
  1757. /*
  1758. * Calculate the current priority, i.e. the priority
  1759. * taken into account by the scheduler. This value might
  1760. * be boosted by RT tasks, or might be boosted by
  1761. * interactivity modifiers. Will be RT if the task got
  1762. * RT-boosted. If not then it returns p->normal_prio.
  1763. */
  1764. static int effective_prio(struct task_struct *p)
  1765. {
  1766. p->normal_prio = normal_prio(p);
  1767. /*
  1768. * If we are RT tasks or we were boosted to RT priority,
  1769. * keep the priority unchanged. Otherwise, update priority
  1770. * to the normal priority:
  1771. */
  1772. if (!rt_prio(p->prio))
  1773. return p->normal_prio;
  1774. return p->prio;
  1775. }
  1776. /**
  1777. * task_curr - is this task currently executing on a CPU?
  1778. * @p: the task in question.
  1779. */
  1780. inline int task_curr(const struct task_struct *p)
  1781. {
  1782. return cpu_curr(task_cpu(p)) == p;
  1783. }
  1784. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1785. const struct sched_class *prev_class,
  1786. int oldprio)
  1787. {
  1788. if (prev_class != p->sched_class) {
  1789. if (prev_class->switched_from)
  1790. prev_class->switched_from(rq, p);
  1791. p->sched_class->switched_to(rq, p);
  1792. } else if (oldprio != p->prio)
  1793. p->sched_class->prio_changed(rq, p, oldprio);
  1794. }
  1795. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1796. {
  1797. const struct sched_class *class;
  1798. if (p->sched_class == rq->curr->sched_class) {
  1799. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1800. } else {
  1801. for_each_class(class) {
  1802. if (class == rq->curr->sched_class)
  1803. break;
  1804. if (class == p->sched_class) {
  1805. resched_task(rq->curr);
  1806. break;
  1807. }
  1808. }
  1809. }
  1810. /*
  1811. * A queue event has occurred, and we're going to schedule. In
  1812. * this case, we can save a useless back to back clock update.
  1813. */
  1814. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1815. rq->skip_clock_update = 1;
  1816. }
  1817. #ifdef CONFIG_SMP
  1818. /*
  1819. * Is this task likely cache-hot:
  1820. */
  1821. static int
  1822. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1823. {
  1824. s64 delta;
  1825. if (p->sched_class != &fair_sched_class)
  1826. return 0;
  1827. if (unlikely(p->policy == SCHED_IDLE))
  1828. return 0;
  1829. /*
  1830. * Buddy candidates are cache hot:
  1831. */
  1832. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1833. (&p->se == cfs_rq_of(&p->se)->next ||
  1834. &p->se == cfs_rq_of(&p->se)->last))
  1835. return 1;
  1836. if (sysctl_sched_migration_cost == -1)
  1837. return 1;
  1838. if (sysctl_sched_migration_cost == 0)
  1839. return 0;
  1840. delta = now - p->se.exec_start;
  1841. return delta < (s64)sysctl_sched_migration_cost;
  1842. }
  1843. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1844. {
  1845. #ifdef CONFIG_SCHED_DEBUG
  1846. /*
  1847. * We should never call set_task_cpu() on a blocked task,
  1848. * ttwu() will sort out the placement.
  1849. */
  1850. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1851. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1852. #ifdef CONFIG_LOCKDEP
  1853. /*
  1854. * The caller should hold either p->pi_lock or rq->lock, when changing
  1855. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1856. *
  1857. * sched_move_task() holds both and thus holding either pins the cgroup,
  1858. * see set_task_rq().
  1859. *
  1860. * Furthermore, all task_rq users should acquire both locks, see
  1861. * task_rq_lock().
  1862. */
  1863. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1864. lockdep_is_held(&task_rq(p)->lock)));
  1865. #endif
  1866. #endif
  1867. trace_sched_migrate_task(p, new_cpu);
  1868. if (task_cpu(p) != new_cpu) {
  1869. p->se.nr_migrations++;
  1870. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1871. }
  1872. __set_task_cpu(p, new_cpu);
  1873. }
  1874. struct migration_arg {
  1875. struct task_struct *task;
  1876. int dest_cpu;
  1877. };
  1878. static int migration_cpu_stop(void *data);
  1879. /*
  1880. * wait_task_inactive - wait for a thread to unschedule.
  1881. *
  1882. * If @match_state is nonzero, it's the @p->state value just checked and
  1883. * not expected to change. If it changes, i.e. @p might have woken up,
  1884. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1885. * we return a positive number (its total switch count). If a second call
  1886. * a short while later returns the same number, the caller can be sure that
  1887. * @p has remained unscheduled the whole time.
  1888. *
  1889. * The caller must ensure that the task *will* unschedule sometime soon,
  1890. * else this function might spin for a *long* time. This function can't
  1891. * be called with interrupts off, or it may introduce deadlock with
  1892. * smp_call_function() if an IPI is sent by the same process we are
  1893. * waiting to become inactive.
  1894. */
  1895. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1896. {
  1897. unsigned long flags;
  1898. int running, on_rq;
  1899. unsigned long ncsw;
  1900. struct rq *rq;
  1901. for (;;) {
  1902. /*
  1903. * We do the initial early heuristics without holding
  1904. * any task-queue locks at all. We'll only try to get
  1905. * the runqueue lock when things look like they will
  1906. * work out!
  1907. */
  1908. rq = task_rq(p);
  1909. /*
  1910. * If the task is actively running on another CPU
  1911. * still, just relax and busy-wait without holding
  1912. * any locks.
  1913. *
  1914. * NOTE! Since we don't hold any locks, it's not
  1915. * even sure that "rq" stays as the right runqueue!
  1916. * But we don't care, since "task_running()" will
  1917. * return false if the runqueue has changed and p
  1918. * is actually now running somewhere else!
  1919. */
  1920. while (task_running(rq, p)) {
  1921. if (match_state && unlikely(p->state != match_state))
  1922. return 0;
  1923. cpu_relax();
  1924. }
  1925. /*
  1926. * Ok, time to look more closely! We need the rq
  1927. * lock now, to be *sure*. If we're wrong, we'll
  1928. * just go back and repeat.
  1929. */
  1930. rq = task_rq_lock(p, &flags);
  1931. trace_sched_wait_task(p);
  1932. running = task_running(rq, p);
  1933. on_rq = p->on_rq;
  1934. ncsw = 0;
  1935. if (!match_state || p->state == match_state)
  1936. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1937. task_rq_unlock(rq, p, &flags);
  1938. /*
  1939. * If it changed from the expected state, bail out now.
  1940. */
  1941. if (unlikely(!ncsw))
  1942. break;
  1943. /*
  1944. * Was it really running after all now that we
  1945. * checked with the proper locks actually held?
  1946. *
  1947. * Oops. Go back and try again..
  1948. */
  1949. if (unlikely(running)) {
  1950. cpu_relax();
  1951. continue;
  1952. }
  1953. /*
  1954. * It's not enough that it's not actively running,
  1955. * it must be off the runqueue _entirely_, and not
  1956. * preempted!
  1957. *
  1958. * So if it was still runnable (but just not actively
  1959. * running right now), it's preempted, and we should
  1960. * yield - it could be a while.
  1961. */
  1962. if (unlikely(on_rq)) {
  1963. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1964. set_current_state(TASK_UNINTERRUPTIBLE);
  1965. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1966. continue;
  1967. }
  1968. /*
  1969. * Ahh, all good. It wasn't running, and it wasn't
  1970. * runnable, which means that it will never become
  1971. * running in the future either. We're all done!
  1972. */
  1973. break;
  1974. }
  1975. return ncsw;
  1976. }
  1977. /***
  1978. * kick_process - kick a running thread to enter/exit the kernel
  1979. * @p: the to-be-kicked thread
  1980. *
  1981. * Cause a process which is running on another CPU to enter
  1982. * kernel-mode, without any delay. (to get signals handled.)
  1983. *
  1984. * NOTE: this function doesn't have to take the runqueue lock,
  1985. * because all it wants to ensure is that the remote task enters
  1986. * the kernel. If the IPI races and the task has been migrated
  1987. * to another CPU then no harm is done and the purpose has been
  1988. * achieved as well.
  1989. */
  1990. void kick_process(struct task_struct *p)
  1991. {
  1992. int cpu;
  1993. preempt_disable();
  1994. cpu = task_cpu(p);
  1995. if ((cpu != smp_processor_id()) && task_curr(p))
  1996. smp_send_reschedule(cpu);
  1997. preempt_enable();
  1998. }
  1999. EXPORT_SYMBOL_GPL(kick_process);
  2000. #endif /* CONFIG_SMP */
  2001. #ifdef CONFIG_SMP
  2002. /*
  2003. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  2004. */
  2005. static int select_fallback_rq(int cpu, struct task_struct *p)
  2006. {
  2007. int dest_cpu;
  2008. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2009. /* Look for allowed, online CPU in same node. */
  2010. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2011. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  2012. return dest_cpu;
  2013. /* Any allowed, online CPU? */
  2014. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2015. if (dest_cpu < nr_cpu_ids)
  2016. return dest_cpu;
  2017. /* No more Mr. Nice Guy. */
  2018. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2019. /*
  2020. * Don't tell them about moving exiting tasks or
  2021. * kernel threads (both mm NULL), since they never
  2022. * leave kernel.
  2023. */
  2024. if (p->mm && printk_ratelimit()) {
  2025. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2026. task_pid_nr(p), p->comm, cpu);
  2027. }
  2028. return dest_cpu;
  2029. }
  2030. /*
  2031. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2032. */
  2033. static inline
  2034. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2035. {
  2036. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2037. /*
  2038. * In order not to call set_task_cpu() on a blocking task we need
  2039. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2040. * cpu.
  2041. *
  2042. * Since this is common to all placement strategies, this lives here.
  2043. *
  2044. * [ this allows ->select_task() to simply return task_cpu(p) and
  2045. * not worry about this generic constraint ]
  2046. */
  2047. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2048. !cpu_online(cpu)))
  2049. cpu = select_fallback_rq(task_cpu(p), p);
  2050. return cpu;
  2051. }
  2052. static void update_avg(u64 *avg, u64 sample)
  2053. {
  2054. s64 diff = sample - *avg;
  2055. *avg += diff >> 3;
  2056. }
  2057. #endif
  2058. static void
  2059. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2060. {
  2061. #ifdef CONFIG_SCHEDSTATS
  2062. struct rq *rq = this_rq();
  2063. #ifdef CONFIG_SMP
  2064. int this_cpu = smp_processor_id();
  2065. if (cpu == this_cpu) {
  2066. schedstat_inc(rq, ttwu_local);
  2067. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2068. } else {
  2069. struct sched_domain *sd;
  2070. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2071. rcu_read_lock();
  2072. for_each_domain(this_cpu, sd) {
  2073. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2074. schedstat_inc(sd, ttwu_wake_remote);
  2075. break;
  2076. }
  2077. }
  2078. rcu_read_unlock();
  2079. }
  2080. if (wake_flags & WF_MIGRATED)
  2081. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2082. #endif /* CONFIG_SMP */
  2083. schedstat_inc(rq, ttwu_count);
  2084. schedstat_inc(p, se.statistics.nr_wakeups);
  2085. if (wake_flags & WF_SYNC)
  2086. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2087. #endif /* CONFIG_SCHEDSTATS */
  2088. }
  2089. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2090. {
  2091. activate_task(rq, p, en_flags);
  2092. p->on_rq = 1;
  2093. /* if a worker is waking up, notify workqueue */
  2094. if (p->flags & PF_WQ_WORKER)
  2095. wq_worker_waking_up(p, cpu_of(rq));
  2096. }
  2097. /*
  2098. * Mark the task runnable and perform wakeup-preemption.
  2099. */
  2100. static void
  2101. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2102. {
  2103. trace_sched_wakeup(p, true);
  2104. check_preempt_curr(rq, p, wake_flags);
  2105. p->state = TASK_RUNNING;
  2106. #ifdef CONFIG_SMP
  2107. if (p->sched_class->task_woken)
  2108. p->sched_class->task_woken(rq, p);
  2109. if (unlikely(rq->idle_stamp)) {
  2110. u64 delta = rq->clock - rq->idle_stamp;
  2111. u64 max = 2*sysctl_sched_migration_cost;
  2112. if (delta > max)
  2113. rq->avg_idle = max;
  2114. else
  2115. update_avg(&rq->avg_idle, delta);
  2116. rq->idle_stamp = 0;
  2117. }
  2118. #endif
  2119. }
  2120. static void
  2121. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2122. {
  2123. #ifdef CONFIG_SMP
  2124. if (p->sched_contributes_to_load)
  2125. rq->nr_uninterruptible--;
  2126. #endif
  2127. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2128. ttwu_do_wakeup(rq, p, wake_flags);
  2129. }
  2130. /*
  2131. * Called in case the task @p isn't fully descheduled from its runqueue,
  2132. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2133. * since all we need to do is flip p->state to TASK_RUNNING, since
  2134. * the task is still ->on_rq.
  2135. */
  2136. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2137. {
  2138. struct rq *rq;
  2139. int ret = 0;
  2140. rq = __task_rq_lock(p);
  2141. if (p->on_rq) {
  2142. ttwu_do_wakeup(rq, p, wake_flags);
  2143. ret = 1;
  2144. }
  2145. __task_rq_unlock(rq);
  2146. return ret;
  2147. }
  2148. #ifdef CONFIG_SMP
  2149. static void sched_ttwu_do_pending(struct task_struct *list)
  2150. {
  2151. struct rq *rq = this_rq();
  2152. raw_spin_lock(&rq->lock);
  2153. while (list) {
  2154. struct task_struct *p = list;
  2155. list = list->wake_entry;
  2156. ttwu_do_activate(rq, p, 0);
  2157. }
  2158. raw_spin_unlock(&rq->lock);
  2159. }
  2160. #ifdef CONFIG_HOTPLUG_CPU
  2161. static void sched_ttwu_pending(void)
  2162. {
  2163. struct rq *rq = this_rq();
  2164. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2165. if (!list)
  2166. return;
  2167. sched_ttwu_do_pending(list);
  2168. }
  2169. #endif /* CONFIG_HOTPLUG_CPU */
  2170. void scheduler_ipi(void)
  2171. {
  2172. struct rq *rq = this_rq();
  2173. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2174. if (!list)
  2175. return;
  2176. /*
  2177. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  2178. * traditionally all their work was done from the interrupt return
  2179. * path. Now that we actually do some work, we need to make sure
  2180. * we do call them.
  2181. *
  2182. * Some archs already do call them, luckily irq_enter/exit nest
  2183. * properly.
  2184. *
  2185. * Arguably we should visit all archs and update all handlers,
  2186. * however a fair share of IPIs are still resched only so this would
  2187. * somewhat pessimize the simple resched case.
  2188. */
  2189. irq_enter();
  2190. sched_ttwu_do_pending(list);
  2191. irq_exit();
  2192. }
  2193. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2194. {
  2195. struct rq *rq = cpu_rq(cpu);
  2196. struct task_struct *next = rq->wake_list;
  2197. for (;;) {
  2198. struct task_struct *old = next;
  2199. p->wake_entry = next;
  2200. next = cmpxchg(&rq->wake_list, old, p);
  2201. if (next == old)
  2202. break;
  2203. }
  2204. if (!next)
  2205. smp_send_reschedule(cpu);
  2206. }
  2207. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2208. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2209. {
  2210. struct rq *rq;
  2211. int ret = 0;
  2212. rq = __task_rq_lock(p);
  2213. if (p->on_cpu) {
  2214. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2215. ttwu_do_wakeup(rq, p, wake_flags);
  2216. ret = 1;
  2217. }
  2218. __task_rq_unlock(rq);
  2219. return ret;
  2220. }
  2221. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2222. #endif /* CONFIG_SMP */
  2223. static void ttwu_queue(struct task_struct *p, int cpu)
  2224. {
  2225. struct rq *rq = cpu_rq(cpu);
  2226. #if defined(CONFIG_SMP)
  2227. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2228. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2229. ttwu_queue_remote(p, cpu);
  2230. return;
  2231. }
  2232. #endif
  2233. raw_spin_lock(&rq->lock);
  2234. ttwu_do_activate(rq, p, 0);
  2235. raw_spin_unlock(&rq->lock);
  2236. }
  2237. /**
  2238. * try_to_wake_up - wake up a thread
  2239. * @p: the thread to be awakened
  2240. * @state: the mask of task states that can be woken
  2241. * @wake_flags: wake modifier flags (WF_*)
  2242. *
  2243. * Put it on the run-queue if it's not already there. The "current"
  2244. * thread is always on the run-queue (except when the actual
  2245. * re-schedule is in progress), and as such you're allowed to do
  2246. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2247. * runnable without the overhead of this.
  2248. *
  2249. * Returns %true if @p was woken up, %false if it was already running
  2250. * or @state didn't match @p's state.
  2251. */
  2252. static int
  2253. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2254. {
  2255. unsigned long flags;
  2256. int cpu, success = 0;
  2257. smp_wmb();
  2258. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2259. if (!(p->state & state))
  2260. goto out;
  2261. success = 1; /* we're going to change ->state */
  2262. cpu = task_cpu(p);
  2263. if (p->on_rq && ttwu_remote(p, wake_flags))
  2264. goto stat;
  2265. #ifdef CONFIG_SMP
  2266. /*
  2267. * If the owning (remote) cpu is still in the middle of schedule() with
  2268. * this task as prev, wait until its done referencing the task.
  2269. */
  2270. while (p->on_cpu) {
  2271. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2272. /*
  2273. * In case the architecture enables interrupts in
  2274. * context_switch(), we cannot busy wait, since that
  2275. * would lead to deadlocks when an interrupt hits and
  2276. * tries to wake up @prev. So bail and do a complete
  2277. * remote wakeup.
  2278. */
  2279. if (ttwu_activate_remote(p, wake_flags))
  2280. goto stat;
  2281. #else
  2282. cpu_relax();
  2283. #endif
  2284. }
  2285. /*
  2286. * Pairs with the smp_wmb() in finish_lock_switch().
  2287. */
  2288. smp_rmb();
  2289. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2290. p->state = TASK_WAKING;
  2291. if (p->sched_class->task_waking)
  2292. p->sched_class->task_waking(p);
  2293. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2294. if (task_cpu(p) != cpu) {
  2295. wake_flags |= WF_MIGRATED;
  2296. set_task_cpu(p, cpu);
  2297. }
  2298. #endif /* CONFIG_SMP */
  2299. ttwu_queue(p, cpu);
  2300. stat:
  2301. ttwu_stat(p, cpu, wake_flags);
  2302. out:
  2303. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2304. return success;
  2305. }
  2306. /**
  2307. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2308. * @p: the thread to be awakened
  2309. *
  2310. * Put @p on the run-queue if it's not already there. The caller must
  2311. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2312. * the current task.
  2313. */
  2314. static void try_to_wake_up_local(struct task_struct *p)
  2315. {
  2316. struct rq *rq = task_rq(p);
  2317. BUG_ON(rq != this_rq());
  2318. BUG_ON(p == current);
  2319. lockdep_assert_held(&rq->lock);
  2320. if (!raw_spin_trylock(&p->pi_lock)) {
  2321. raw_spin_unlock(&rq->lock);
  2322. raw_spin_lock(&p->pi_lock);
  2323. raw_spin_lock(&rq->lock);
  2324. }
  2325. if (!(p->state & TASK_NORMAL))
  2326. goto out;
  2327. if (!p->on_rq)
  2328. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2329. ttwu_do_wakeup(rq, p, 0);
  2330. ttwu_stat(p, smp_processor_id(), 0);
  2331. out:
  2332. raw_spin_unlock(&p->pi_lock);
  2333. }
  2334. /**
  2335. * wake_up_process - Wake up a specific process
  2336. * @p: The process to be woken up.
  2337. *
  2338. * Attempt to wake up the nominated process and move it to the set of runnable
  2339. * processes. Returns 1 if the process was woken up, 0 if it was already
  2340. * running.
  2341. *
  2342. * It may be assumed that this function implies a write memory barrier before
  2343. * changing the task state if and only if any tasks are woken up.
  2344. */
  2345. int wake_up_process(struct task_struct *p)
  2346. {
  2347. return try_to_wake_up(p, TASK_ALL, 0);
  2348. }
  2349. EXPORT_SYMBOL(wake_up_process);
  2350. int wake_up_state(struct task_struct *p, unsigned int state)
  2351. {
  2352. return try_to_wake_up(p, state, 0);
  2353. }
  2354. /*
  2355. * Perform scheduler related setup for a newly forked process p.
  2356. * p is forked by current.
  2357. *
  2358. * __sched_fork() is basic setup used by init_idle() too:
  2359. */
  2360. static void __sched_fork(struct task_struct *p)
  2361. {
  2362. p->on_rq = 0;
  2363. p->se.on_rq = 0;
  2364. p->se.exec_start = 0;
  2365. p->se.sum_exec_runtime = 0;
  2366. p->se.prev_sum_exec_runtime = 0;
  2367. p->se.nr_migrations = 0;
  2368. p->se.vruntime = 0;
  2369. INIT_LIST_HEAD(&p->se.group_node);
  2370. #ifdef CONFIG_SCHEDSTATS
  2371. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2372. #endif
  2373. INIT_LIST_HEAD(&p->rt.run_list);
  2374. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2375. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2376. #endif
  2377. }
  2378. /*
  2379. * fork()/clone()-time setup:
  2380. */
  2381. void sched_fork(struct task_struct *p)
  2382. {
  2383. unsigned long flags;
  2384. int cpu = get_cpu();
  2385. __sched_fork(p);
  2386. /*
  2387. * We mark the process as running here. This guarantees that
  2388. * nobody will actually run it, and a signal or other external
  2389. * event cannot wake it up and insert it on the runqueue either.
  2390. */
  2391. p->state = TASK_RUNNING;
  2392. /*
  2393. * Revert to default priority/policy on fork if requested.
  2394. */
  2395. if (unlikely(p->sched_reset_on_fork)) {
  2396. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2397. p->policy = SCHED_NORMAL;
  2398. p->normal_prio = p->static_prio;
  2399. }
  2400. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2401. p->static_prio = NICE_TO_PRIO(0);
  2402. p->normal_prio = p->static_prio;
  2403. set_load_weight(p);
  2404. }
  2405. /*
  2406. * We don't need the reset flag anymore after the fork. It has
  2407. * fulfilled its duty:
  2408. */
  2409. p->sched_reset_on_fork = 0;
  2410. }
  2411. /*
  2412. * Make sure we do not leak PI boosting priority to the child.
  2413. */
  2414. p->prio = current->normal_prio;
  2415. if (!rt_prio(p->prio))
  2416. p->sched_class = &fair_sched_class;
  2417. if (p->sched_class->task_fork)
  2418. p->sched_class->task_fork(p);
  2419. /*
  2420. * The child is not yet in the pid-hash so no cgroup attach races,
  2421. * and the cgroup is pinned to this child due to cgroup_fork()
  2422. * is ran before sched_fork().
  2423. *
  2424. * Silence PROVE_RCU.
  2425. */
  2426. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2427. set_task_cpu(p, cpu);
  2428. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2429. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2430. if (likely(sched_info_on()))
  2431. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2432. #endif
  2433. #if defined(CONFIG_SMP)
  2434. p->on_cpu = 0;
  2435. #endif
  2436. #ifdef CONFIG_PREEMPT
  2437. /* Want to start with kernel preemption disabled. */
  2438. task_thread_info(p)->preempt_count = 1;
  2439. #endif
  2440. #ifdef CONFIG_SMP
  2441. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2442. #endif
  2443. put_cpu();
  2444. }
  2445. /*
  2446. * wake_up_new_task - wake up a newly created task for the first time.
  2447. *
  2448. * This function will do some initial scheduler statistics housekeeping
  2449. * that must be done for every newly created context, then puts the task
  2450. * on the runqueue and wakes it.
  2451. */
  2452. void wake_up_new_task(struct task_struct *p)
  2453. {
  2454. unsigned long flags;
  2455. struct rq *rq;
  2456. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2457. #ifdef CONFIG_SMP
  2458. /*
  2459. * Fork balancing, do it here and not earlier because:
  2460. * - cpus_allowed can change in the fork path
  2461. * - any previously selected cpu might disappear through hotplug
  2462. */
  2463. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2464. #endif
  2465. rq = __task_rq_lock(p);
  2466. activate_task(rq, p, 0);
  2467. p->on_rq = 1;
  2468. trace_sched_wakeup_new(p, true);
  2469. check_preempt_curr(rq, p, WF_FORK);
  2470. #ifdef CONFIG_SMP
  2471. if (p->sched_class->task_woken)
  2472. p->sched_class->task_woken(rq, p);
  2473. #endif
  2474. task_rq_unlock(rq, p, &flags);
  2475. }
  2476. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2477. /**
  2478. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2479. * @notifier: notifier struct to register
  2480. */
  2481. void preempt_notifier_register(struct preempt_notifier *notifier)
  2482. {
  2483. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2484. }
  2485. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2486. /**
  2487. * preempt_notifier_unregister - no longer interested in preemption notifications
  2488. * @notifier: notifier struct to unregister
  2489. *
  2490. * This is safe to call from within a preemption notifier.
  2491. */
  2492. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2493. {
  2494. hlist_del(&notifier->link);
  2495. }
  2496. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2497. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2498. {
  2499. struct preempt_notifier *notifier;
  2500. struct hlist_node *node;
  2501. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2502. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2503. }
  2504. static void
  2505. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2506. struct task_struct *next)
  2507. {
  2508. struct preempt_notifier *notifier;
  2509. struct hlist_node *node;
  2510. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2511. notifier->ops->sched_out(notifier, next);
  2512. }
  2513. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2514. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2515. {
  2516. }
  2517. static void
  2518. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2519. struct task_struct *next)
  2520. {
  2521. }
  2522. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2523. /**
  2524. * prepare_task_switch - prepare to switch tasks
  2525. * @rq: the runqueue preparing to switch
  2526. * @prev: the current task that is being switched out
  2527. * @next: the task we are going to switch to.
  2528. *
  2529. * This is called with the rq lock held and interrupts off. It must
  2530. * be paired with a subsequent finish_task_switch after the context
  2531. * switch.
  2532. *
  2533. * prepare_task_switch sets up locking and calls architecture specific
  2534. * hooks.
  2535. */
  2536. static inline void
  2537. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2538. struct task_struct *next)
  2539. {
  2540. sched_info_switch(prev, next);
  2541. perf_event_task_sched_out(prev, next);
  2542. fire_sched_out_preempt_notifiers(prev, next);
  2543. prepare_lock_switch(rq, next);
  2544. prepare_arch_switch(next);
  2545. trace_sched_switch(prev, next);
  2546. }
  2547. /**
  2548. * finish_task_switch - clean up after a task-switch
  2549. * @rq: runqueue associated with task-switch
  2550. * @prev: the thread we just switched away from.
  2551. *
  2552. * finish_task_switch must be called after the context switch, paired
  2553. * with a prepare_task_switch call before the context switch.
  2554. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2555. * and do any other architecture-specific cleanup actions.
  2556. *
  2557. * Note that we may have delayed dropping an mm in context_switch(). If
  2558. * so, we finish that here outside of the runqueue lock. (Doing it
  2559. * with the lock held can cause deadlocks; see schedule() for
  2560. * details.)
  2561. */
  2562. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2563. __releases(rq->lock)
  2564. {
  2565. struct mm_struct *mm = rq->prev_mm;
  2566. long prev_state;
  2567. rq->prev_mm = NULL;
  2568. /*
  2569. * A task struct has one reference for the use as "current".
  2570. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2571. * schedule one last time. The schedule call will never return, and
  2572. * the scheduled task must drop that reference.
  2573. * The test for TASK_DEAD must occur while the runqueue locks are
  2574. * still held, otherwise prev could be scheduled on another cpu, die
  2575. * there before we look at prev->state, and then the reference would
  2576. * be dropped twice.
  2577. * Manfred Spraul <manfred@colorfullife.com>
  2578. */
  2579. prev_state = prev->state;
  2580. finish_arch_switch(prev);
  2581. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2582. local_irq_disable();
  2583. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2584. perf_event_task_sched_in(current);
  2585. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2586. local_irq_enable();
  2587. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2588. finish_lock_switch(rq, prev);
  2589. fire_sched_in_preempt_notifiers(current);
  2590. if (mm)
  2591. mmdrop(mm);
  2592. if (unlikely(prev_state == TASK_DEAD)) {
  2593. /*
  2594. * Remove function-return probe instances associated with this
  2595. * task and put them back on the free list.
  2596. */
  2597. kprobe_flush_task(prev);
  2598. put_task_struct(prev);
  2599. }
  2600. }
  2601. #ifdef CONFIG_SMP
  2602. /* assumes rq->lock is held */
  2603. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2604. {
  2605. if (prev->sched_class->pre_schedule)
  2606. prev->sched_class->pre_schedule(rq, prev);
  2607. }
  2608. /* rq->lock is NOT held, but preemption is disabled */
  2609. static inline void post_schedule(struct rq *rq)
  2610. {
  2611. if (rq->post_schedule) {
  2612. unsigned long flags;
  2613. raw_spin_lock_irqsave(&rq->lock, flags);
  2614. if (rq->curr->sched_class->post_schedule)
  2615. rq->curr->sched_class->post_schedule(rq);
  2616. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2617. rq->post_schedule = 0;
  2618. }
  2619. }
  2620. #else
  2621. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2622. {
  2623. }
  2624. static inline void post_schedule(struct rq *rq)
  2625. {
  2626. }
  2627. #endif
  2628. /**
  2629. * schedule_tail - first thing a freshly forked thread must call.
  2630. * @prev: the thread we just switched away from.
  2631. */
  2632. asmlinkage void schedule_tail(struct task_struct *prev)
  2633. __releases(rq->lock)
  2634. {
  2635. struct rq *rq = this_rq();
  2636. finish_task_switch(rq, prev);
  2637. /*
  2638. * FIXME: do we need to worry about rq being invalidated by the
  2639. * task_switch?
  2640. */
  2641. post_schedule(rq);
  2642. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2643. /* In this case, finish_task_switch does not reenable preemption */
  2644. preempt_enable();
  2645. #endif
  2646. if (current->set_child_tid)
  2647. put_user(task_pid_vnr(current), current->set_child_tid);
  2648. }
  2649. /*
  2650. * context_switch - switch to the new MM and the new
  2651. * thread's register state.
  2652. */
  2653. static inline void
  2654. context_switch(struct rq *rq, struct task_struct *prev,
  2655. struct task_struct *next)
  2656. {
  2657. struct mm_struct *mm, *oldmm;
  2658. prepare_task_switch(rq, prev, next);
  2659. mm = next->mm;
  2660. oldmm = prev->active_mm;
  2661. /*
  2662. * For paravirt, this is coupled with an exit in switch_to to
  2663. * combine the page table reload and the switch backend into
  2664. * one hypercall.
  2665. */
  2666. arch_start_context_switch(prev);
  2667. if (!mm) {
  2668. next->active_mm = oldmm;
  2669. atomic_inc(&oldmm->mm_count);
  2670. enter_lazy_tlb(oldmm, next);
  2671. } else
  2672. switch_mm(oldmm, mm, next);
  2673. if (!prev->mm) {
  2674. prev->active_mm = NULL;
  2675. rq->prev_mm = oldmm;
  2676. }
  2677. /*
  2678. * Since the runqueue lock will be released by the next
  2679. * task (which is an invalid locking op but in the case
  2680. * of the scheduler it's an obvious special-case), so we
  2681. * do an early lockdep release here:
  2682. */
  2683. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2684. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2685. #endif
  2686. /* Here we just switch the register state and the stack. */
  2687. switch_to(prev, next, prev);
  2688. barrier();
  2689. /*
  2690. * this_rq must be evaluated again because prev may have moved
  2691. * CPUs since it called schedule(), thus the 'rq' on its stack
  2692. * frame will be invalid.
  2693. */
  2694. finish_task_switch(this_rq(), prev);
  2695. }
  2696. /*
  2697. * nr_running, nr_uninterruptible and nr_context_switches:
  2698. *
  2699. * externally visible scheduler statistics: current number of runnable
  2700. * threads, current number of uninterruptible-sleeping threads, total
  2701. * number of context switches performed since bootup.
  2702. */
  2703. unsigned long nr_running(void)
  2704. {
  2705. unsigned long i, sum = 0;
  2706. for_each_online_cpu(i)
  2707. sum += cpu_rq(i)->nr_running;
  2708. return sum;
  2709. }
  2710. unsigned long nr_uninterruptible(void)
  2711. {
  2712. unsigned long i, sum = 0;
  2713. for_each_possible_cpu(i)
  2714. sum += cpu_rq(i)->nr_uninterruptible;
  2715. /*
  2716. * Since we read the counters lockless, it might be slightly
  2717. * inaccurate. Do not allow it to go below zero though:
  2718. */
  2719. if (unlikely((long)sum < 0))
  2720. sum = 0;
  2721. return sum;
  2722. }
  2723. unsigned long long nr_context_switches(void)
  2724. {
  2725. int i;
  2726. unsigned long long sum = 0;
  2727. for_each_possible_cpu(i)
  2728. sum += cpu_rq(i)->nr_switches;
  2729. return sum;
  2730. }
  2731. unsigned long nr_iowait(void)
  2732. {
  2733. unsigned long i, sum = 0;
  2734. for_each_possible_cpu(i)
  2735. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2736. return sum;
  2737. }
  2738. unsigned long nr_iowait_cpu(int cpu)
  2739. {
  2740. struct rq *this = cpu_rq(cpu);
  2741. return atomic_read(&this->nr_iowait);
  2742. }
  2743. unsigned long this_cpu_load(void)
  2744. {
  2745. struct rq *this = this_rq();
  2746. return this->cpu_load[0];
  2747. }
  2748. /* Variables and functions for calc_load */
  2749. static atomic_long_t calc_load_tasks;
  2750. static unsigned long calc_load_update;
  2751. unsigned long avenrun[3];
  2752. EXPORT_SYMBOL(avenrun);
  2753. static long calc_load_fold_active(struct rq *this_rq)
  2754. {
  2755. long nr_active, delta = 0;
  2756. nr_active = this_rq->nr_running;
  2757. nr_active += (long) this_rq->nr_uninterruptible;
  2758. if (nr_active != this_rq->calc_load_active) {
  2759. delta = nr_active - this_rq->calc_load_active;
  2760. this_rq->calc_load_active = nr_active;
  2761. }
  2762. return delta;
  2763. }
  2764. static unsigned long
  2765. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2766. {
  2767. load *= exp;
  2768. load += active * (FIXED_1 - exp);
  2769. load += 1UL << (FSHIFT - 1);
  2770. return load >> FSHIFT;
  2771. }
  2772. #ifdef CONFIG_NO_HZ
  2773. /*
  2774. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2775. *
  2776. * When making the ILB scale, we should try to pull this in as well.
  2777. */
  2778. static atomic_long_t calc_load_tasks_idle;
  2779. static void calc_load_account_idle(struct rq *this_rq)
  2780. {
  2781. long delta;
  2782. delta = calc_load_fold_active(this_rq);
  2783. if (delta)
  2784. atomic_long_add(delta, &calc_load_tasks_idle);
  2785. }
  2786. static long calc_load_fold_idle(void)
  2787. {
  2788. long delta = 0;
  2789. /*
  2790. * Its got a race, we don't care...
  2791. */
  2792. if (atomic_long_read(&calc_load_tasks_idle))
  2793. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2794. return delta;
  2795. }
  2796. /**
  2797. * fixed_power_int - compute: x^n, in O(log n) time
  2798. *
  2799. * @x: base of the power
  2800. * @frac_bits: fractional bits of @x
  2801. * @n: power to raise @x to.
  2802. *
  2803. * By exploiting the relation between the definition of the natural power
  2804. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2805. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2806. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2807. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2808. * of course trivially computable in O(log_2 n), the length of our binary
  2809. * vector.
  2810. */
  2811. static unsigned long
  2812. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2813. {
  2814. unsigned long result = 1UL << frac_bits;
  2815. if (n) for (;;) {
  2816. if (n & 1) {
  2817. result *= x;
  2818. result += 1UL << (frac_bits - 1);
  2819. result >>= frac_bits;
  2820. }
  2821. n >>= 1;
  2822. if (!n)
  2823. break;
  2824. x *= x;
  2825. x += 1UL << (frac_bits - 1);
  2826. x >>= frac_bits;
  2827. }
  2828. return result;
  2829. }
  2830. /*
  2831. * a1 = a0 * e + a * (1 - e)
  2832. *
  2833. * a2 = a1 * e + a * (1 - e)
  2834. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2835. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2836. *
  2837. * a3 = a2 * e + a * (1 - e)
  2838. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2839. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2840. *
  2841. * ...
  2842. *
  2843. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2844. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2845. * = a0 * e^n + a * (1 - e^n)
  2846. *
  2847. * [1] application of the geometric series:
  2848. *
  2849. * n 1 - x^(n+1)
  2850. * S_n := \Sum x^i = -------------
  2851. * i=0 1 - x
  2852. */
  2853. static unsigned long
  2854. calc_load_n(unsigned long load, unsigned long exp,
  2855. unsigned long active, unsigned int n)
  2856. {
  2857. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2858. }
  2859. /*
  2860. * NO_HZ can leave us missing all per-cpu ticks calling
  2861. * calc_load_account_active(), but since an idle CPU folds its delta into
  2862. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2863. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2864. *
  2865. * Once we've updated the global active value, we need to apply the exponential
  2866. * weights adjusted to the number of cycles missed.
  2867. */
  2868. static void calc_global_nohz(void)
  2869. {
  2870. long delta, active, n;
  2871. /*
  2872. * If we crossed a calc_load_update boundary, make sure to fold
  2873. * any pending idle changes, the respective CPUs might have
  2874. * missed the tick driven calc_load_account_active() update
  2875. * due to NO_HZ.
  2876. */
  2877. delta = calc_load_fold_idle();
  2878. if (delta)
  2879. atomic_long_add(delta, &calc_load_tasks);
  2880. /*
  2881. * It could be the one fold was all it took, we done!
  2882. */
  2883. if (time_before(jiffies, calc_load_update + 10))
  2884. return;
  2885. /*
  2886. * Catch-up, fold however many we are behind still
  2887. */
  2888. delta = jiffies - calc_load_update - 10;
  2889. n = 1 + (delta / LOAD_FREQ);
  2890. active = atomic_long_read(&calc_load_tasks);
  2891. active = active > 0 ? active * FIXED_1 : 0;
  2892. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2893. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2894. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2895. calc_load_update += n * LOAD_FREQ;
  2896. }
  2897. #else
  2898. static void calc_load_account_idle(struct rq *this_rq)
  2899. {
  2900. }
  2901. static inline long calc_load_fold_idle(void)
  2902. {
  2903. return 0;
  2904. }
  2905. static void calc_global_nohz(void)
  2906. {
  2907. }
  2908. #endif
  2909. /**
  2910. * get_avenrun - get the load average array
  2911. * @loads: pointer to dest load array
  2912. * @offset: offset to add
  2913. * @shift: shift count to shift the result left
  2914. *
  2915. * These values are estimates at best, so no need for locking.
  2916. */
  2917. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2918. {
  2919. loads[0] = (avenrun[0] + offset) << shift;
  2920. loads[1] = (avenrun[1] + offset) << shift;
  2921. loads[2] = (avenrun[2] + offset) << shift;
  2922. }
  2923. /*
  2924. * calc_load - update the avenrun load estimates 10 ticks after the
  2925. * CPUs have updated calc_load_tasks.
  2926. */
  2927. void calc_global_load(unsigned long ticks)
  2928. {
  2929. long active;
  2930. if (time_before(jiffies, calc_load_update + 10))
  2931. return;
  2932. active = atomic_long_read(&calc_load_tasks);
  2933. active = active > 0 ? active * FIXED_1 : 0;
  2934. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2935. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2936. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2937. calc_load_update += LOAD_FREQ;
  2938. /*
  2939. * Account one period with whatever state we found before
  2940. * folding in the nohz state and ageing the entire idle period.
  2941. *
  2942. * This avoids loosing a sample when we go idle between
  2943. * calc_load_account_active() (10 ticks ago) and now and thus
  2944. * under-accounting.
  2945. */
  2946. calc_global_nohz();
  2947. }
  2948. /*
  2949. * Called from update_cpu_load() to periodically update this CPU's
  2950. * active count.
  2951. */
  2952. static void calc_load_account_active(struct rq *this_rq)
  2953. {
  2954. long delta;
  2955. if (time_before(jiffies, this_rq->calc_load_update))
  2956. return;
  2957. delta = calc_load_fold_active(this_rq);
  2958. delta += calc_load_fold_idle();
  2959. if (delta)
  2960. atomic_long_add(delta, &calc_load_tasks);
  2961. this_rq->calc_load_update += LOAD_FREQ;
  2962. }
  2963. /*
  2964. * The exact cpuload at various idx values, calculated at every tick would be
  2965. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2966. *
  2967. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2968. * on nth tick when cpu may be busy, then we have:
  2969. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2970. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2971. *
  2972. * decay_load_missed() below does efficient calculation of
  2973. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2974. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2975. *
  2976. * The calculation is approximated on a 128 point scale.
  2977. * degrade_zero_ticks is the number of ticks after which load at any
  2978. * particular idx is approximated to be zero.
  2979. * degrade_factor is a precomputed table, a row for each load idx.
  2980. * Each column corresponds to degradation factor for a power of two ticks,
  2981. * based on 128 point scale.
  2982. * Example:
  2983. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2984. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2985. *
  2986. * With this power of 2 load factors, we can degrade the load n times
  2987. * by looking at 1 bits in n and doing as many mult/shift instead of
  2988. * n mult/shifts needed by the exact degradation.
  2989. */
  2990. #define DEGRADE_SHIFT 7
  2991. static const unsigned char
  2992. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2993. static const unsigned char
  2994. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2995. {0, 0, 0, 0, 0, 0, 0, 0},
  2996. {64, 32, 8, 0, 0, 0, 0, 0},
  2997. {96, 72, 40, 12, 1, 0, 0},
  2998. {112, 98, 75, 43, 15, 1, 0},
  2999. {120, 112, 98, 76, 45, 16, 2} };
  3000. /*
  3001. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3002. * would be when CPU is idle and so we just decay the old load without
  3003. * adding any new load.
  3004. */
  3005. static unsigned long
  3006. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3007. {
  3008. int j = 0;
  3009. if (!missed_updates)
  3010. return load;
  3011. if (missed_updates >= degrade_zero_ticks[idx])
  3012. return 0;
  3013. if (idx == 1)
  3014. return load >> missed_updates;
  3015. while (missed_updates) {
  3016. if (missed_updates % 2)
  3017. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3018. missed_updates >>= 1;
  3019. j++;
  3020. }
  3021. return load;
  3022. }
  3023. /*
  3024. * Update rq->cpu_load[] statistics. This function is usually called every
  3025. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3026. * every tick. We fix it up based on jiffies.
  3027. */
  3028. static void update_cpu_load(struct rq *this_rq)
  3029. {
  3030. unsigned long this_load = this_rq->load.weight;
  3031. unsigned long curr_jiffies = jiffies;
  3032. unsigned long pending_updates;
  3033. int i, scale;
  3034. this_rq->nr_load_updates++;
  3035. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3036. if (curr_jiffies == this_rq->last_load_update_tick)
  3037. return;
  3038. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3039. this_rq->last_load_update_tick = curr_jiffies;
  3040. /* Update our load: */
  3041. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3042. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3043. unsigned long old_load, new_load;
  3044. /* scale is effectively 1 << i now, and >> i divides by scale */
  3045. old_load = this_rq->cpu_load[i];
  3046. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3047. new_load = this_load;
  3048. /*
  3049. * Round up the averaging division if load is increasing. This
  3050. * prevents us from getting stuck on 9 if the load is 10, for
  3051. * example.
  3052. */
  3053. if (new_load > old_load)
  3054. new_load += scale - 1;
  3055. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3056. }
  3057. sched_avg_update(this_rq);
  3058. }
  3059. static void update_cpu_load_active(struct rq *this_rq)
  3060. {
  3061. update_cpu_load(this_rq);
  3062. calc_load_account_active(this_rq);
  3063. }
  3064. #ifdef CONFIG_SMP
  3065. /*
  3066. * sched_exec - execve() is a valuable balancing opportunity, because at
  3067. * this point the task has the smallest effective memory and cache footprint.
  3068. */
  3069. void sched_exec(void)
  3070. {
  3071. struct task_struct *p = current;
  3072. unsigned long flags;
  3073. int dest_cpu;
  3074. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3075. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3076. if (dest_cpu == smp_processor_id())
  3077. goto unlock;
  3078. if (likely(cpu_active(dest_cpu))) {
  3079. struct migration_arg arg = { p, dest_cpu };
  3080. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3081. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3082. return;
  3083. }
  3084. unlock:
  3085. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3086. }
  3087. #endif
  3088. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3089. EXPORT_PER_CPU_SYMBOL(kstat);
  3090. /*
  3091. * Return any ns on the sched_clock that have not yet been accounted in
  3092. * @p in case that task is currently running.
  3093. *
  3094. * Called with task_rq_lock() held on @rq.
  3095. */
  3096. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3097. {
  3098. u64 ns = 0;
  3099. if (task_current(rq, p)) {
  3100. update_rq_clock(rq);
  3101. ns = rq->clock_task - p->se.exec_start;
  3102. if ((s64)ns < 0)
  3103. ns = 0;
  3104. }
  3105. return ns;
  3106. }
  3107. unsigned long long task_delta_exec(struct task_struct *p)
  3108. {
  3109. unsigned long flags;
  3110. struct rq *rq;
  3111. u64 ns = 0;
  3112. rq = task_rq_lock(p, &flags);
  3113. ns = do_task_delta_exec(p, rq);
  3114. task_rq_unlock(rq, p, &flags);
  3115. return ns;
  3116. }
  3117. /*
  3118. * Return accounted runtime for the task.
  3119. * In case the task is currently running, return the runtime plus current's
  3120. * pending runtime that have not been accounted yet.
  3121. */
  3122. unsigned long long task_sched_runtime(struct task_struct *p)
  3123. {
  3124. unsigned long flags;
  3125. struct rq *rq;
  3126. u64 ns = 0;
  3127. rq = task_rq_lock(p, &flags);
  3128. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3129. task_rq_unlock(rq, p, &flags);
  3130. return ns;
  3131. }
  3132. /*
  3133. * Account user cpu time to a process.
  3134. * @p: the process that the cpu time gets accounted to
  3135. * @cputime: the cpu time spent in user space since the last update
  3136. * @cputime_scaled: cputime scaled by cpu frequency
  3137. */
  3138. void account_user_time(struct task_struct *p, cputime_t cputime,
  3139. cputime_t cputime_scaled)
  3140. {
  3141. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3142. cputime64_t tmp;
  3143. /* Add user time to process. */
  3144. p->utime = cputime_add(p->utime, cputime);
  3145. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3146. account_group_user_time(p, cputime);
  3147. /* Add user time to cpustat. */
  3148. tmp = cputime_to_cputime64(cputime);
  3149. if (TASK_NICE(p) > 0)
  3150. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3151. else
  3152. cpustat->user = cputime64_add(cpustat->user, tmp);
  3153. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3154. /* Account for user time used */
  3155. acct_update_integrals(p);
  3156. }
  3157. /*
  3158. * Account guest cpu time to a process.
  3159. * @p: the process that the cpu time gets accounted to
  3160. * @cputime: the cpu time spent in virtual machine since the last update
  3161. * @cputime_scaled: cputime scaled by cpu frequency
  3162. */
  3163. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3164. cputime_t cputime_scaled)
  3165. {
  3166. cputime64_t tmp;
  3167. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3168. tmp = cputime_to_cputime64(cputime);
  3169. /* Add guest time to process. */
  3170. p->utime = cputime_add(p->utime, cputime);
  3171. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3172. account_group_user_time(p, cputime);
  3173. p->gtime = cputime_add(p->gtime, cputime);
  3174. /* Add guest time to cpustat. */
  3175. if (TASK_NICE(p) > 0) {
  3176. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3177. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3178. } else {
  3179. cpustat->user = cputime64_add(cpustat->user, tmp);
  3180. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3181. }
  3182. }
  3183. /*
  3184. * Account system cpu time to a process and desired cpustat field
  3185. * @p: the process that the cpu time gets accounted to
  3186. * @cputime: the cpu time spent in kernel space since the last update
  3187. * @cputime_scaled: cputime scaled by cpu frequency
  3188. * @target_cputime64: pointer to cpustat field that has to be updated
  3189. */
  3190. static inline
  3191. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3192. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3193. {
  3194. cputime64_t tmp = cputime_to_cputime64(cputime);
  3195. /* Add system time to process. */
  3196. p->stime = cputime_add(p->stime, cputime);
  3197. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3198. account_group_system_time(p, cputime);
  3199. /* Add system time to cpustat. */
  3200. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3201. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3202. /* Account for system time used */
  3203. acct_update_integrals(p);
  3204. }
  3205. /*
  3206. * Account system cpu time to a process.
  3207. * @p: the process that the cpu time gets accounted to
  3208. * @hardirq_offset: the offset to subtract from hardirq_count()
  3209. * @cputime: the cpu time spent in kernel space since the last update
  3210. * @cputime_scaled: cputime scaled by cpu frequency
  3211. */
  3212. void account_system_time(struct task_struct *p, int hardirq_offset,
  3213. cputime_t cputime, cputime_t cputime_scaled)
  3214. {
  3215. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3216. cputime64_t *target_cputime64;
  3217. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3218. account_guest_time(p, cputime, cputime_scaled);
  3219. return;
  3220. }
  3221. if (hardirq_count() - hardirq_offset)
  3222. target_cputime64 = &cpustat->irq;
  3223. else if (in_serving_softirq())
  3224. target_cputime64 = &cpustat->softirq;
  3225. else
  3226. target_cputime64 = &cpustat->system;
  3227. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3228. }
  3229. /*
  3230. * Account for involuntary wait time.
  3231. * @cputime: the cpu time spent in involuntary wait
  3232. */
  3233. void account_steal_time(cputime_t cputime)
  3234. {
  3235. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3236. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3237. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3238. }
  3239. /*
  3240. * Account for idle time.
  3241. * @cputime: the cpu time spent in idle wait
  3242. */
  3243. void account_idle_time(cputime_t cputime)
  3244. {
  3245. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3246. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3247. struct rq *rq = this_rq();
  3248. if (atomic_read(&rq->nr_iowait) > 0)
  3249. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3250. else
  3251. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3252. }
  3253. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3254. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3255. /*
  3256. * Account a tick to a process and cpustat
  3257. * @p: the process that the cpu time gets accounted to
  3258. * @user_tick: is the tick from userspace
  3259. * @rq: the pointer to rq
  3260. *
  3261. * Tick demultiplexing follows the order
  3262. * - pending hardirq update
  3263. * - pending softirq update
  3264. * - user_time
  3265. * - idle_time
  3266. * - system time
  3267. * - check for guest_time
  3268. * - else account as system_time
  3269. *
  3270. * Check for hardirq is done both for system and user time as there is
  3271. * no timer going off while we are on hardirq and hence we may never get an
  3272. * opportunity to update it solely in system time.
  3273. * p->stime and friends are only updated on system time and not on irq
  3274. * softirq as those do not count in task exec_runtime any more.
  3275. */
  3276. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3277. struct rq *rq)
  3278. {
  3279. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3280. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3281. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3282. if (irqtime_account_hi_update()) {
  3283. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3284. } else if (irqtime_account_si_update()) {
  3285. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3286. } else if (this_cpu_ksoftirqd() == p) {
  3287. /*
  3288. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3289. * So, we have to handle it separately here.
  3290. * Also, p->stime needs to be updated for ksoftirqd.
  3291. */
  3292. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3293. &cpustat->softirq);
  3294. } else if (user_tick) {
  3295. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3296. } else if (p == rq->idle) {
  3297. account_idle_time(cputime_one_jiffy);
  3298. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3299. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3300. } else {
  3301. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3302. &cpustat->system);
  3303. }
  3304. }
  3305. static void irqtime_account_idle_ticks(int ticks)
  3306. {
  3307. int i;
  3308. struct rq *rq = this_rq();
  3309. for (i = 0; i < ticks; i++)
  3310. irqtime_account_process_tick(current, 0, rq);
  3311. }
  3312. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3313. static void irqtime_account_idle_ticks(int ticks) {}
  3314. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3315. struct rq *rq) {}
  3316. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3317. /*
  3318. * Account a single tick of cpu time.
  3319. * @p: the process that the cpu time gets accounted to
  3320. * @user_tick: indicates if the tick is a user or a system tick
  3321. */
  3322. void account_process_tick(struct task_struct *p, int user_tick)
  3323. {
  3324. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3325. struct rq *rq = this_rq();
  3326. if (sched_clock_irqtime) {
  3327. irqtime_account_process_tick(p, user_tick, rq);
  3328. return;
  3329. }
  3330. if (user_tick)
  3331. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3332. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3333. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3334. one_jiffy_scaled);
  3335. else
  3336. account_idle_time(cputime_one_jiffy);
  3337. }
  3338. /*
  3339. * Account multiple ticks of steal time.
  3340. * @p: the process from which the cpu time has been stolen
  3341. * @ticks: number of stolen ticks
  3342. */
  3343. void account_steal_ticks(unsigned long ticks)
  3344. {
  3345. account_steal_time(jiffies_to_cputime(ticks));
  3346. }
  3347. /*
  3348. * Account multiple ticks of idle time.
  3349. * @ticks: number of stolen ticks
  3350. */
  3351. void account_idle_ticks(unsigned long ticks)
  3352. {
  3353. if (sched_clock_irqtime) {
  3354. irqtime_account_idle_ticks(ticks);
  3355. return;
  3356. }
  3357. account_idle_time(jiffies_to_cputime(ticks));
  3358. }
  3359. #endif
  3360. /*
  3361. * Use precise platform statistics if available:
  3362. */
  3363. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3364. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3365. {
  3366. *ut = p->utime;
  3367. *st = p->stime;
  3368. }
  3369. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3370. {
  3371. struct task_cputime cputime;
  3372. thread_group_cputime(p, &cputime);
  3373. *ut = cputime.utime;
  3374. *st = cputime.stime;
  3375. }
  3376. #else
  3377. #ifndef nsecs_to_cputime
  3378. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3379. #endif
  3380. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3381. {
  3382. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3383. /*
  3384. * Use CFS's precise accounting:
  3385. */
  3386. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3387. if (total) {
  3388. u64 temp = rtime;
  3389. temp *= utime;
  3390. do_div(temp, total);
  3391. utime = (cputime_t)temp;
  3392. } else
  3393. utime = rtime;
  3394. /*
  3395. * Compare with previous values, to keep monotonicity:
  3396. */
  3397. p->prev_utime = max(p->prev_utime, utime);
  3398. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3399. *ut = p->prev_utime;
  3400. *st = p->prev_stime;
  3401. }
  3402. /*
  3403. * Must be called with siglock held.
  3404. */
  3405. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3406. {
  3407. struct signal_struct *sig = p->signal;
  3408. struct task_cputime cputime;
  3409. cputime_t rtime, utime, total;
  3410. thread_group_cputime(p, &cputime);
  3411. total = cputime_add(cputime.utime, cputime.stime);
  3412. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3413. if (total) {
  3414. u64 temp = rtime;
  3415. temp *= cputime.utime;
  3416. do_div(temp, total);
  3417. utime = (cputime_t)temp;
  3418. } else
  3419. utime = rtime;
  3420. sig->prev_utime = max(sig->prev_utime, utime);
  3421. sig->prev_stime = max(sig->prev_stime,
  3422. cputime_sub(rtime, sig->prev_utime));
  3423. *ut = sig->prev_utime;
  3424. *st = sig->prev_stime;
  3425. }
  3426. #endif
  3427. /*
  3428. * This function gets called by the timer code, with HZ frequency.
  3429. * We call it with interrupts disabled.
  3430. */
  3431. void scheduler_tick(void)
  3432. {
  3433. int cpu = smp_processor_id();
  3434. struct rq *rq = cpu_rq(cpu);
  3435. struct task_struct *curr = rq->curr;
  3436. sched_clock_tick();
  3437. raw_spin_lock(&rq->lock);
  3438. update_rq_clock(rq);
  3439. update_cpu_load_active(rq);
  3440. curr->sched_class->task_tick(rq, curr, 0);
  3441. raw_spin_unlock(&rq->lock);
  3442. perf_event_task_tick();
  3443. #ifdef CONFIG_SMP
  3444. rq->idle_at_tick = idle_cpu(cpu);
  3445. trigger_load_balance(rq, cpu);
  3446. #endif
  3447. }
  3448. notrace unsigned long get_parent_ip(unsigned long addr)
  3449. {
  3450. if (in_lock_functions(addr)) {
  3451. addr = CALLER_ADDR2;
  3452. if (in_lock_functions(addr))
  3453. addr = CALLER_ADDR3;
  3454. }
  3455. return addr;
  3456. }
  3457. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3458. defined(CONFIG_PREEMPT_TRACER))
  3459. void __kprobes add_preempt_count(int val)
  3460. {
  3461. #ifdef CONFIG_DEBUG_PREEMPT
  3462. /*
  3463. * Underflow?
  3464. */
  3465. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3466. return;
  3467. #endif
  3468. preempt_count() += val;
  3469. #ifdef CONFIG_DEBUG_PREEMPT
  3470. /*
  3471. * Spinlock count overflowing soon?
  3472. */
  3473. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3474. PREEMPT_MASK - 10);
  3475. #endif
  3476. if (preempt_count() == val)
  3477. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3478. }
  3479. EXPORT_SYMBOL(add_preempt_count);
  3480. void __kprobes sub_preempt_count(int val)
  3481. {
  3482. #ifdef CONFIG_DEBUG_PREEMPT
  3483. /*
  3484. * Underflow?
  3485. */
  3486. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3487. return;
  3488. /*
  3489. * Is the spinlock portion underflowing?
  3490. */
  3491. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3492. !(preempt_count() & PREEMPT_MASK)))
  3493. return;
  3494. #endif
  3495. if (preempt_count() == val)
  3496. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3497. preempt_count() -= val;
  3498. }
  3499. EXPORT_SYMBOL(sub_preempt_count);
  3500. #endif
  3501. /*
  3502. * Print scheduling while atomic bug:
  3503. */
  3504. static noinline void __schedule_bug(struct task_struct *prev)
  3505. {
  3506. struct pt_regs *regs = get_irq_regs();
  3507. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3508. prev->comm, prev->pid, preempt_count());
  3509. debug_show_held_locks(prev);
  3510. print_modules();
  3511. if (irqs_disabled())
  3512. print_irqtrace_events(prev);
  3513. if (regs)
  3514. show_regs(regs);
  3515. else
  3516. dump_stack();
  3517. }
  3518. /*
  3519. * Various schedule()-time debugging checks and statistics:
  3520. */
  3521. static inline void schedule_debug(struct task_struct *prev)
  3522. {
  3523. /*
  3524. * Test if we are atomic. Since do_exit() needs to call into
  3525. * schedule() atomically, we ignore that path for now.
  3526. * Otherwise, whine if we are scheduling when we should not be.
  3527. */
  3528. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3529. __schedule_bug(prev);
  3530. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3531. schedstat_inc(this_rq(), sched_count);
  3532. }
  3533. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3534. {
  3535. if (prev->on_rq || rq->skip_clock_update < 0)
  3536. update_rq_clock(rq);
  3537. prev->sched_class->put_prev_task(rq, prev);
  3538. }
  3539. /*
  3540. * Pick up the highest-prio task:
  3541. */
  3542. static inline struct task_struct *
  3543. pick_next_task(struct rq *rq)
  3544. {
  3545. const struct sched_class *class;
  3546. struct task_struct *p;
  3547. /*
  3548. * Optimization: we know that if all tasks are in
  3549. * the fair class we can call that function directly:
  3550. */
  3551. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3552. p = fair_sched_class.pick_next_task(rq);
  3553. if (likely(p))
  3554. return p;
  3555. }
  3556. for_each_class(class) {
  3557. p = class->pick_next_task(rq);
  3558. if (p)
  3559. return p;
  3560. }
  3561. BUG(); /* the idle class will always have a runnable task */
  3562. }
  3563. /*
  3564. * __schedule() is the main scheduler function.
  3565. */
  3566. static void __sched __schedule(void)
  3567. {
  3568. struct task_struct *prev, *next;
  3569. unsigned long *switch_count;
  3570. struct rq *rq;
  3571. int cpu;
  3572. need_resched:
  3573. preempt_disable();
  3574. cpu = smp_processor_id();
  3575. rq = cpu_rq(cpu);
  3576. rcu_note_context_switch(cpu);
  3577. prev = rq->curr;
  3578. schedule_debug(prev);
  3579. if (sched_feat(HRTICK))
  3580. hrtick_clear(rq);
  3581. raw_spin_lock_irq(&rq->lock);
  3582. switch_count = &prev->nivcsw;
  3583. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3584. if (unlikely(signal_pending_state(prev->state, prev))) {
  3585. prev->state = TASK_RUNNING;
  3586. } else {
  3587. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3588. prev->on_rq = 0;
  3589. /*
  3590. * If a worker went to sleep, notify and ask workqueue
  3591. * whether it wants to wake up a task to maintain
  3592. * concurrency.
  3593. */
  3594. if (prev->flags & PF_WQ_WORKER) {
  3595. struct task_struct *to_wakeup;
  3596. to_wakeup = wq_worker_sleeping(prev, cpu);
  3597. if (to_wakeup)
  3598. try_to_wake_up_local(to_wakeup);
  3599. }
  3600. }
  3601. switch_count = &prev->nvcsw;
  3602. }
  3603. pre_schedule(rq, prev);
  3604. if (unlikely(!rq->nr_running))
  3605. idle_balance(cpu, rq);
  3606. put_prev_task(rq, prev);
  3607. next = pick_next_task(rq);
  3608. clear_tsk_need_resched(prev);
  3609. rq->skip_clock_update = 0;
  3610. if (likely(prev != next)) {
  3611. rq->nr_switches++;
  3612. rq->curr = next;
  3613. ++*switch_count;
  3614. context_switch(rq, prev, next); /* unlocks the rq */
  3615. /*
  3616. * The context switch have flipped the stack from under us
  3617. * and restored the local variables which were saved when
  3618. * this task called schedule() in the past. prev == current
  3619. * is still correct, but it can be moved to another cpu/rq.
  3620. */
  3621. cpu = smp_processor_id();
  3622. rq = cpu_rq(cpu);
  3623. } else
  3624. raw_spin_unlock_irq(&rq->lock);
  3625. post_schedule(rq);
  3626. preempt_enable_no_resched();
  3627. if (need_resched())
  3628. goto need_resched;
  3629. }
  3630. static inline void sched_submit_work(struct task_struct *tsk)
  3631. {
  3632. if (!tsk->state)
  3633. return;
  3634. /*
  3635. * If we are going to sleep and we have plugged IO queued,
  3636. * make sure to submit it to avoid deadlocks.
  3637. */
  3638. if (blk_needs_flush_plug(tsk))
  3639. blk_schedule_flush_plug(tsk);
  3640. }
  3641. asmlinkage void __sched schedule(void)
  3642. {
  3643. struct task_struct *tsk = current;
  3644. sched_submit_work(tsk);
  3645. __schedule();
  3646. }
  3647. EXPORT_SYMBOL(schedule);
  3648. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3649. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3650. {
  3651. bool ret = false;
  3652. rcu_read_lock();
  3653. if (lock->owner != owner)
  3654. goto fail;
  3655. /*
  3656. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3657. * lock->owner still matches owner, if that fails, owner might
  3658. * point to free()d memory, if it still matches, the rcu_read_lock()
  3659. * ensures the memory stays valid.
  3660. */
  3661. barrier();
  3662. ret = owner->on_cpu;
  3663. fail:
  3664. rcu_read_unlock();
  3665. return ret;
  3666. }
  3667. /*
  3668. * Look out! "owner" is an entirely speculative pointer
  3669. * access and not reliable.
  3670. */
  3671. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3672. {
  3673. if (!sched_feat(OWNER_SPIN))
  3674. return 0;
  3675. while (owner_running(lock, owner)) {
  3676. if (need_resched())
  3677. return 0;
  3678. arch_mutex_cpu_relax();
  3679. }
  3680. /*
  3681. * If the owner changed to another task there is likely
  3682. * heavy contention, stop spinning.
  3683. */
  3684. if (lock->owner)
  3685. return 0;
  3686. return 1;
  3687. }
  3688. #endif
  3689. #ifdef CONFIG_PREEMPT
  3690. /*
  3691. * this is the entry point to schedule() from in-kernel preemption
  3692. * off of preempt_enable. Kernel preemptions off return from interrupt
  3693. * occur there and call schedule directly.
  3694. */
  3695. asmlinkage void __sched notrace preempt_schedule(void)
  3696. {
  3697. struct thread_info *ti = current_thread_info();
  3698. /*
  3699. * If there is a non-zero preempt_count or interrupts are disabled,
  3700. * we do not want to preempt the current task. Just return..
  3701. */
  3702. if (likely(ti->preempt_count || irqs_disabled()))
  3703. return;
  3704. do {
  3705. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3706. __schedule();
  3707. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3708. /*
  3709. * Check again in case we missed a preemption opportunity
  3710. * between schedule and now.
  3711. */
  3712. barrier();
  3713. } while (need_resched());
  3714. }
  3715. EXPORT_SYMBOL(preempt_schedule);
  3716. /*
  3717. * this is the entry point to schedule() from kernel preemption
  3718. * off of irq context.
  3719. * Note, that this is called and return with irqs disabled. This will
  3720. * protect us against recursive calling from irq.
  3721. */
  3722. asmlinkage void __sched preempt_schedule_irq(void)
  3723. {
  3724. struct thread_info *ti = current_thread_info();
  3725. /* Catch callers which need to be fixed */
  3726. BUG_ON(ti->preempt_count || !irqs_disabled());
  3727. do {
  3728. add_preempt_count(PREEMPT_ACTIVE);
  3729. local_irq_enable();
  3730. __schedule();
  3731. local_irq_disable();
  3732. sub_preempt_count(PREEMPT_ACTIVE);
  3733. /*
  3734. * Check again in case we missed a preemption opportunity
  3735. * between schedule and now.
  3736. */
  3737. barrier();
  3738. } while (need_resched());
  3739. }
  3740. #endif /* CONFIG_PREEMPT */
  3741. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3742. void *key)
  3743. {
  3744. return try_to_wake_up(curr->private, mode, wake_flags);
  3745. }
  3746. EXPORT_SYMBOL(default_wake_function);
  3747. /*
  3748. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3749. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3750. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3751. *
  3752. * There are circumstances in which we can try to wake a task which has already
  3753. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3754. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3755. */
  3756. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3757. int nr_exclusive, int wake_flags, void *key)
  3758. {
  3759. wait_queue_t *curr, *next;
  3760. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3761. unsigned flags = curr->flags;
  3762. if (curr->func(curr, mode, wake_flags, key) &&
  3763. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3764. break;
  3765. }
  3766. }
  3767. /**
  3768. * __wake_up - wake up threads blocked on a waitqueue.
  3769. * @q: the waitqueue
  3770. * @mode: which threads
  3771. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3772. * @key: is directly passed to the wakeup function
  3773. *
  3774. * It may be assumed that this function implies a write memory barrier before
  3775. * changing the task state if and only if any tasks are woken up.
  3776. */
  3777. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3778. int nr_exclusive, void *key)
  3779. {
  3780. unsigned long flags;
  3781. spin_lock_irqsave(&q->lock, flags);
  3782. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3783. spin_unlock_irqrestore(&q->lock, flags);
  3784. }
  3785. EXPORT_SYMBOL(__wake_up);
  3786. /*
  3787. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3788. */
  3789. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3790. {
  3791. __wake_up_common(q, mode, 1, 0, NULL);
  3792. }
  3793. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3794. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3795. {
  3796. __wake_up_common(q, mode, 1, 0, key);
  3797. }
  3798. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3799. /**
  3800. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3801. * @q: the waitqueue
  3802. * @mode: which threads
  3803. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3804. * @key: opaque value to be passed to wakeup targets
  3805. *
  3806. * The sync wakeup differs that the waker knows that it will schedule
  3807. * away soon, so while the target thread will be woken up, it will not
  3808. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3809. * with each other. This can prevent needless bouncing between CPUs.
  3810. *
  3811. * On UP it can prevent extra preemption.
  3812. *
  3813. * It may be assumed that this function implies a write memory barrier before
  3814. * changing the task state if and only if any tasks are woken up.
  3815. */
  3816. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3817. int nr_exclusive, void *key)
  3818. {
  3819. unsigned long flags;
  3820. int wake_flags = WF_SYNC;
  3821. if (unlikely(!q))
  3822. return;
  3823. if (unlikely(!nr_exclusive))
  3824. wake_flags = 0;
  3825. spin_lock_irqsave(&q->lock, flags);
  3826. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3827. spin_unlock_irqrestore(&q->lock, flags);
  3828. }
  3829. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3830. /*
  3831. * __wake_up_sync - see __wake_up_sync_key()
  3832. */
  3833. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3834. {
  3835. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3836. }
  3837. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3838. /**
  3839. * complete: - signals a single thread waiting on this completion
  3840. * @x: holds the state of this particular completion
  3841. *
  3842. * This will wake up a single thread waiting on this completion. Threads will be
  3843. * awakened in the same order in which they were queued.
  3844. *
  3845. * See also complete_all(), wait_for_completion() and related routines.
  3846. *
  3847. * It may be assumed that this function implies a write memory barrier before
  3848. * changing the task state if and only if any tasks are woken up.
  3849. */
  3850. void complete(struct completion *x)
  3851. {
  3852. unsigned long flags;
  3853. spin_lock_irqsave(&x->wait.lock, flags);
  3854. x->done++;
  3855. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3856. spin_unlock_irqrestore(&x->wait.lock, flags);
  3857. }
  3858. EXPORT_SYMBOL(complete);
  3859. /**
  3860. * complete_all: - signals all threads waiting on this completion
  3861. * @x: holds the state of this particular completion
  3862. *
  3863. * This will wake up all threads waiting on this particular completion event.
  3864. *
  3865. * It may be assumed that this function implies a write memory barrier before
  3866. * changing the task state if and only if any tasks are woken up.
  3867. */
  3868. void complete_all(struct completion *x)
  3869. {
  3870. unsigned long flags;
  3871. spin_lock_irqsave(&x->wait.lock, flags);
  3872. x->done += UINT_MAX/2;
  3873. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3874. spin_unlock_irqrestore(&x->wait.lock, flags);
  3875. }
  3876. EXPORT_SYMBOL(complete_all);
  3877. static inline long __sched
  3878. do_wait_for_common(struct completion *x, long timeout, int state)
  3879. {
  3880. if (!x->done) {
  3881. DECLARE_WAITQUEUE(wait, current);
  3882. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3883. do {
  3884. if (signal_pending_state(state, current)) {
  3885. timeout = -ERESTARTSYS;
  3886. break;
  3887. }
  3888. __set_current_state(state);
  3889. spin_unlock_irq(&x->wait.lock);
  3890. timeout = schedule_timeout(timeout);
  3891. spin_lock_irq(&x->wait.lock);
  3892. } while (!x->done && timeout);
  3893. __remove_wait_queue(&x->wait, &wait);
  3894. if (!x->done)
  3895. return timeout;
  3896. }
  3897. x->done--;
  3898. return timeout ?: 1;
  3899. }
  3900. static long __sched
  3901. wait_for_common(struct completion *x, long timeout, int state)
  3902. {
  3903. might_sleep();
  3904. spin_lock_irq(&x->wait.lock);
  3905. timeout = do_wait_for_common(x, timeout, state);
  3906. spin_unlock_irq(&x->wait.lock);
  3907. return timeout;
  3908. }
  3909. /**
  3910. * wait_for_completion: - waits for completion of a task
  3911. * @x: holds the state of this particular completion
  3912. *
  3913. * This waits to be signaled for completion of a specific task. It is NOT
  3914. * interruptible and there is no timeout.
  3915. *
  3916. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3917. * and interrupt capability. Also see complete().
  3918. */
  3919. void __sched wait_for_completion(struct completion *x)
  3920. {
  3921. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3922. }
  3923. EXPORT_SYMBOL(wait_for_completion);
  3924. /**
  3925. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3926. * @x: holds the state of this particular completion
  3927. * @timeout: timeout value in jiffies
  3928. *
  3929. * This waits for either a completion of a specific task to be signaled or for a
  3930. * specified timeout to expire. The timeout is in jiffies. It is not
  3931. * interruptible.
  3932. */
  3933. unsigned long __sched
  3934. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3935. {
  3936. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3937. }
  3938. EXPORT_SYMBOL(wait_for_completion_timeout);
  3939. /**
  3940. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3941. * @x: holds the state of this particular completion
  3942. *
  3943. * This waits for completion of a specific task to be signaled. It is
  3944. * interruptible.
  3945. */
  3946. int __sched wait_for_completion_interruptible(struct completion *x)
  3947. {
  3948. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3949. if (t == -ERESTARTSYS)
  3950. return t;
  3951. return 0;
  3952. }
  3953. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3954. /**
  3955. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3956. * @x: holds the state of this particular completion
  3957. * @timeout: timeout value in jiffies
  3958. *
  3959. * This waits for either a completion of a specific task to be signaled or for a
  3960. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3961. */
  3962. long __sched
  3963. wait_for_completion_interruptible_timeout(struct completion *x,
  3964. unsigned long timeout)
  3965. {
  3966. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3967. }
  3968. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3969. /**
  3970. * wait_for_completion_killable: - waits for completion of a task (killable)
  3971. * @x: holds the state of this particular completion
  3972. *
  3973. * This waits to be signaled for completion of a specific task. It can be
  3974. * interrupted by a kill signal.
  3975. */
  3976. int __sched wait_for_completion_killable(struct completion *x)
  3977. {
  3978. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3979. if (t == -ERESTARTSYS)
  3980. return t;
  3981. return 0;
  3982. }
  3983. EXPORT_SYMBOL(wait_for_completion_killable);
  3984. /**
  3985. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3986. * @x: holds the state of this particular completion
  3987. * @timeout: timeout value in jiffies
  3988. *
  3989. * This waits for either a completion of a specific task to be
  3990. * signaled or for a specified timeout to expire. It can be
  3991. * interrupted by a kill signal. The timeout is in jiffies.
  3992. */
  3993. long __sched
  3994. wait_for_completion_killable_timeout(struct completion *x,
  3995. unsigned long timeout)
  3996. {
  3997. return wait_for_common(x, timeout, TASK_KILLABLE);
  3998. }
  3999. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  4000. /**
  4001. * try_wait_for_completion - try to decrement a completion without blocking
  4002. * @x: completion structure
  4003. *
  4004. * Returns: 0 if a decrement cannot be done without blocking
  4005. * 1 if a decrement succeeded.
  4006. *
  4007. * If a completion is being used as a counting completion,
  4008. * attempt to decrement the counter without blocking. This
  4009. * enables us to avoid waiting if the resource the completion
  4010. * is protecting is not available.
  4011. */
  4012. bool try_wait_for_completion(struct completion *x)
  4013. {
  4014. unsigned long flags;
  4015. int ret = 1;
  4016. spin_lock_irqsave(&x->wait.lock, flags);
  4017. if (!x->done)
  4018. ret = 0;
  4019. else
  4020. x->done--;
  4021. spin_unlock_irqrestore(&x->wait.lock, flags);
  4022. return ret;
  4023. }
  4024. EXPORT_SYMBOL(try_wait_for_completion);
  4025. /**
  4026. * completion_done - Test to see if a completion has any waiters
  4027. * @x: completion structure
  4028. *
  4029. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4030. * 1 if there are no waiters.
  4031. *
  4032. */
  4033. bool completion_done(struct completion *x)
  4034. {
  4035. unsigned long flags;
  4036. int ret = 1;
  4037. spin_lock_irqsave(&x->wait.lock, flags);
  4038. if (!x->done)
  4039. ret = 0;
  4040. spin_unlock_irqrestore(&x->wait.lock, flags);
  4041. return ret;
  4042. }
  4043. EXPORT_SYMBOL(completion_done);
  4044. static long __sched
  4045. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4046. {
  4047. unsigned long flags;
  4048. wait_queue_t wait;
  4049. init_waitqueue_entry(&wait, current);
  4050. __set_current_state(state);
  4051. spin_lock_irqsave(&q->lock, flags);
  4052. __add_wait_queue(q, &wait);
  4053. spin_unlock(&q->lock);
  4054. timeout = schedule_timeout(timeout);
  4055. spin_lock_irq(&q->lock);
  4056. __remove_wait_queue(q, &wait);
  4057. spin_unlock_irqrestore(&q->lock, flags);
  4058. return timeout;
  4059. }
  4060. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4061. {
  4062. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4063. }
  4064. EXPORT_SYMBOL(interruptible_sleep_on);
  4065. long __sched
  4066. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4067. {
  4068. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4069. }
  4070. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4071. void __sched sleep_on(wait_queue_head_t *q)
  4072. {
  4073. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4074. }
  4075. EXPORT_SYMBOL(sleep_on);
  4076. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4077. {
  4078. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4079. }
  4080. EXPORT_SYMBOL(sleep_on_timeout);
  4081. #ifdef CONFIG_RT_MUTEXES
  4082. /*
  4083. * rt_mutex_setprio - set the current priority of a task
  4084. * @p: task
  4085. * @prio: prio value (kernel-internal form)
  4086. *
  4087. * This function changes the 'effective' priority of a task. It does
  4088. * not touch ->normal_prio like __setscheduler().
  4089. *
  4090. * Used by the rt_mutex code to implement priority inheritance logic.
  4091. */
  4092. void rt_mutex_setprio(struct task_struct *p, int prio)
  4093. {
  4094. int oldprio, on_rq, running;
  4095. struct rq *rq;
  4096. const struct sched_class *prev_class;
  4097. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4098. rq = __task_rq_lock(p);
  4099. trace_sched_pi_setprio(p, prio);
  4100. oldprio = p->prio;
  4101. prev_class = p->sched_class;
  4102. on_rq = p->on_rq;
  4103. running = task_current(rq, p);
  4104. if (on_rq)
  4105. dequeue_task(rq, p, 0);
  4106. if (running)
  4107. p->sched_class->put_prev_task(rq, p);
  4108. if (rt_prio(prio))
  4109. p->sched_class = &rt_sched_class;
  4110. else
  4111. p->sched_class = &fair_sched_class;
  4112. p->prio = prio;
  4113. if (running)
  4114. p->sched_class->set_curr_task(rq);
  4115. if (on_rq)
  4116. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4117. check_class_changed(rq, p, prev_class, oldprio);
  4118. __task_rq_unlock(rq);
  4119. }
  4120. #endif
  4121. void set_user_nice(struct task_struct *p, long nice)
  4122. {
  4123. int old_prio, delta, on_rq;
  4124. unsigned long flags;
  4125. struct rq *rq;
  4126. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4127. return;
  4128. /*
  4129. * We have to be careful, if called from sys_setpriority(),
  4130. * the task might be in the middle of scheduling on another CPU.
  4131. */
  4132. rq = task_rq_lock(p, &flags);
  4133. /*
  4134. * The RT priorities are set via sched_setscheduler(), but we still
  4135. * allow the 'normal' nice value to be set - but as expected
  4136. * it wont have any effect on scheduling until the task is
  4137. * SCHED_FIFO/SCHED_RR:
  4138. */
  4139. if (task_has_rt_policy(p)) {
  4140. p->static_prio = NICE_TO_PRIO(nice);
  4141. goto out_unlock;
  4142. }
  4143. on_rq = p->on_rq;
  4144. if (on_rq)
  4145. dequeue_task(rq, p, 0);
  4146. p->static_prio = NICE_TO_PRIO(nice);
  4147. set_load_weight(p);
  4148. old_prio = p->prio;
  4149. p->prio = effective_prio(p);
  4150. delta = p->prio - old_prio;
  4151. if (on_rq) {
  4152. enqueue_task(rq, p, 0);
  4153. /*
  4154. * If the task increased its priority or is running and
  4155. * lowered its priority, then reschedule its CPU:
  4156. */
  4157. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4158. resched_task(rq->curr);
  4159. }
  4160. out_unlock:
  4161. task_rq_unlock(rq, p, &flags);
  4162. }
  4163. EXPORT_SYMBOL(set_user_nice);
  4164. /*
  4165. * can_nice - check if a task can reduce its nice value
  4166. * @p: task
  4167. * @nice: nice value
  4168. */
  4169. int can_nice(const struct task_struct *p, const int nice)
  4170. {
  4171. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4172. int nice_rlim = 20 - nice;
  4173. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4174. capable(CAP_SYS_NICE));
  4175. }
  4176. #ifdef __ARCH_WANT_SYS_NICE
  4177. /*
  4178. * sys_nice - change the priority of the current process.
  4179. * @increment: priority increment
  4180. *
  4181. * sys_setpriority is a more generic, but much slower function that
  4182. * does similar things.
  4183. */
  4184. SYSCALL_DEFINE1(nice, int, increment)
  4185. {
  4186. long nice, retval;
  4187. /*
  4188. * Setpriority might change our priority at the same moment.
  4189. * We don't have to worry. Conceptually one call occurs first
  4190. * and we have a single winner.
  4191. */
  4192. if (increment < -40)
  4193. increment = -40;
  4194. if (increment > 40)
  4195. increment = 40;
  4196. nice = TASK_NICE(current) + increment;
  4197. if (nice < -20)
  4198. nice = -20;
  4199. if (nice > 19)
  4200. nice = 19;
  4201. if (increment < 0 && !can_nice(current, nice))
  4202. return -EPERM;
  4203. retval = security_task_setnice(current, nice);
  4204. if (retval)
  4205. return retval;
  4206. set_user_nice(current, nice);
  4207. return 0;
  4208. }
  4209. #endif
  4210. /**
  4211. * task_prio - return the priority value of a given task.
  4212. * @p: the task in question.
  4213. *
  4214. * This is the priority value as seen by users in /proc.
  4215. * RT tasks are offset by -200. Normal tasks are centered
  4216. * around 0, value goes from -16 to +15.
  4217. */
  4218. int task_prio(const struct task_struct *p)
  4219. {
  4220. return p->prio - MAX_RT_PRIO;
  4221. }
  4222. /**
  4223. * task_nice - return the nice value of a given task.
  4224. * @p: the task in question.
  4225. */
  4226. int task_nice(const struct task_struct *p)
  4227. {
  4228. return TASK_NICE(p);
  4229. }
  4230. EXPORT_SYMBOL(task_nice);
  4231. /**
  4232. * idle_cpu - is a given cpu idle currently?
  4233. * @cpu: the processor in question.
  4234. */
  4235. int idle_cpu(int cpu)
  4236. {
  4237. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4238. }
  4239. /**
  4240. * idle_task - return the idle task for a given cpu.
  4241. * @cpu: the processor in question.
  4242. */
  4243. struct task_struct *idle_task(int cpu)
  4244. {
  4245. return cpu_rq(cpu)->idle;
  4246. }
  4247. /**
  4248. * find_process_by_pid - find a process with a matching PID value.
  4249. * @pid: the pid in question.
  4250. */
  4251. static struct task_struct *find_process_by_pid(pid_t pid)
  4252. {
  4253. return pid ? find_task_by_vpid(pid) : current;
  4254. }
  4255. /* Actually do priority change: must hold rq lock. */
  4256. static void
  4257. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4258. {
  4259. p->policy = policy;
  4260. p->rt_priority = prio;
  4261. p->normal_prio = normal_prio(p);
  4262. /* we are holding p->pi_lock already */
  4263. p->prio = rt_mutex_getprio(p);
  4264. if (rt_prio(p->prio))
  4265. p->sched_class = &rt_sched_class;
  4266. else
  4267. p->sched_class = &fair_sched_class;
  4268. set_load_weight(p);
  4269. }
  4270. /*
  4271. * check the target process has a UID that matches the current process's
  4272. */
  4273. static bool check_same_owner(struct task_struct *p)
  4274. {
  4275. const struct cred *cred = current_cred(), *pcred;
  4276. bool match;
  4277. rcu_read_lock();
  4278. pcred = __task_cred(p);
  4279. if (cred->user->user_ns == pcred->user->user_ns)
  4280. match = (cred->euid == pcred->euid ||
  4281. cred->euid == pcred->uid);
  4282. else
  4283. match = false;
  4284. rcu_read_unlock();
  4285. return match;
  4286. }
  4287. static int __sched_setscheduler(struct task_struct *p, int policy,
  4288. const struct sched_param *param, bool user)
  4289. {
  4290. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4291. unsigned long flags;
  4292. const struct sched_class *prev_class;
  4293. struct rq *rq;
  4294. int reset_on_fork;
  4295. /* may grab non-irq protected spin_locks */
  4296. BUG_ON(in_interrupt());
  4297. recheck:
  4298. /* double check policy once rq lock held */
  4299. if (policy < 0) {
  4300. reset_on_fork = p->sched_reset_on_fork;
  4301. policy = oldpolicy = p->policy;
  4302. } else {
  4303. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4304. policy &= ~SCHED_RESET_ON_FORK;
  4305. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4306. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4307. policy != SCHED_IDLE)
  4308. return -EINVAL;
  4309. }
  4310. /*
  4311. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4312. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4313. * SCHED_BATCH and SCHED_IDLE is 0.
  4314. */
  4315. if (param->sched_priority < 0 ||
  4316. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4317. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4318. return -EINVAL;
  4319. if (rt_policy(policy) != (param->sched_priority != 0))
  4320. return -EINVAL;
  4321. /*
  4322. * Allow unprivileged RT tasks to decrease priority:
  4323. */
  4324. if (user && !capable(CAP_SYS_NICE)) {
  4325. if (rt_policy(policy)) {
  4326. unsigned long rlim_rtprio =
  4327. task_rlimit(p, RLIMIT_RTPRIO);
  4328. /* can't set/change the rt policy */
  4329. if (policy != p->policy && !rlim_rtprio)
  4330. return -EPERM;
  4331. /* can't increase priority */
  4332. if (param->sched_priority > p->rt_priority &&
  4333. param->sched_priority > rlim_rtprio)
  4334. return -EPERM;
  4335. }
  4336. /*
  4337. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4338. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4339. */
  4340. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4341. if (!can_nice(p, TASK_NICE(p)))
  4342. return -EPERM;
  4343. }
  4344. /* can't change other user's priorities */
  4345. if (!check_same_owner(p))
  4346. return -EPERM;
  4347. /* Normal users shall not reset the sched_reset_on_fork flag */
  4348. if (p->sched_reset_on_fork && !reset_on_fork)
  4349. return -EPERM;
  4350. }
  4351. if (user) {
  4352. retval = security_task_setscheduler(p);
  4353. if (retval)
  4354. return retval;
  4355. }
  4356. /*
  4357. * make sure no PI-waiters arrive (or leave) while we are
  4358. * changing the priority of the task:
  4359. *
  4360. * To be able to change p->policy safely, the appropriate
  4361. * runqueue lock must be held.
  4362. */
  4363. rq = task_rq_lock(p, &flags);
  4364. /*
  4365. * Changing the policy of the stop threads its a very bad idea
  4366. */
  4367. if (p == rq->stop) {
  4368. task_rq_unlock(rq, p, &flags);
  4369. return -EINVAL;
  4370. }
  4371. /*
  4372. * If not changing anything there's no need to proceed further:
  4373. */
  4374. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4375. param->sched_priority == p->rt_priority))) {
  4376. __task_rq_unlock(rq);
  4377. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4378. return 0;
  4379. }
  4380. #ifdef CONFIG_RT_GROUP_SCHED
  4381. if (user) {
  4382. /*
  4383. * Do not allow realtime tasks into groups that have no runtime
  4384. * assigned.
  4385. */
  4386. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4387. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4388. !task_group_is_autogroup(task_group(p))) {
  4389. task_rq_unlock(rq, p, &flags);
  4390. return -EPERM;
  4391. }
  4392. }
  4393. #endif
  4394. /* recheck policy now with rq lock held */
  4395. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4396. policy = oldpolicy = -1;
  4397. task_rq_unlock(rq, p, &flags);
  4398. goto recheck;
  4399. }
  4400. on_rq = p->on_rq;
  4401. running = task_current(rq, p);
  4402. if (on_rq)
  4403. deactivate_task(rq, p, 0);
  4404. if (running)
  4405. p->sched_class->put_prev_task(rq, p);
  4406. p->sched_reset_on_fork = reset_on_fork;
  4407. oldprio = p->prio;
  4408. prev_class = p->sched_class;
  4409. __setscheduler(rq, p, policy, param->sched_priority);
  4410. if (running)
  4411. p->sched_class->set_curr_task(rq);
  4412. if (on_rq)
  4413. activate_task(rq, p, 0);
  4414. check_class_changed(rq, p, prev_class, oldprio);
  4415. task_rq_unlock(rq, p, &flags);
  4416. rt_mutex_adjust_pi(p);
  4417. return 0;
  4418. }
  4419. /**
  4420. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4421. * @p: the task in question.
  4422. * @policy: new policy.
  4423. * @param: structure containing the new RT priority.
  4424. *
  4425. * NOTE that the task may be already dead.
  4426. */
  4427. int sched_setscheduler(struct task_struct *p, int policy,
  4428. const struct sched_param *param)
  4429. {
  4430. return __sched_setscheduler(p, policy, param, true);
  4431. }
  4432. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4433. /**
  4434. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4435. * @p: the task in question.
  4436. * @policy: new policy.
  4437. * @param: structure containing the new RT priority.
  4438. *
  4439. * Just like sched_setscheduler, only don't bother checking if the
  4440. * current context has permission. For example, this is needed in
  4441. * stop_machine(): we create temporary high priority worker threads,
  4442. * but our caller might not have that capability.
  4443. */
  4444. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4445. const struct sched_param *param)
  4446. {
  4447. return __sched_setscheduler(p, policy, param, false);
  4448. }
  4449. static int
  4450. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4451. {
  4452. struct sched_param lparam;
  4453. struct task_struct *p;
  4454. int retval;
  4455. if (!param || pid < 0)
  4456. return -EINVAL;
  4457. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4458. return -EFAULT;
  4459. rcu_read_lock();
  4460. retval = -ESRCH;
  4461. p = find_process_by_pid(pid);
  4462. if (p != NULL)
  4463. retval = sched_setscheduler(p, policy, &lparam);
  4464. rcu_read_unlock();
  4465. return retval;
  4466. }
  4467. /**
  4468. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4469. * @pid: the pid in question.
  4470. * @policy: new policy.
  4471. * @param: structure containing the new RT priority.
  4472. */
  4473. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4474. struct sched_param __user *, param)
  4475. {
  4476. /* negative values for policy are not valid */
  4477. if (policy < 0)
  4478. return -EINVAL;
  4479. return do_sched_setscheduler(pid, policy, param);
  4480. }
  4481. /**
  4482. * sys_sched_setparam - set/change the RT priority of a thread
  4483. * @pid: the pid in question.
  4484. * @param: structure containing the new RT priority.
  4485. */
  4486. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4487. {
  4488. return do_sched_setscheduler(pid, -1, param);
  4489. }
  4490. /**
  4491. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4492. * @pid: the pid in question.
  4493. */
  4494. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4495. {
  4496. struct task_struct *p;
  4497. int retval;
  4498. if (pid < 0)
  4499. return -EINVAL;
  4500. retval = -ESRCH;
  4501. rcu_read_lock();
  4502. p = find_process_by_pid(pid);
  4503. if (p) {
  4504. retval = security_task_getscheduler(p);
  4505. if (!retval)
  4506. retval = p->policy
  4507. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4508. }
  4509. rcu_read_unlock();
  4510. return retval;
  4511. }
  4512. /**
  4513. * sys_sched_getparam - get the RT priority of a thread
  4514. * @pid: the pid in question.
  4515. * @param: structure containing the RT priority.
  4516. */
  4517. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4518. {
  4519. struct sched_param lp;
  4520. struct task_struct *p;
  4521. int retval;
  4522. if (!param || pid < 0)
  4523. return -EINVAL;
  4524. rcu_read_lock();
  4525. p = find_process_by_pid(pid);
  4526. retval = -ESRCH;
  4527. if (!p)
  4528. goto out_unlock;
  4529. retval = security_task_getscheduler(p);
  4530. if (retval)
  4531. goto out_unlock;
  4532. lp.sched_priority = p->rt_priority;
  4533. rcu_read_unlock();
  4534. /*
  4535. * This one might sleep, we cannot do it with a spinlock held ...
  4536. */
  4537. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4538. return retval;
  4539. out_unlock:
  4540. rcu_read_unlock();
  4541. return retval;
  4542. }
  4543. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4544. {
  4545. cpumask_var_t cpus_allowed, new_mask;
  4546. struct task_struct *p;
  4547. int retval;
  4548. get_online_cpus();
  4549. rcu_read_lock();
  4550. p = find_process_by_pid(pid);
  4551. if (!p) {
  4552. rcu_read_unlock();
  4553. put_online_cpus();
  4554. return -ESRCH;
  4555. }
  4556. /* Prevent p going away */
  4557. get_task_struct(p);
  4558. rcu_read_unlock();
  4559. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4560. retval = -ENOMEM;
  4561. goto out_put_task;
  4562. }
  4563. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4564. retval = -ENOMEM;
  4565. goto out_free_cpus_allowed;
  4566. }
  4567. retval = -EPERM;
  4568. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4569. goto out_unlock;
  4570. retval = security_task_setscheduler(p);
  4571. if (retval)
  4572. goto out_unlock;
  4573. cpuset_cpus_allowed(p, cpus_allowed);
  4574. cpumask_and(new_mask, in_mask, cpus_allowed);
  4575. again:
  4576. retval = set_cpus_allowed_ptr(p, new_mask);
  4577. if (!retval) {
  4578. cpuset_cpus_allowed(p, cpus_allowed);
  4579. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4580. /*
  4581. * We must have raced with a concurrent cpuset
  4582. * update. Just reset the cpus_allowed to the
  4583. * cpuset's cpus_allowed
  4584. */
  4585. cpumask_copy(new_mask, cpus_allowed);
  4586. goto again;
  4587. }
  4588. }
  4589. out_unlock:
  4590. free_cpumask_var(new_mask);
  4591. out_free_cpus_allowed:
  4592. free_cpumask_var(cpus_allowed);
  4593. out_put_task:
  4594. put_task_struct(p);
  4595. put_online_cpus();
  4596. return retval;
  4597. }
  4598. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4599. struct cpumask *new_mask)
  4600. {
  4601. if (len < cpumask_size())
  4602. cpumask_clear(new_mask);
  4603. else if (len > cpumask_size())
  4604. len = cpumask_size();
  4605. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4606. }
  4607. /**
  4608. * sys_sched_setaffinity - set the cpu affinity of a process
  4609. * @pid: pid of the process
  4610. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4611. * @user_mask_ptr: user-space pointer to the new cpu mask
  4612. */
  4613. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4614. unsigned long __user *, user_mask_ptr)
  4615. {
  4616. cpumask_var_t new_mask;
  4617. int retval;
  4618. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4619. return -ENOMEM;
  4620. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4621. if (retval == 0)
  4622. retval = sched_setaffinity(pid, new_mask);
  4623. free_cpumask_var(new_mask);
  4624. return retval;
  4625. }
  4626. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4627. {
  4628. struct task_struct *p;
  4629. unsigned long flags;
  4630. int retval;
  4631. get_online_cpus();
  4632. rcu_read_lock();
  4633. retval = -ESRCH;
  4634. p = find_process_by_pid(pid);
  4635. if (!p)
  4636. goto out_unlock;
  4637. retval = security_task_getscheduler(p);
  4638. if (retval)
  4639. goto out_unlock;
  4640. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4641. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4642. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4643. out_unlock:
  4644. rcu_read_unlock();
  4645. put_online_cpus();
  4646. return retval;
  4647. }
  4648. /**
  4649. * sys_sched_getaffinity - get the cpu affinity of a process
  4650. * @pid: pid of the process
  4651. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4652. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4653. */
  4654. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4655. unsigned long __user *, user_mask_ptr)
  4656. {
  4657. int ret;
  4658. cpumask_var_t mask;
  4659. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4660. return -EINVAL;
  4661. if (len & (sizeof(unsigned long)-1))
  4662. return -EINVAL;
  4663. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4664. return -ENOMEM;
  4665. ret = sched_getaffinity(pid, mask);
  4666. if (ret == 0) {
  4667. size_t retlen = min_t(size_t, len, cpumask_size());
  4668. if (copy_to_user(user_mask_ptr, mask, retlen))
  4669. ret = -EFAULT;
  4670. else
  4671. ret = retlen;
  4672. }
  4673. free_cpumask_var(mask);
  4674. return ret;
  4675. }
  4676. /**
  4677. * sys_sched_yield - yield the current processor to other threads.
  4678. *
  4679. * This function yields the current CPU to other tasks. If there are no
  4680. * other threads running on this CPU then this function will return.
  4681. */
  4682. SYSCALL_DEFINE0(sched_yield)
  4683. {
  4684. struct rq *rq = this_rq_lock();
  4685. schedstat_inc(rq, yld_count);
  4686. current->sched_class->yield_task(rq);
  4687. /*
  4688. * Since we are going to call schedule() anyway, there's
  4689. * no need to preempt or enable interrupts:
  4690. */
  4691. __release(rq->lock);
  4692. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4693. do_raw_spin_unlock(&rq->lock);
  4694. preempt_enable_no_resched();
  4695. schedule();
  4696. return 0;
  4697. }
  4698. static inline int should_resched(void)
  4699. {
  4700. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4701. }
  4702. static void __cond_resched(void)
  4703. {
  4704. add_preempt_count(PREEMPT_ACTIVE);
  4705. __schedule();
  4706. sub_preempt_count(PREEMPT_ACTIVE);
  4707. }
  4708. int __sched _cond_resched(void)
  4709. {
  4710. if (should_resched()) {
  4711. __cond_resched();
  4712. return 1;
  4713. }
  4714. return 0;
  4715. }
  4716. EXPORT_SYMBOL(_cond_resched);
  4717. /*
  4718. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4719. * call schedule, and on return reacquire the lock.
  4720. *
  4721. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4722. * operations here to prevent schedule() from being called twice (once via
  4723. * spin_unlock(), once by hand).
  4724. */
  4725. int __cond_resched_lock(spinlock_t *lock)
  4726. {
  4727. int resched = should_resched();
  4728. int ret = 0;
  4729. lockdep_assert_held(lock);
  4730. if (spin_needbreak(lock) || resched) {
  4731. spin_unlock(lock);
  4732. if (resched)
  4733. __cond_resched();
  4734. else
  4735. cpu_relax();
  4736. ret = 1;
  4737. spin_lock(lock);
  4738. }
  4739. return ret;
  4740. }
  4741. EXPORT_SYMBOL(__cond_resched_lock);
  4742. int __sched __cond_resched_softirq(void)
  4743. {
  4744. BUG_ON(!in_softirq());
  4745. if (should_resched()) {
  4746. local_bh_enable();
  4747. __cond_resched();
  4748. local_bh_disable();
  4749. return 1;
  4750. }
  4751. return 0;
  4752. }
  4753. EXPORT_SYMBOL(__cond_resched_softirq);
  4754. /**
  4755. * yield - yield the current processor to other threads.
  4756. *
  4757. * This is a shortcut for kernel-space yielding - it marks the
  4758. * thread runnable and calls sys_sched_yield().
  4759. */
  4760. void __sched yield(void)
  4761. {
  4762. set_current_state(TASK_RUNNING);
  4763. sys_sched_yield();
  4764. }
  4765. EXPORT_SYMBOL(yield);
  4766. /**
  4767. * yield_to - yield the current processor to another thread in
  4768. * your thread group, or accelerate that thread toward the
  4769. * processor it's on.
  4770. * @p: target task
  4771. * @preempt: whether task preemption is allowed or not
  4772. *
  4773. * It's the caller's job to ensure that the target task struct
  4774. * can't go away on us before we can do any checks.
  4775. *
  4776. * Returns true if we indeed boosted the target task.
  4777. */
  4778. bool __sched yield_to(struct task_struct *p, bool preempt)
  4779. {
  4780. struct task_struct *curr = current;
  4781. struct rq *rq, *p_rq;
  4782. unsigned long flags;
  4783. bool yielded = 0;
  4784. local_irq_save(flags);
  4785. rq = this_rq();
  4786. again:
  4787. p_rq = task_rq(p);
  4788. double_rq_lock(rq, p_rq);
  4789. while (task_rq(p) != p_rq) {
  4790. double_rq_unlock(rq, p_rq);
  4791. goto again;
  4792. }
  4793. if (!curr->sched_class->yield_to_task)
  4794. goto out;
  4795. if (curr->sched_class != p->sched_class)
  4796. goto out;
  4797. if (task_running(p_rq, p) || p->state)
  4798. goto out;
  4799. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4800. if (yielded) {
  4801. schedstat_inc(rq, yld_count);
  4802. /*
  4803. * Make p's CPU reschedule; pick_next_entity takes care of
  4804. * fairness.
  4805. */
  4806. if (preempt && rq != p_rq)
  4807. resched_task(p_rq->curr);
  4808. }
  4809. out:
  4810. double_rq_unlock(rq, p_rq);
  4811. local_irq_restore(flags);
  4812. if (yielded)
  4813. schedule();
  4814. return yielded;
  4815. }
  4816. EXPORT_SYMBOL_GPL(yield_to);
  4817. /*
  4818. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4819. * that process accounting knows that this is a task in IO wait state.
  4820. */
  4821. void __sched io_schedule(void)
  4822. {
  4823. struct rq *rq = raw_rq();
  4824. delayacct_blkio_start();
  4825. atomic_inc(&rq->nr_iowait);
  4826. blk_flush_plug(current);
  4827. current->in_iowait = 1;
  4828. schedule();
  4829. current->in_iowait = 0;
  4830. atomic_dec(&rq->nr_iowait);
  4831. delayacct_blkio_end();
  4832. }
  4833. EXPORT_SYMBOL(io_schedule);
  4834. long __sched io_schedule_timeout(long timeout)
  4835. {
  4836. struct rq *rq = raw_rq();
  4837. long ret;
  4838. delayacct_blkio_start();
  4839. atomic_inc(&rq->nr_iowait);
  4840. blk_flush_plug(current);
  4841. current->in_iowait = 1;
  4842. ret = schedule_timeout(timeout);
  4843. current->in_iowait = 0;
  4844. atomic_dec(&rq->nr_iowait);
  4845. delayacct_blkio_end();
  4846. return ret;
  4847. }
  4848. /**
  4849. * sys_sched_get_priority_max - return maximum RT priority.
  4850. * @policy: scheduling class.
  4851. *
  4852. * this syscall returns the maximum rt_priority that can be used
  4853. * by a given scheduling class.
  4854. */
  4855. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4856. {
  4857. int ret = -EINVAL;
  4858. switch (policy) {
  4859. case SCHED_FIFO:
  4860. case SCHED_RR:
  4861. ret = MAX_USER_RT_PRIO-1;
  4862. break;
  4863. case SCHED_NORMAL:
  4864. case SCHED_BATCH:
  4865. case SCHED_IDLE:
  4866. ret = 0;
  4867. break;
  4868. }
  4869. return ret;
  4870. }
  4871. /**
  4872. * sys_sched_get_priority_min - return minimum RT priority.
  4873. * @policy: scheduling class.
  4874. *
  4875. * this syscall returns the minimum rt_priority that can be used
  4876. * by a given scheduling class.
  4877. */
  4878. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4879. {
  4880. int ret = -EINVAL;
  4881. switch (policy) {
  4882. case SCHED_FIFO:
  4883. case SCHED_RR:
  4884. ret = 1;
  4885. break;
  4886. case SCHED_NORMAL:
  4887. case SCHED_BATCH:
  4888. case SCHED_IDLE:
  4889. ret = 0;
  4890. }
  4891. return ret;
  4892. }
  4893. /**
  4894. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4895. * @pid: pid of the process.
  4896. * @interval: userspace pointer to the timeslice value.
  4897. *
  4898. * this syscall writes the default timeslice value of a given process
  4899. * into the user-space timespec buffer. A value of '0' means infinity.
  4900. */
  4901. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4902. struct timespec __user *, interval)
  4903. {
  4904. struct task_struct *p;
  4905. unsigned int time_slice;
  4906. unsigned long flags;
  4907. struct rq *rq;
  4908. int retval;
  4909. struct timespec t;
  4910. if (pid < 0)
  4911. return -EINVAL;
  4912. retval = -ESRCH;
  4913. rcu_read_lock();
  4914. p = find_process_by_pid(pid);
  4915. if (!p)
  4916. goto out_unlock;
  4917. retval = security_task_getscheduler(p);
  4918. if (retval)
  4919. goto out_unlock;
  4920. rq = task_rq_lock(p, &flags);
  4921. time_slice = p->sched_class->get_rr_interval(rq, p);
  4922. task_rq_unlock(rq, p, &flags);
  4923. rcu_read_unlock();
  4924. jiffies_to_timespec(time_slice, &t);
  4925. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4926. return retval;
  4927. out_unlock:
  4928. rcu_read_unlock();
  4929. return retval;
  4930. }
  4931. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4932. void sched_show_task(struct task_struct *p)
  4933. {
  4934. unsigned long free = 0;
  4935. unsigned state;
  4936. state = p->state ? __ffs(p->state) + 1 : 0;
  4937. printk(KERN_INFO "%-15.15s %c", p->comm,
  4938. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4939. #if BITS_PER_LONG == 32
  4940. if (state == TASK_RUNNING)
  4941. printk(KERN_CONT " running ");
  4942. else
  4943. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4944. #else
  4945. if (state == TASK_RUNNING)
  4946. printk(KERN_CONT " running task ");
  4947. else
  4948. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4949. #endif
  4950. #ifdef CONFIG_DEBUG_STACK_USAGE
  4951. free = stack_not_used(p);
  4952. #endif
  4953. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4954. task_pid_nr(p), task_pid_nr(p->real_parent),
  4955. (unsigned long)task_thread_info(p)->flags);
  4956. show_stack(p, NULL);
  4957. }
  4958. void show_state_filter(unsigned long state_filter)
  4959. {
  4960. struct task_struct *g, *p;
  4961. #if BITS_PER_LONG == 32
  4962. printk(KERN_INFO
  4963. " task PC stack pid father\n");
  4964. #else
  4965. printk(KERN_INFO
  4966. " task PC stack pid father\n");
  4967. #endif
  4968. read_lock(&tasklist_lock);
  4969. do_each_thread(g, p) {
  4970. /*
  4971. * reset the NMI-timeout, listing all files on a slow
  4972. * console might take a lot of time:
  4973. */
  4974. touch_nmi_watchdog();
  4975. if (!state_filter || (p->state & state_filter))
  4976. sched_show_task(p);
  4977. } while_each_thread(g, p);
  4978. touch_all_softlockup_watchdogs();
  4979. #ifdef CONFIG_SCHED_DEBUG
  4980. sysrq_sched_debug_show();
  4981. #endif
  4982. read_unlock(&tasklist_lock);
  4983. /*
  4984. * Only show locks if all tasks are dumped:
  4985. */
  4986. if (!state_filter)
  4987. debug_show_all_locks();
  4988. }
  4989. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4990. {
  4991. idle->sched_class = &idle_sched_class;
  4992. }
  4993. /**
  4994. * init_idle - set up an idle thread for a given CPU
  4995. * @idle: task in question
  4996. * @cpu: cpu the idle task belongs to
  4997. *
  4998. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4999. * flag, to make booting more robust.
  5000. */
  5001. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5002. {
  5003. struct rq *rq = cpu_rq(cpu);
  5004. unsigned long flags;
  5005. raw_spin_lock_irqsave(&rq->lock, flags);
  5006. __sched_fork(idle);
  5007. idle->state = TASK_RUNNING;
  5008. idle->se.exec_start = sched_clock();
  5009. do_set_cpus_allowed(idle, cpumask_of(cpu));
  5010. /*
  5011. * We're having a chicken and egg problem, even though we are
  5012. * holding rq->lock, the cpu isn't yet set to this cpu so the
  5013. * lockdep check in task_group() will fail.
  5014. *
  5015. * Similar case to sched_fork(). / Alternatively we could
  5016. * use task_rq_lock() here and obtain the other rq->lock.
  5017. *
  5018. * Silence PROVE_RCU
  5019. */
  5020. rcu_read_lock();
  5021. __set_task_cpu(idle, cpu);
  5022. rcu_read_unlock();
  5023. rq->curr = rq->idle = idle;
  5024. #if defined(CONFIG_SMP)
  5025. idle->on_cpu = 1;
  5026. #endif
  5027. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5028. /* Set the preempt count _outside_ the spinlocks! */
  5029. task_thread_info(idle)->preempt_count = 0;
  5030. /*
  5031. * The idle tasks have their own, simple scheduling class:
  5032. */
  5033. idle->sched_class = &idle_sched_class;
  5034. ftrace_graph_init_idle_task(idle, cpu);
  5035. }
  5036. /*
  5037. * In a system that switches off the HZ timer nohz_cpu_mask
  5038. * indicates which cpus entered this state. This is used
  5039. * in the rcu update to wait only for active cpus. For system
  5040. * which do not switch off the HZ timer nohz_cpu_mask should
  5041. * always be CPU_BITS_NONE.
  5042. */
  5043. cpumask_var_t nohz_cpu_mask;
  5044. /*
  5045. * Increase the granularity value when there are more CPUs,
  5046. * because with more CPUs the 'effective latency' as visible
  5047. * to users decreases. But the relationship is not linear,
  5048. * so pick a second-best guess by going with the log2 of the
  5049. * number of CPUs.
  5050. *
  5051. * This idea comes from the SD scheduler of Con Kolivas:
  5052. */
  5053. static int get_update_sysctl_factor(void)
  5054. {
  5055. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5056. unsigned int factor;
  5057. switch (sysctl_sched_tunable_scaling) {
  5058. case SCHED_TUNABLESCALING_NONE:
  5059. factor = 1;
  5060. break;
  5061. case SCHED_TUNABLESCALING_LINEAR:
  5062. factor = cpus;
  5063. break;
  5064. case SCHED_TUNABLESCALING_LOG:
  5065. default:
  5066. factor = 1 + ilog2(cpus);
  5067. break;
  5068. }
  5069. return factor;
  5070. }
  5071. static void update_sysctl(void)
  5072. {
  5073. unsigned int factor = get_update_sysctl_factor();
  5074. #define SET_SYSCTL(name) \
  5075. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5076. SET_SYSCTL(sched_min_granularity);
  5077. SET_SYSCTL(sched_latency);
  5078. SET_SYSCTL(sched_wakeup_granularity);
  5079. #undef SET_SYSCTL
  5080. }
  5081. static inline void sched_init_granularity(void)
  5082. {
  5083. update_sysctl();
  5084. }
  5085. #ifdef CONFIG_SMP
  5086. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5087. {
  5088. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5089. p->sched_class->set_cpus_allowed(p, new_mask);
  5090. else {
  5091. cpumask_copy(&p->cpus_allowed, new_mask);
  5092. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5093. }
  5094. }
  5095. /*
  5096. * This is how migration works:
  5097. *
  5098. * 1) we invoke migration_cpu_stop() on the target CPU using
  5099. * stop_one_cpu().
  5100. * 2) stopper starts to run (implicitly forcing the migrated thread
  5101. * off the CPU)
  5102. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5103. * 4) if it's in the wrong runqueue then the migration thread removes
  5104. * it and puts it into the right queue.
  5105. * 5) stopper completes and stop_one_cpu() returns and the migration
  5106. * is done.
  5107. */
  5108. /*
  5109. * Change a given task's CPU affinity. Migrate the thread to a
  5110. * proper CPU and schedule it away if the CPU it's executing on
  5111. * is removed from the allowed bitmask.
  5112. *
  5113. * NOTE: the caller must have a valid reference to the task, the
  5114. * task must not exit() & deallocate itself prematurely. The
  5115. * call is not atomic; no spinlocks may be held.
  5116. */
  5117. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5118. {
  5119. unsigned long flags;
  5120. struct rq *rq;
  5121. unsigned int dest_cpu;
  5122. int ret = 0;
  5123. rq = task_rq_lock(p, &flags);
  5124. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5125. goto out;
  5126. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5127. ret = -EINVAL;
  5128. goto out;
  5129. }
  5130. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5131. ret = -EINVAL;
  5132. goto out;
  5133. }
  5134. do_set_cpus_allowed(p, new_mask);
  5135. /* Can the task run on the task's current CPU? If so, we're done */
  5136. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5137. goto out;
  5138. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5139. if (p->on_rq) {
  5140. struct migration_arg arg = { p, dest_cpu };
  5141. /* Need help from migration thread: drop lock and wait. */
  5142. task_rq_unlock(rq, p, &flags);
  5143. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5144. tlb_migrate_finish(p->mm);
  5145. return 0;
  5146. }
  5147. out:
  5148. task_rq_unlock(rq, p, &flags);
  5149. return ret;
  5150. }
  5151. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5152. /*
  5153. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5154. * this because either it can't run here any more (set_cpus_allowed()
  5155. * away from this CPU, or CPU going down), or because we're
  5156. * attempting to rebalance this task on exec (sched_exec).
  5157. *
  5158. * So we race with normal scheduler movements, but that's OK, as long
  5159. * as the task is no longer on this CPU.
  5160. *
  5161. * Returns non-zero if task was successfully migrated.
  5162. */
  5163. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5164. {
  5165. struct rq *rq_dest, *rq_src;
  5166. int ret = 0;
  5167. if (unlikely(!cpu_active(dest_cpu)))
  5168. return ret;
  5169. rq_src = cpu_rq(src_cpu);
  5170. rq_dest = cpu_rq(dest_cpu);
  5171. raw_spin_lock(&p->pi_lock);
  5172. double_rq_lock(rq_src, rq_dest);
  5173. /* Already moved. */
  5174. if (task_cpu(p) != src_cpu)
  5175. goto done;
  5176. /* Affinity changed (again). */
  5177. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5178. goto fail;
  5179. /*
  5180. * If we're not on a rq, the next wake-up will ensure we're
  5181. * placed properly.
  5182. */
  5183. if (p->on_rq) {
  5184. deactivate_task(rq_src, p, 0);
  5185. set_task_cpu(p, dest_cpu);
  5186. activate_task(rq_dest, p, 0);
  5187. check_preempt_curr(rq_dest, p, 0);
  5188. }
  5189. done:
  5190. ret = 1;
  5191. fail:
  5192. double_rq_unlock(rq_src, rq_dest);
  5193. raw_spin_unlock(&p->pi_lock);
  5194. return ret;
  5195. }
  5196. /*
  5197. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5198. * and performs thread migration by bumping thread off CPU then
  5199. * 'pushing' onto another runqueue.
  5200. */
  5201. static int migration_cpu_stop(void *data)
  5202. {
  5203. struct migration_arg *arg = data;
  5204. /*
  5205. * The original target cpu might have gone down and we might
  5206. * be on another cpu but it doesn't matter.
  5207. */
  5208. local_irq_disable();
  5209. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5210. local_irq_enable();
  5211. return 0;
  5212. }
  5213. #ifdef CONFIG_HOTPLUG_CPU
  5214. /*
  5215. * Ensures that the idle task is using init_mm right before its cpu goes
  5216. * offline.
  5217. */
  5218. void idle_task_exit(void)
  5219. {
  5220. struct mm_struct *mm = current->active_mm;
  5221. BUG_ON(cpu_online(smp_processor_id()));
  5222. if (mm != &init_mm)
  5223. switch_mm(mm, &init_mm, current);
  5224. mmdrop(mm);
  5225. }
  5226. /*
  5227. * While a dead CPU has no uninterruptible tasks queued at this point,
  5228. * it might still have a nonzero ->nr_uninterruptible counter, because
  5229. * for performance reasons the counter is not stricly tracking tasks to
  5230. * their home CPUs. So we just add the counter to another CPU's counter,
  5231. * to keep the global sum constant after CPU-down:
  5232. */
  5233. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5234. {
  5235. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5236. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5237. rq_src->nr_uninterruptible = 0;
  5238. }
  5239. /*
  5240. * remove the tasks which were accounted by rq from calc_load_tasks.
  5241. */
  5242. static void calc_global_load_remove(struct rq *rq)
  5243. {
  5244. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5245. rq->calc_load_active = 0;
  5246. }
  5247. /*
  5248. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5249. * try_to_wake_up()->select_task_rq().
  5250. *
  5251. * Called with rq->lock held even though we'er in stop_machine() and
  5252. * there's no concurrency possible, we hold the required locks anyway
  5253. * because of lock validation efforts.
  5254. */
  5255. static void migrate_tasks(unsigned int dead_cpu)
  5256. {
  5257. struct rq *rq = cpu_rq(dead_cpu);
  5258. struct task_struct *next, *stop = rq->stop;
  5259. int dest_cpu;
  5260. /*
  5261. * Fudge the rq selection such that the below task selection loop
  5262. * doesn't get stuck on the currently eligible stop task.
  5263. *
  5264. * We're currently inside stop_machine() and the rq is either stuck
  5265. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5266. * either way we should never end up calling schedule() until we're
  5267. * done here.
  5268. */
  5269. rq->stop = NULL;
  5270. for ( ; ; ) {
  5271. /*
  5272. * There's this thread running, bail when that's the only
  5273. * remaining thread.
  5274. */
  5275. if (rq->nr_running == 1)
  5276. break;
  5277. next = pick_next_task(rq);
  5278. BUG_ON(!next);
  5279. next->sched_class->put_prev_task(rq, next);
  5280. /* Find suitable destination for @next, with force if needed. */
  5281. dest_cpu = select_fallback_rq(dead_cpu, next);
  5282. raw_spin_unlock(&rq->lock);
  5283. __migrate_task(next, dead_cpu, dest_cpu);
  5284. raw_spin_lock(&rq->lock);
  5285. }
  5286. rq->stop = stop;
  5287. }
  5288. #endif /* CONFIG_HOTPLUG_CPU */
  5289. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5290. static struct ctl_table sd_ctl_dir[] = {
  5291. {
  5292. .procname = "sched_domain",
  5293. .mode = 0555,
  5294. },
  5295. {}
  5296. };
  5297. static struct ctl_table sd_ctl_root[] = {
  5298. {
  5299. .procname = "kernel",
  5300. .mode = 0555,
  5301. .child = sd_ctl_dir,
  5302. },
  5303. {}
  5304. };
  5305. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5306. {
  5307. struct ctl_table *entry =
  5308. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5309. return entry;
  5310. }
  5311. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5312. {
  5313. struct ctl_table *entry;
  5314. /*
  5315. * In the intermediate directories, both the child directory and
  5316. * procname are dynamically allocated and could fail but the mode
  5317. * will always be set. In the lowest directory the names are
  5318. * static strings and all have proc handlers.
  5319. */
  5320. for (entry = *tablep; entry->mode; entry++) {
  5321. if (entry->child)
  5322. sd_free_ctl_entry(&entry->child);
  5323. if (entry->proc_handler == NULL)
  5324. kfree(entry->procname);
  5325. }
  5326. kfree(*tablep);
  5327. *tablep = NULL;
  5328. }
  5329. static void
  5330. set_table_entry(struct ctl_table *entry,
  5331. const char *procname, void *data, int maxlen,
  5332. mode_t mode, proc_handler *proc_handler)
  5333. {
  5334. entry->procname = procname;
  5335. entry->data = data;
  5336. entry->maxlen = maxlen;
  5337. entry->mode = mode;
  5338. entry->proc_handler = proc_handler;
  5339. }
  5340. static struct ctl_table *
  5341. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5342. {
  5343. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5344. if (table == NULL)
  5345. return NULL;
  5346. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5347. sizeof(long), 0644, proc_doulongvec_minmax);
  5348. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5349. sizeof(long), 0644, proc_doulongvec_minmax);
  5350. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5351. sizeof(int), 0644, proc_dointvec_minmax);
  5352. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5353. sizeof(int), 0644, proc_dointvec_minmax);
  5354. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5355. sizeof(int), 0644, proc_dointvec_minmax);
  5356. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5357. sizeof(int), 0644, proc_dointvec_minmax);
  5358. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5359. sizeof(int), 0644, proc_dointvec_minmax);
  5360. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5361. sizeof(int), 0644, proc_dointvec_minmax);
  5362. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5363. sizeof(int), 0644, proc_dointvec_minmax);
  5364. set_table_entry(&table[9], "cache_nice_tries",
  5365. &sd->cache_nice_tries,
  5366. sizeof(int), 0644, proc_dointvec_minmax);
  5367. set_table_entry(&table[10], "flags", &sd->flags,
  5368. sizeof(int), 0644, proc_dointvec_minmax);
  5369. set_table_entry(&table[11], "name", sd->name,
  5370. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5371. /* &table[12] is terminator */
  5372. return table;
  5373. }
  5374. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5375. {
  5376. struct ctl_table *entry, *table;
  5377. struct sched_domain *sd;
  5378. int domain_num = 0, i;
  5379. char buf[32];
  5380. for_each_domain(cpu, sd)
  5381. domain_num++;
  5382. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5383. if (table == NULL)
  5384. return NULL;
  5385. i = 0;
  5386. for_each_domain(cpu, sd) {
  5387. snprintf(buf, 32, "domain%d", i);
  5388. entry->procname = kstrdup(buf, GFP_KERNEL);
  5389. entry->mode = 0555;
  5390. entry->child = sd_alloc_ctl_domain_table(sd);
  5391. entry++;
  5392. i++;
  5393. }
  5394. return table;
  5395. }
  5396. static struct ctl_table_header *sd_sysctl_header;
  5397. static void register_sched_domain_sysctl(void)
  5398. {
  5399. int i, cpu_num = num_possible_cpus();
  5400. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5401. char buf[32];
  5402. WARN_ON(sd_ctl_dir[0].child);
  5403. sd_ctl_dir[0].child = entry;
  5404. if (entry == NULL)
  5405. return;
  5406. for_each_possible_cpu(i) {
  5407. snprintf(buf, 32, "cpu%d", i);
  5408. entry->procname = kstrdup(buf, GFP_KERNEL);
  5409. entry->mode = 0555;
  5410. entry->child = sd_alloc_ctl_cpu_table(i);
  5411. entry++;
  5412. }
  5413. WARN_ON(sd_sysctl_header);
  5414. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5415. }
  5416. /* may be called multiple times per register */
  5417. static void unregister_sched_domain_sysctl(void)
  5418. {
  5419. if (sd_sysctl_header)
  5420. unregister_sysctl_table(sd_sysctl_header);
  5421. sd_sysctl_header = NULL;
  5422. if (sd_ctl_dir[0].child)
  5423. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5424. }
  5425. #else
  5426. static void register_sched_domain_sysctl(void)
  5427. {
  5428. }
  5429. static void unregister_sched_domain_sysctl(void)
  5430. {
  5431. }
  5432. #endif
  5433. static void set_rq_online(struct rq *rq)
  5434. {
  5435. if (!rq->online) {
  5436. const struct sched_class *class;
  5437. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5438. rq->online = 1;
  5439. for_each_class(class) {
  5440. if (class->rq_online)
  5441. class->rq_online(rq);
  5442. }
  5443. }
  5444. }
  5445. static void set_rq_offline(struct rq *rq)
  5446. {
  5447. if (rq->online) {
  5448. const struct sched_class *class;
  5449. for_each_class(class) {
  5450. if (class->rq_offline)
  5451. class->rq_offline(rq);
  5452. }
  5453. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5454. rq->online = 0;
  5455. }
  5456. }
  5457. /*
  5458. * migration_call - callback that gets triggered when a CPU is added.
  5459. * Here we can start up the necessary migration thread for the new CPU.
  5460. */
  5461. static int __cpuinit
  5462. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5463. {
  5464. int cpu = (long)hcpu;
  5465. unsigned long flags;
  5466. struct rq *rq = cpu_rq(cpu);
  5467. switch (action & ~CPU_TASKS_FROZEN) {
  5468. case CPU_UP_PREPARE:
  5469. rq->calc_load_update = calc_load_update;
  5470. break;
  5471. case CPU_ONLINE:
  5472. /* Update our root-domain */
  5473. raw_spin_lock_irqsave(&rq->lock, flags);
  5474. if (rq->rd) {
  5475. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5476. set_rq_online(rq);
  5477. }
  5478. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5479. break;
  5480. #ifdef CONFIG_HOTPLUG_CPU
  5481. case CPU_DYING:
  5482. sched_ttwu_pending();
  5483. /* Update our root-domain */
  5484. raw_spin_lock_irqsave(&rq->lock, flags);
  5485. if (rq->rd) {
  5486. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5487. set_rq_offline(rq);
  5488. }
  5489. migrate_tasks(cpu);
  5490. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5491. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5492. migrate_nr_uninterruptible(rq);
  5493. calc_global_load_remove(rq);
  5494. break;
  5495. #endif
  5496. }
  5497. update_max_interval();
  5498. return NOTIFY_OK;
  5499. }
  5500. /*
  5501. * Register at high priority so that task migration (migrate_all_tasks)
  5502. * happens before everything else. This has to be lower priority than
  5503. * the notifier in the perf_event subsystem, though.
  5504. */
  5505. static struct notifier_block __cpuinitdata migration_notifier = {
  5506. .notifier_call = migration_call,
  5507. .priority = CPU_PRI_MIGRATION,
  5508. };
  5509. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5510. unsigned long action, void *hcpu)
  5511. {
  5512. switch (action & ~CPU_TASKS_FROZEN) {
  5513. case CPU_ONLINE:
  5514. case CPU_DOWN_FAILED:
  5515. set_cpu_active((long)hcpu, true);
  5516. return NOTIFY_OK;
  5517. default:
  5518. return NOTIFY_DONE;
  5519. }
  5520. }
  5521. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5522. unsigned long action, void *hcpu)
  5523. {
  5524. switch (action & ~CPU_TASKS_FROZEN) {
  5525. case CPU_DOWN_PREPARE:
  5526. set_cpu_active((long)hcpu, false);
  5527. return NOTIFY_OK;
  5528. default:
  5529. return NOTIFY_DONE;
  5530. }
  5531. }
  5532. static int __init migration_init(void)
  5533. {
  5534. void *cpu = (void *)(long)smp_processor_id();
  5535. int err;
  5536. /* Initialize migration for the boot CPU */
  5537. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5538. BUG_ON(err == NOTIFY_BAD);
  5539. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5540. register_cpu_notifier(&migration_notifier);
  5541. /* Register cpu active notifiers */
  5542. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5543. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5544. return 0;
  5545. }
  5546. early_initcall(migration_init);
  5547. #endif
  5548. #ifdef CONFIG_SMP
  5549. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5550. #ifdef CONFIG_SCHED_DEBUG
  5551. static __read_mostly int sched_domain_debug_enabled;
  5552. static int __init sched_domain_debug_setup(char *str)
  5553. {
  5554. sched_domain_debug_enabled = 1;
  5555. return 0;
  5556. }
  5557. early_param("sched_debug", sched_domain_debug_setup);
  5558. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5559. struct cpumask *groupmask)
  5560. {
  5561. struct sched_group *group = sd->groups;
  5562. char str[256];
  5563. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5564. cpumask_clear(groupmask);
  5565. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5566. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5567. printk("does not load-balance\n");
  5568. if (sd->parent)
  5569. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5570. " has parent");
  5571. return -1;
  5572. }
  5573. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5574. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5575. printk(KERN_ERR "ERROR: domain->span does not contain "
  5576. "CPU%d\n", cpu);
  5577. }
  5578. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5579. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5580. " CPU%d\n", cpu);
  5581. }
  5582. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5583. do {
  5584. if (!group) {
  5585. printk("\n");
  5586. printk(KERN_ERR "ERROR: group is NULL\n");
  5587. break;
  5588. }
  5589. if (!group->sgp->power) {
  5590. printk(KERN_CONT "\n");
  5591. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5592. "set\n");
  5593. break;
  5594. }
  5595. if (!cpumask_weight(sched_group_cpus(group))) {
  5596. printk(KERN_CONT "\n");
  5597. printk(KERN_ERR "ERROR: empty group\n");
  5598. break;
  5599. }
  5600. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5601. printk(KERN_CONT "\n");
  5602. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5603. break;
  5604. }
  5605. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5606. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5607. printk(KERN_CONT " %s", str);
  5608. if (group->sgp->power != SCHED_POWER_SCALE) {
  5609. printk(KERN_CONT " (cpu_power = %d)",
  5610. group->sgp->power);
  5611. }
  5612. group = group->next;
  5613. } while (group != sd->groups);
  5614. printk(KERN_CONT "\n");
  5615. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5616. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5617. if (sd->parent &&
  5618. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5619. printk(KERN_ERR "ERROR: parent span is not a superset "
  5620. "of domain->span\n");
  5621. return 0;
  5622. }
  5623. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5624. {
  5625. int level = 0;
  5626. if (!sched_domain_debug_enabled)
  5627. return;
  5628. if (!sd) {
  5629. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5630. return;
  5631. }
  5632. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5633. for (;;) {
  5634. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5635. break;
  5636. level++;
  5637. sd = sd->parent;
  5638. if (!sd)
  5639. break;
  5640. }
  5641. }
  5642. #else /* !CONFIG_SCHED_DEBUG */
  5643. # define sched_domain_debug(sd, cpu) do { } while (0)
  5644. #endif /* CONFIG_SCHED_DEBUG */
  5645. static int sd_degenerate(struct sched_domain *sd)
  5646. {
  5647. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5648. return 1;
  5649. /* Following flags need at least 2 groups */
  5650. if (sd->flags & (SD_LOAD_BALANCE |
  5651. SD_BALANCE_NEWIDLE |
  5652. SD_BALANCE_FORK |
  5653. SD_BALANCE_EXEC |
  5654. SD_SHARE_CPUPOWER |
  5655. SD_SHARE_PKG_RESOURCES)) {
  5656. if (sd->groups != sd->groups->next)
  5657. return 0;
  5658. }
  5659. /* Following flags don't use groups */
  5660. if (sd->flags & (SD_WAKE_AFFINE))
  5661. return 0;
  5662. return 1;
  5663. }
  5664. static int
  5665. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5666. {
  5667. unsigned long cflags = sd->flags, pflags = parent->flags;
  5668. if (sd_degenerate(parent))
  5669. return 1;
  5670. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5671. return 0;
  5672. /* Flags needing groups don't count if only 1 group in parent */
  5673. if (parent->groups == parent->groups->next) {
  5674. pflags &= ~(SD_LOAD_BALANCE |
  5675. SD_BALANCE_NEWIDLE |
  5676. SD_BALANCE_FORK |
  5677. SD_BALANCE_EXEC |
  5678. SD_SHARE_CPUPOWER |
  5679. SD_SHARE_PKG_RESOURCES);
  5680. if (nr_node_ids == 1)
  5681. pflags &= ~SD_SERIALIZE;
  5682. }
  5683. if (~cflags & pflags)
  5684. return 0;
  5685. return 1;
  5686. }
  5687. static void free_rootdomain(struct rcu_head *rcu)
  5688. {
  5689. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5690. cpupri_cleanup(&rd->cpupri);
  5691. free_cpumask_var(rd->rto_mask);
  5692. free_cpumask_var(rd->online);
  5693. free_cpumask_var(rd->span);
  5694. kfree(rd);
  5695. }
  5696. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5697. {
  5698. struct root_domain *old_rd = NULL;
  5699. unsigned long flags;
  5700. raw_spin_lock_irqsave(&rq->lock, flags);
  5701. if (rq->rd) {
  5702. old_rd = rq->rd;
  5703. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5704. set_rq_offline(rq);
  5705. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5706. /*
  5707. * If we dont want to free the old_rt yet then
  5708. * set old_rd to NULL to skip the freeing later
  5709. * in this function:
  5710. */
  5711. if (!atomic_dec_and_test(&old_rd->refcount))
  5712. old_rd = NULL;
  5713. }
  5714. atomic_inc(&rd->refcount);
  5715. rq->rd = rd;
  5716. cpumask_set_cpu(rq->cpu, rd->span);
  5717. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5718. set_rq_online(rq);
  5719. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5720. if (old_rd)
  5721. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5722. }
  5723. static int init_rootdomain(struct root_domain *rd)
  5724. {
  5725. memset(rd, 0, sizeof(*rd));
  5726. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5727. goto out;
  5728. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5729. goto free_span;
  5730. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5731. goto free_online;
  5732. if (cpupri_init(&rd->cpupri) != 0)
  5733. goto free_rto_mask;
  5734. return 0;
  5735. free_rto_mask:
  5736. free_cpumask_var(rd->rto_mask);
  5737. free_online:
  5738. free_cpumask_var(rd->online);
  5739. free_span:
  5740. free_cpumask_var(rd->span);
  5741. out:
  5742. return -ENOMEM;
  5743. }
  5744. static void init_defrootdomain(void)
  5745. {
  5746. init_rootdomain(&def_root_domain);
  5747. atomic_set(&def_root_domain.refcount, 1);
  5748. }
  5749. static struct root_domain *alloc_rootdomain(void)
  5750. {
  5751. struct root_domain *rd;
  5752. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5753. if (!rd)
  5754. return NULL;
  5755. if (init_rootdomain(rd) != 0) {
  5756. kfree(rd);
  5757. return NULL;
  5758. }
  5759. return rd;
  5760. }
  5761. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5762. {
  5763. struct sched_group *tmp, *first;
  5764. if (!sg)
  5765. return;
  5766. first = sg;
  5767. do {
  5768. tmp = sg->next;
  5769. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5770. kfree(sg->sgp);
  5771. kfree(sg);
  5772. sg = tmp;
  5773. } while (sg != first);
  5774. }
  5775. static void free_sched_domain(struct rcu_head *rcu)
  5776. {
  5777. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5778. /*
  5779. * If its an overlapping domain it has private groups, iterate and
  5780. * nuke them all.
  5781. */
  5782. if (sd->flags & SD_OVERLAP) {
  5783. free_sched_groups(sd->groups, 1);
  5784. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5785. kfree(sd->groups->sgp);
  5786. kfree(sd->groups);
  5787. }
  5788. kfree(sd);
  5789. }
  5790. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5791. {
  5792. call_rcu(&sd->rcu, free_sched_domain);
  5793. }
  5794. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5795. {
  5796. for (; sd; sd = sd->parent)
  5797. destroy_sched_domain(sd, cpu);
  5798. }
  5799. /*
  5800. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5801. * hold the hotplug lock.
  5802. */
  5803. static void
  5804. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5805. {
  5806. struct rq *rq = cpu_rq(cpu);
  5807. struct sched_domain *tmp;
  5808. /* Remove the sched domains which do not contribute to scheduling. */
  5809. for (tmp = sd; tmp; ) {
  5810. struct sched_domain *parent = tmp->parent;
  5811. if (!parent)
  5812. break;
  5813. if (sd_parent_degenerate(tmp, parent)) {
  5814. tmp->parent = parent->parent;
  5815. if (parent->parent)
  5816. parent->parent->child = tmp;
  5817. destroy_sched_domain(parent, cpu);
  5818. } else
  5819. tmp = tmp->parent;
  5820. }
  5821. if (sd && sd_degenerate(sd)) {
  5822. tmp = sd;
  5823. sd = sd->parent;
  5824. destroy_sched_domain(tmp, cpu);
  5825. if (sd)
  5826. sd->child = NULL;
  5827. }
  5828. sched_domain_debug(sd, cpu);
  5829. rq_attach_root(rq, rd);
  5830. tmp = rq->sd;
  5831. rcu_assign_pointer(rq->sd, sd);
  5832. destroy_sched_domains(tmp, cpu);
  5833. }
  5834. /* cpus with isolated domains */
  5835. static cpumask_var_t cpu_isolated_map;
  5836. /* Setup the mask of cpus configured for isolated domains */
  5837. static int __init isolated_cpu_setup(char *str)
  5838. {
  5839. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5840. cpulist_parse(str, cpu_isolated_map);
  5841. return 1;
  5842. }
  5843. __setup("isolcpus=", isolated_cpu_setup);
  5844. #define SD_NODES_PER_DOMAIN 16
  5845. #ifdef CONFIG_NUMA
  5846. /**
  5847. * find_next_best_node - find the next node to include in a sched_domain
  5848. * @node: node whose sched_domain we're building
  5849. * @used_nodes: nodes already in the sched_domain
  5850. *
  5851. * Find the next node to include in a given scheduling domain. Simply
  5852. * finds the closest node not already in the @used_nodes map.
  5853. *
  5854. * Should use nodemask_t.
  5855. */
  5856. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5857. {
  5858. int i, n, val, min_val, best_node = -1;
  5859. min_val = INT_MAX;
  5860. for (i = 0; i < nr_node_ids; i++) {
  5861. /* Start at @node */
  5862. n = (node + i) % nr_node_ids;
  5863. if (!nr_cpus_node(n))
  5864. continue;
  5865. /* Skip already used nodes */
  5866. if (node_isset(n, *used_nodes))
  5867. continue;
  5868. /* Simple min distance search */
  5869. val = node_distance(node, n);
  5870. if (val < min_val) {
  5871. min_val = val;
  5872. best_node = n;
  5873. }
  5874. }
  5875. if (best_node != -1)
  5876. node_set(best_node, *used_nodes);
  5877. return best_node;
  5878. }
  5879. /**
  5880. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5881. * @node: node whose cpumask we're constructing
  5882. * @span: resulting cpumask
  5883. *
  5884. * Given a node, construct a good cpumask for its sched_domain to span. It
  5885. * should be one that prevents unnecessary balancing, but also spreads tasks
  5886. * out optimally.
  5887. */
  5888. static void sched_domain_node_span(int node, struct cpumask *span)
  5889. {
  5890. nodemask_t used_nodes;
  5891. int i;
  5892. cpumask_clear(span);
  5893. nodes_clear(used_nodes);
  5894. cpumask_or(span, span, cpumask_of_node(node));
  5895. node_set(node, used_nodes);
  5896. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5897. int next_node = find_next_best_node(node, &used_nodes);
  5898. if (next_node < 0)
  5899. break;
  5900. cpumask_or(span, span, cpumask_of_node(next_node));
  5901. }
  5902. }
  5903. static const struct cpumask *cpu_node_mask(int cpu)
  5904. {
  5905. lockdep_assert_held(&sched_domains_mutex);
  5906. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5907. return sched_domains_tmpmask;
  5908. }
  5909. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5910. {
  5911. return cpu_possible_mask;
  5912. }
  5913. #endif /* CONFIG_NUMA */
  5914. static const struct cpumask *cpu_cpu_mask(int cpu)
  5915. {
  5916. return cpumask_of_node(cpu_to_node(cpu));
  5917. }
  5918. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5919. struct sd_data {
  5920. struct sched_domain **__percpu sd;
  5921. struct sched_group **__percpu sg;
  5922. struct sched_group_power **__percpu sgp;
  5923. };
  5924. struct s_data {
  5925. struct sched_domain ** __percpu sd;
  5926. struct root_domain *rd;
  5927. };
  5928. enum s_alloc {
  5929. sa_rootdomain,
  5930. sa_sd,
  5931. sa_sd_storage,
  5932. sa_none,
  5933. };
  5934. struct sched_domain_topology_level;
  5935. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5936. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5937. #define SDTL_OVERLAP 0x01
  5938. struct sched_domain_topology_level {
  5939. sched_domain_init_f init;
  5940. sched_domain_mask_f mask;
  5941. int flags;
  5942. struct sd_data data;
  5943. };
  5944. static int
  5945. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5946. {
  5947. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5948. const struct cpumask *span = sched_domain_span(sd);
  5949. struct cpumask *covered = sched_domains_tmpmask;
  5950. struct sd_data *sdd = sd->private;
  5951. struct sched_domain *child;
  5952. int i;
  5953. cpumask_clear(covered);
  5954. for_each_cpu(i, span) {
  5955. struct cpumask *sg_span;
  5956. if (cpumask_test_cpu(i, covered))
  5957. continue;
  5958. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5959. GFP_KERNEL, cpu_to_node(i));
  5960. if (!sg)
  5961. goto fail;
  5962. sg_span = sched_group_cpus(sg);
  5963. child = *per_cpu_ptr(sdd->sd, i);
  5964. if (child->child) {
  5965. child = child->child;
  5966. cpumask_copy(sg_span, sched_domain_span(child));
  5967. } else
  5968. cpumask_set_cpu(i, sg_span);
  5969. cpumask_or(covered, covered, sg_span);
  5970. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5971. atomic_inc(&sg->sgp->ref);
  5972. if (cpumask_test_cpu(cpu, sg_span))
  5973. groups = sg;
  5974. if (!first)
  5975. first = sg;
  5976. if (last)
  5977. last->next = sg;
  5978. last = sg;
  5979. last->next = first;
  5980. }
  5981. sd->groups = groups;
  5982. return 0;
  5983. fail:
  5984. free_sched_groups(first, 0);
  5985. return -ENOMEM;
  5986. }
  5987. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5988. {
  5989. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5990. struct sched_domain *child = sd->child;
  5991. if (child)
  5992. cpu = cpumask_first(sched_domain_span(child));
  5993. if (sg) {
  5994. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5995. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5996. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5997. }
  5998. return cpu;
  5999. }
  6000. /*
  6001. * build_sched_groups will build a circular linked list of the groups
  6002. * covered by the given span, and will set each group's ->cpumask correctly,
  6003. * and ->cpu_power to 0.
  6004. *
  6005. * Assumes the sched_domain tree is fully constructed
  6006. */
  6007. static int
  6008. build_sched_groups(struct sched_domain *sd, int cpu)
  6009. {
  6010. struct sched_group *first = NULL, *last = NULL;
  6011. struct sd_data *sdd = sd->private;
  6012. const struct cpumask *span = sched_domain_span(sd);
  6013. struct cpumask *covered;
  6014. int i;
  6015. get_group(cpu, sdd, &sd->groups);
  6016. atomic_inc(&sd->groups->ref);
  6017. if (cpu != cpumask_first(sched_domain_span(sd)))
  6018. return 0;
  6019. lockdep_assert_held(&sched_domains_mutex);
  6020. covered = sched_domains_tmpmask;
  6021. cpumask_clear(covered);
  6022. for_each_cpu(i, span) {
  6023. struct sched_group *sg;
  6024. int group = get_group(i, sdd, &sg);
  6025. int j;
  6026. if (cpumask_test_cpu(i, covered))
  6027. continue;
  6028. cpumask_clear(sched_group_cpus(sg));
  6029. sg->sgp->power = 0;
  6030. for_each_cpu(j, span) {
  6031. if (get_group(j, sdd, NULL) != group)
  6032. continue;
  6033. cpumask_set_cpu(j, covered);
  6034. cpumask_set_cpu(j, sched_group_cpus(sg));
  6035. }
  6036. if (!first)
  6037. first = sg;
  6038. if (last)
  6039. last->next = sg;
  6040. last = sg;
  6041. }
  6042. last->next = first;
  6043. return 0;
  6044. }
  6045. /*
  6046. * Initialize sched groups cpu_power.
  6047. *
  6048. * cpu_power indicates the capacity of sched group, which is used while
  6049. * distributing the load between different sched groups in a sched domain.
  6050. * Typically cpu_power for all the groups in a sched domain will be same unless
  6051. * there are asymmetries in the topology. If there are asymmetries, group
  6052. * having more cpu_power will pickup more load compared to the group having
  6053. * less cpu_power.
  6054. */
  6055. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6056. {
  6057. struct sched_group *sg = sd->groups;
  6058. WARN_ON(!sd || !sg);
  6059. do {
  6060. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  6061. sg = sg->next;
  6062. } while (sg != sd->groups);
  6063. if (cpu != group_first_cpu(sg))
  6064. return;
  6065. update_group_power(sd, cpu);
  6066. }
  6067. /*
  6068. * Initializers for schedule domains
  6069. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6070. */
  6071. #ifdef CONFIG_SCHED_DEBUG
  6072. # define SD_INIT_NAME(sd, type) sd->name = #type
  6073. #else
  6074. # define SD_INIT_NAME(sd, type) do { } while (0)
  6075. #endif
  6076. #define SD_INIT_FUNC(type) \
  6077. static noinline struct sched_domain * \
  6078. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6079. { \
  6080. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6081. *sd = SD_##type##_INIT; \
  6082. SD_INIT_NAME(sd, type); \
  6083. sd->private = &tl->data; \
  6084. return sd; \
  6085. }
  6086. SD_INIT_FUNC(CPU)
  6087. #ifdef CONFIG_NUMA
  6088. SD_INIT_FUNC(ALLNODES)
  6089. SD_INIT_FUNC(NODE)
  6090. #endif
  6091. #ifdef CONFIG_SCHED_SMT
  6092. SD_INIT_FUNC(SIBLING)
  6093. #endif
  6094. #ifdef CONFIG_SCHED_MC
  6095. SD_INIT_FUNC(MC)
  6096. #endif
  6097. #ifdef CONFIG_SCHED_BOOK
  6098. SD_INIT_FUNC(BOOK)
  6099. #endif
  6100. static int default_relax_domain_level = -1;
  6101. int sched_domain_level_max;
  6102. static int __init setup_relax_domain_level(char *str)
  6103. {
  6104. unsigned long val;
  6105. val = simple_strtoul(str, NULL, 0);
  6106. if (val < sched_domain_level_max)
  6107. default_relax_domain_level = val;
  6108. return 1;
  6109. }
  6110. __setup("relax_domain_level=", setup_relax_domain_level);
  6111. static void set_domain_attribute(struct sched_domain *sd,
  6112. struct sched_domain_attr *attr)
  6113. {
  6114. int request;
  6115. if (!attr || attr->relax_domain_level < 0) {
  6116. if (default_relax_domain_level < 0)
  6117. return;
  6118. else
  6119. request = default_relax_domain_level;
  6120. } else
  6121. request = attr->relax_domain_level;
  6122. if (request < sd->level) {
  6123. /* turn off idle balance on this domain */
  6124. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6125. } else {
  6126. /* turn on idle balance on this domain */
  6127. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6128. }
  6129. }
  6130. static void __sdt_free(const struct cpumask *cpu_map);
  6131. static int __sdt_alloc(const struct cpumask *cpu_map);
  6132. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6133. const struct cpumask *cpu_map)
  6134. {
  6135. switch (what) {
  6136. case sa_rootdomain:
  6137. if (!atomic_read(&d->rd->refcount))
  6138. free_rootdomain(&d->rd->rcu); /* fall through */
  6139. case sa_sd:
  6140. free_percpu(d->sd); /* fall through */
  6141. case sa_sd_storage:
  6142. __sdt_free(cpu_map); /* fall through */
  6143. case sa_none:
  6144. break;
  6145. }
  6146. }
  6147. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6148. const struct cpumask *cpu_map)
  6149. {
  6150. memset(d, 0, sizeof(*d));
  6151. if (__sdt_alloc(cpu_map))
  6152. return sa_sd_storage;
  6153. d->sd = alloc_percpu(struct sched_domain *);
  6154. if (!d->sd)
  6155. return sa_sd_storage;
  6156. d->rd = alloc_rootdomain();
  6157. if (!d->rd)
  6158. return sa_sd;
  6159. return sa_rootdomain;
  6160. }
  6161. /*
  6162. * NULL the sd_data elements we've used to build the sched_domain and
  6163. * sched_group structure so that the subsequent __free_domain_allocs()
  6164. * will not free the data we're using.
  6165. */
  6166. static void claim_allocations(int cpu, struct sched_domain *sd)
  6167. {
  6168. struct sd_data *sdd = sd->private;
  6169. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6170. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6171. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  6172. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6173. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  6174. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  6175. }
  6176. #ifdef CONFIG_SCHED_SMT
  6177. static const struct cpumask *cpu_smt_mask(int cpu)
  6178. {
  6179. return topology_thread_cpumask(cpu);
  6180. }
  6181. #endif
  6182. /*
  6183. * Topology list, bottom-up.
  6184. */
  6185. static struct sched_domain_topology_level default_topology[] = {
  6186. #ifdef CONFIG_SCHED_SMT
  6187. { sd_init_SIBLING, cpu_smt_mask, },
  6188. #endif
  6189. #ifdef CONFIG_SCHED_MC
  6190. { sd_init_MC, cpu_coregroup_mask, },
  6191. #endif
  6192. #ifdef CONFIG_SCHED_BOOK
  6193. { sd_init_BOOK, cpu_book_mask, },
  6194. #endif
  6195. { sd_init_CPU, cpu_cpu_mask, },
  6196. #ifdef CONFIG_NUMA
  6197. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  6198. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6199. #endif
  6200. { NULL, },
  6201. };
  6202. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6203. static int __sdt_alloc(const struct cpumask *cpu_map)
  6204. {
  6205. struct sched_domain_topology_level *tl;
  6206. int j;
  6207. for (tl = sched_domain_topology; tl->init; tl++) {
  6208. struct sd_data *sdd = &tl->data;
  6209. sdd->sd = alloc_percpu(struct sched_domain *);
  6210. if (!sdd->sd)
  6211. return -ENOMEM;
  6212. sdd->sg = alloc_percpu(struct sched_group *);
  6213. if (!sdd->sg)
  6214. return -ENOMEM;
  6215. sdd->sgp = alloc_percpu(struct sched_group_power *);
  6216. if (!sdd->sgp)
  6217. return -ENOMEM;
  6218. for_each_cpu(j, cpu_map) {
  6219. struct sched_domain *sd;
  6220. struct sched_group *sg;
  6221. struct sched_group_power *sgp;
  6222. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6223. GFP_KERNEL, cpu_to_node(j));
  6224. if (!sd)
  6225. return -ENOMEM;
  6226. *per_cpu_ptr(sdd->sd, j) = sd;
  6227. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6228. GFP_KERNEL, cpu_to_node(j));
  6229. if (!sg)
  6230. return -ENOMEM;
  6231. *per_cpu_ptr(sdd->sg, j) = sg;
  6232. sgp = kzalloc_node(sizeof(struct sched_group_power),
  6233. GFP_KERNEL, cpu_to_node(j));
  6234. if (!sgp)
  6235. return -ENOMEM;
  6236. *per_cpu_ptr(sdd->sgp, j) = sgp;
  6237. }
  6238. }
  6239. return 0;
  6240. }
  6241. static void __sdt_free(const struct cpumask *cpu_map)
  6242. {
  6243. struct sched_domain_topology_level *tl;
  6244. int j;
  6245. for (tl = sched_domain_topology; tl->init; tl++) {
  6246. struct sd_data *sdd = &tl->data;
  6247. for_each_cpu(j, cpu_map) {
  6248. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  6249. if (sd && (sd->flags & SD_OVERLAP))
  6250. free_sched_groups(sd->groups, 0);
  6251. kfree(*per_cpu_ptr(sdd->sd, j));
  6252. kfree(*per_cpu_ptr(sdd->sg, j));
  6253. kfree(*per_cpu_ptr(sdd->sgp, j));
  6254. }
  6255. free_percpu(sdd->sd);
  6256. free_percpu(sdd->sg);
  6257. free_percpu(sdd->sgp);
  6258. }
  6259. }
  6260. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6261. struct s_data *d, const struct cpumask *cpu_map,
  6262. struct sched_domain_attr *attr, struct sched_domain *child,
  6263. int cpu)
  6264. {
  6265. struct sched_domain *sd = tl->init(tl, cpu);
  6266. if (!sd)
  6267. return child;
  6268. set_domain_attribute(sd, attr);
  6269. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6270. if (child) {
  6271. sd->level = child->level + 1;
  6272. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6273. child->parent = sd;
  6274. }
  6275. sd->child = child;
  6276. return sd;
  6277. }
  6278. /*
  6279. * Build sched domains for a given set of cpus and attach the sched domains
  6280. * to the individual cpus
  6281. */
  6282. static int build_sched_domains(const struct cpumask *cpu_map,
  6283. struct sched_domain_attr *attr)
  6284. {
  6285. enum s_alloc alloc_state = sa_none;
  6286. struct sched_domain *sd;
  6287. struct s_data d;
  6288. int i, ret = -ENOMEM;
  6289. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6290. if (alloc_state != sa_rootdomain)
  6291. goto error;
  6292. /* Set up domains for cpus specified by the cpu_map. */
  6293. for_each_cpu(i, cpu_map) {
  6294. struct sched_domain_topology_level *tl;
  6295. sd = NULL;
  6296. for (tl = sched_domain_topology; tl->init; tl++) {
  6297. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6298. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6299. sd->flags |= SD_OVERLAP;
  6300. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  6301. break;
  6302. }
  6303. while (sd->child)
  6304. sd = sd->child;
  6305. *per_cpu_ptr(d.sd, i) = sd;
  6306. }
  6307. /* Build the groups for the domains */
  6308. for_each_cpu(i, cpu_map) {
  6309. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6310. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6311. if (sd->flags & SD_OVERLAP) {
  6312. if (build_overlap_sched_groups(sd, i))
  6313. goto error;
  6314. } else {
  6315. if (build_sched_groups(sd, i))
  6316. goto error;
  6317. }
  6318. }
  6319. }
  6320. /* Calculate CPU power for physical packages and nodes */
  6321. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6322. if (!cpumask_test_cpu(i, cpu_map))
  6323. continue;
  6324. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6325. claim_allocations(i, sd);
  6326. init_sched_groups_power(i, sd);
  6327. }
  6328. }
  6329. /* Attach the domains */
  6330. rcu_read_lock();
  6331. for_each_cpu(i, cpu_map) {
  6332. sd = *per_cpu_ptr(d.sd, i);
  6333. cpu_attach_domain(sd, d.rd, i);
  6334. }
  6335. rcu_read_unlock();
  6336. ret = 0;
  6337. error:
  6338. __free_domain_allocs(&d, alloc_state, cpu_map);
  6339. return ret;
  6340. }
  6341. static cpumask_var_t *doms_cur; /* current sched domains */
  6342. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6343. static struct sched_domain_attr *dattr_cur;
  6344. /* attribues of custom domains in 'doms_cur' */
  6345. /*
  6346. * Special case: If a kmalloc of a doms_cur partition (array of
  6347. * cpumask) fails, then fallback to a single sched domain,
  6348. * as determined by the single cpumask fallback_doms.
  6349. */
  6350. static cpumask_var_t fallback_doms;
  6351. /*
  6352. * arch_update_cpu_topology lets virtualized architectures update the
  6353. * cpu core maps. It is supposed to return 1 if the topology changed
  6354. * or 0 if it stayed the same.
  6355. */
  6356. int __attribute__((weak)) arch_update_cpu_topology(void)
  6357. {
  6358. return 0;
  6359. }
  6360. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6361. {
  6362. int i;
  6363. cpumask_var_t *doms;
  6364. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6365. if (!doms)
  6366. return NULL;
  6367. for (i = 0; i < ndoms; i++) {
  6368. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6369. free_sched_domains(doms, i);
  6370. return NULL;
  6371. }
  6372. }
  6373. return doms;
  6374. }
  6375. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6376. {
  6377. unsigned int i;
  6378. for (i = 0; i < ndoms; i++)
  6379. free_cpumask_var(doms[i]);
  6380. kfree(doms);
  6381. }
  6382. /*
  6383. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6384. * For now this just excludes isolated cpus, but could be used to
  6385. * exclude other special cases in the future.
  6386. */
  6387. static int init_sched_domains(const struct cpumask *cpu_map)
  6388. {
  6389. int err;
  6390. arch_update_cpu_topology();
  6391. ndoms_cur = 1;
  6392. doms_cur = alloc_sched_domains(ndoms_cur);
  6393. if (!doms_cur)
  6394. doms_cur = &fallback_doms;
  6395. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6396. dattr_cur = NULL;
  6397. err = build_sched_domains(doms_cur[0], NULL);
  6398. register_sched_domain_sysctl();
  6399. return err;
  6400. }
  6401. /*
  6402. * Detach sched domains from a group of cpus specified in cpu_map
  6403. * These cpus will now be attached to the NULL domain
  6404. */
  6405. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6406. {
  6407. int i;
  6408. rcu_read_lock();
  6409. for_each_cpu(i, cpu_map)
  6410. cpu_attach_domain(NULL, &def_root_domain, i);
  6411. rcu_read_unlock();
  6412. }
  6413. /* handle null as "default" */
  6414. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6415. struct sched_domain_attr *new, int idx_new)
  6416. {
  6417. struct sched_domain_attr tmp;
  6418. /* fast path */
  6419. if (!new && !cur)
  6420. return 1;
  6421. tmp = SD_ATTR_INIT;
  6422. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6423. new ? (new + idx_new) : &tmp,
  6424. sizeof(struct sched_domain_attr));
  6425. }
  6426. /*
  6427. * Partition sched domains as specified by the 'ndoms_new'
  6428. * cpumasks in the array doms_new[] of cpumasks. This compares
  6429. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6430. * It destroys each deleted domain and builds each new domain.
  6431. *
  6432. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6433. * The masks don't intersect (don't overlap.) We should setup one
  6434. * sched domain for each mask. CPUs not in any of the cpumasks will
  6435. * not be load balanced. If the same cpumask appears both in the
  6436. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6437. * it as it is.
  6438. *
  6439. * The passed in 'doms_new' should be allocated using
  6440. * alloc_sched_domains. This routine takes ownership of it and will
  6441. * free_sched_domains it when done with it. If the caller failed the
  6442. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6443. * and partition_sched_domains() will fallback to the single partition
  6444. * 'fallback_doms', it also forces the domains to be rebuilt.
  6445. *
  6446. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6447. * ndoms_new == 0 is a special case for destroying existing domains,
  6448. * and it will not create the default domain.
  6449. *
  6450. * Call with hotplug lock held
  6451. */
  6452. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6453. struct sched_domain_attr *dattr_new)
  6454. {
  6455. int i, j, n;
  6456. int new_topology;
  6457. mutex_lock(&sched_domains_mutex);
  6458. /* always unregister in case we don't destroy any domains */
  6459. unregister_sched_domain_sysctl();
  6460. /* Let architecture update cpu core mappings. */
  6461. new_topology = arch_update_cpu_topology();
  6462. n = doms_new ? ndoms_new : 0;
  6463. /* Destroy deleted domains */
  6464. for (i = 0; i < ndoms_cur; i++) {
  6465. for (j = 0; j < n && !new_topology; j++) {
  6466. if (cpumask_equal(doms_cur[i], doms_new[j])
  6467. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6468. goto match1;
  6469. }
  6470. /* no match - a current sched domain not in new doms_new[] */
  6471. detach_destroy_domains(doms_cur[i]);
  6472. match1:
  6473. ;
  6474. }
  6475. if (doms_new == NULL) {
  6476. ndoms_cur = 0;
  6477. doms_new = &fallback_doms;
  6478. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6479. WARN_ON_ONCE(dattr_new);
  6480. }
  6481. /* Build new domains */
  6482. for (i = 0; i < ndoms_new; i++) {
  6483. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6484. if (cpumask_equal(doms_new[i], doms_cur[j])
  6485. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6486. goto match2;
  6487. }
  6488. /* no match - add a new doms_new */
  6489. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6490. match2:
  6491. ;
  6492. }
  6493. /* Remember the new sched domains */
  6494. if (doms_cur != &fallback_doms)
  6495. free_sched_domains(doms_cur, ndoms_cur);
  6496. kfree(dattr_cur); /* kfree(NULL) is safe */
  6497. doms_cur = doms_new;
  6498. dattr_cur = dattr_new;
  6499. ndoms_cur = ndoms_new;
  6500. register_sched_domain_sysctl();
  6501. mutex_unlock(&sched_domains_mutex);
  6502. }
  6503. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6504. static void reinit_sched_domains(void)
  6505. {
  6506. get_online_cpus();
  6507. /* Destroy domains first to force the rebuild */
  6508. partition_sched_domains(0, NULL, NULL);
  6509. rebuild_sched_domains();
  6510. put_online_cpus();
  6511. }
  6512. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6513. {
  6514. unsigned int level = 0;
  6515. if (sscanf(buf, "%u", &level) != 1)
  6516. return -EINVAL;
  6517. /*
  6518. * level is always be positive so don't check for
  6519. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6520. * What happens on 0 or 1 byte write,
  6521. * need to check for count as well?
  6522. */
  6523. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6524. return -EINVAL;
  6525. if (smt)
  6526. sched_smt_power_savings = level;
  6527. else
  6528. sched_mc_power_savings = level;
  6529. reinit_sched_domains();
  6530. return count;
  6531. }
  6532. #ifdef CONFIG_SCHED_MC
  6533. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6534. struct sysdev_class_attribute *attr,
  6535. char *page)
  6536. {
  6537. return sprintf(page, "%u\n", sched_mc_power_savings);
  6538. }
  6539. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6540. struct sysdev_class_attribute *attr,
  6541. const char *buf, size_t count)
  6542. {
  6543. return sched_power_savings_store(buf, count, 0);
  6544. }
  6545. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6546. sched_mc_power_savings_show,
  6547. sched_mc_power_savings_store);
  6548. #endif
  6549. #ifdef CONFIG_SCHED_SMT
  6550. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6551. struct sysdev_class_attribute *attr,
  6552. char *page)
  6553. {
  6554. return sprintf(page, "%u\n", sched_smt_power_savings);
  6555. }
  6556. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6557. struct sysdev_class_attribute *attr,
  6558. const char *buf, size_t count)
  6559. {
  6560. return sched_power_savings_store(buf, count, 1);
  6561. }
  6562. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6563. sched_smt_power_savings_show,
  6564. sched_smt_power_savings_store);
  6565. #endif
  6566. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6567. {
  6568. int err = 0;
  6569. #ifdef CONFIG_SCHED_SMT
  6570. if (smt_capable())
  6571. err = sysfs_create_file(&cls->kset.kobj,
  6572. &attr_sched_smt_power_savings.attr);
  6573. #endif
  6574. #ifdef CONFIG_SCHED_MC
  6575. if (!err && mc_capable())
  6576. err = sysfs_create_file(&cls->kset.kobj,
  6577. &attr_sched_mc_power_savings.attr);
  6578. #endif
  6579. return err;
  6580. }
  6581. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6582. /*
  6583. * Update cpusets according to cpu_active mask. If cpusets are
  6584. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6585. * around partition_sched_domains().
  6586. */
  6587. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6588. void *hcpu)
  6589. {
  6590. switch (action & ~CPU_TASKS_FROZEN) {
  6591. case CPU_ONLINE:
  6592. case CPU_DOWN_FAILED:
  6593. cpuset_update_active_cpus();
  6594. return NOTIFY_OK;
  6595. default:
  6596. return NOTIFY_DONE;
  6597. }
  6598. }
  6599. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6600. void *hcpu)
  6601. {
  6602. switch (action & ~CPU_TASKS_FROZEN) {
  6603. case CPU_DOWN_PREPARE:
  6604. cpuset_update_active_cpus();
  6605. return NOTIFY_OK;
  6606. default:
  6607. return NOTIFY_DONE;
  6608. }
  6609. }
  6610. static int update_runtime(struct notifier_block *nfb,
  6611. unsigned long action, void *hcpu)
  6612. {
  6613. int cpu = (int)(long)hcpu;
  6614. switch (action) {
  6615. case CPU_DOWN_PREPARE:
  6616. case CPU_DOWN_PREPARE_FROZEN:
  6617. disable_runtime(cpu_rq(cpu));
  6618. return NOTIFY_OK;
  6619. case CPU_DOWN_FAILED:
  6620. case CPU_DOWN_FAILED_FROZEN:
  6621. case CPU_ONLINE:
  6622. case CPU_ONLINE_FROZEN:
  6623. enable_runtime(cpu_rq(cpu));
  6624. return NOTIFY_OK;
  6625. default:
  6626. return NOTIFY_DONE;
  6627. }
  6628. }
  6629. void __init sched_init_smp(void)
  6630. {
  6631. cpumask_var_t non_isolated_cpus;
  6632. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6633. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6634. get_online_cpus();
  6635. mutex_lock(&sched_domains_mutex);
  6636. init_sched_domains(cpu_active_mask);
  6637. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6638. if (cpumask_empty(non_isolated_cpus))
  6639. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6640. mutex_unlock(&sched_domains_mutex);
  6641. put_online_cpus();
  6642. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6643. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6644. /* RT runtime code needs to handle some hotplug events */
  6645. hotcpu_notifier(update_runtime, 0);
  6646. init_hrtick();
  6647. /* Move init over to a non-isolated CPU */
  6648. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6649. BUG();
  6650. sched_init_granularity();
  6651. free_cpumask_var(non_isolated_cpus);
  6652. init_sched_rt_class();
  6653. }
  6654. #else
  6655. void __init sched_init_smp(void)
  6656. {
  6657. sched_init_granularity();
  6658. }
  6659. #endif /* CONFIG_SMP */
  6660. const_debug unsigned int sysctl_timer_migration = 1;
  6661. int in_sched_functions(unsigned long addr)
  6662. {
  6663. return in_lock_functions(addr) ||
  6664. (addr >= (unsigned long)__sched_text_start
  6665. && addr < (unsigned long)__sched_text_end);
  6666. }
  6667. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6668. {
  6669. cfs_rq->tasks_timeline = RB_ROOT;
  6670. INIT_LIST_HEAD(&cfs_rq->tasks);
  6671. #ifdef CONFIG_FAIR_GROUP_SCHED
  6672. cfs_rq->rq = rq;
  6673. /* allow initial update_cfs_load() to truncate */
  6674. #ifdef CONFIG_SMP
  6675. cfs_rq->load_stamp = 1;
  6676. #endif
  6677. #endif
  6678. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6679. #ifndef CONFIG_64BIT
  6680. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6681. #endif
  6682. }
  6683. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6684. {
  6685. struct rt_prio_array *array;
  6686. int i;
  6687. array = &rt_rq->active;
  6688. for (i = 0; i < MAX_RT_PRIO; i++) {
  6689. INIT_LIST_HEAD(array->queue + i);
  6690. __clear_bit(i, array->bitmap);
  6691. }
  6692. /* delimiter for bitsearch: */
  6693. __set_bit(MAX_RT_PRIO, array->bitmap);
  6694. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6695. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6696. #ifdef CONFIG_SMP
  6697. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6698. #endif
  6699. #endif
  6700. #ifdef CONFIG_SMP
  6701. rt_rq->rt_nr_migratory = 0;
  6702. rt_rq->overloaded = 0;
  6703. plist_head_init(&rt_rq->pushable_tasks);
  6704. #endif
  6705. rt_rq->rt_time = 0;
  6706. rt_rq->rt_throttled = 0;
  6707. rt_rq->rt_runtime = 0;
  6708. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6709. #ifdef CONFIG_RT_GROUP_SCHED
  6710. rt_rq->rt_nr_boosted = 0;
  6711. rt_rq->rq = rq;
  6712. #endif
  6713. }
  6714. #ifdef CONFIG_FAIR_GROUP_SCHED
  6715. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6716. struct sched_entity *se, int cpu,
  6717. struct sched_entity *parent)
  6718. {
  6719. struct rq *rq = cpu_rq(cpu);
  6720. tg->cfs_rq[cpu] = cfs_rq;
  6721. init_cfs_rq(cfs_rq, rq);
  6722. cfs_rq->tg = tg;
  6723. tg->se[cpu] = se;
  6724. /* se could be NULL for root_task_group */
  6725. if (!se)
  6726. return;
  6727. if (!parent)
  6728. se->cfs_rq = &rq->cfs;
  6729. else
  6730. se->cfs_rq = parent->my_q;
  6731. se->my_q = cfs_rq;
  6732. update_load_set(&se->load, 0);
  6733. se->parent = parent;
  6734. }
  6735. #endif
  6736. #ifdef CONFIG_RT_GROUP_SCHED
  6737. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6738. struct sched_rt_entity *rt_se, int cpu,
  6739. struct sched_rt_entity *parent)
  6740. {
  6741. struct rq *rq = cpu_rq(cpu);
  6742. tg->rt_rq[cpu] = rt_rq;
  6743. init_rt_rq(rt_rq, rq);
  6744. rt_rq->tg = tg;
  6745. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6746. tg->rt_se[cpu] = rt_se;
  6747. if (!rt_se)
  6748. return;
  6749. if (!parent)
  6750. rt_se->rt_rq = &rq->rt;
  6751. else
  6752. rt_se->rt_rq = parent->my_q;
  6753. rt_se->my_q = rt_rq;
  6754. rt_se->parent = parent;
  6755. INIT_LIST_HEAD(&rt_se->run_list);
  6756. }
  6757. #endif
  6758. void __init sched_init(void)
  6759. {
  6760. int i, j;
  6761. unsigned long alloc_size = 0, ptr;
  6762. #ifdef CONFIG_FAIR_GROUP_SCHED
  6763. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6764. #endif
  6765. #ifdef CONFIG_RT_GROUP_SCHED
  6766. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6767. #endif
  6768. #ifdef CONFIG_CPUMASK_OFFSTACK
  6769. alloc_size += num_possible_cpus() * cpumask_size();
  6770. #endif
  6771. if (alloc_size) {
  6772. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6773. #ifdef CONFIG_FAIR_GROUP_SCHED
  6774. root_task_group.se = (struct sched_entity **)ptr;
  6775. ptr += nr_cpu_ids * sizeof(void **);
  6776. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6777. ptr += nr_cpu_ids * sizeof(void **);
  6778. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6779. #ifdef CONFIG_RT_GROUP_SCHED
  6780. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6781. ptr += nr_cpu_ids * sizeof(void **);
  6782. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6783. ptr += nr_cpu_ids * sizeof(void **);
  6784. #endif /* CONFIG_RT_GROUP_SCHED */
  6785. #ifdef CONFIG_CPUMASK_OFFSTACK
  6786. for_each_possible_cpu(i) {
  6787. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6788. ptr += cpumask_size();
  6789. }
  6790. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6791. }
  6792. #ifdef CONFIG_SMP
  6793. init_defrootdomain();
  6794. #endif
  6795. init_rt_bandwidth(&def_rt_bandwidth,
  6796. global_rt_period(), global_rt_runtime());
  6797. #ifdef CONFIG_RT_GROUP_SCHED
  6798. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6799. global_rt_period(), global_rt_runtime());
  6800. #endif /* CONFIG_RT_GROUP_SCHED */
  6801. #ifdef CONFIG_CGROUP_SCHED
  6802. list_add(&root_task_group.list, &task_groups);
  6803. INIT_LIST_HEAD(&root_task_group.children);
  6804. autogroup_init(&init_task);
  6805. #endif /* CONFIG_CGROUP_SCHED */
  6806. for_each_possible_cpu(i) {
  6807. struct rq *rq;
  6808. rq = cpu_rq(i);
  6809. raw_spin_lock_init(&rq->lock);
  6810. rq->nr_running = 0;
  6811. rq->calc_load_active = 0;
  6812. rq->calc_load_update = jiffies + LOAD_FREQ;
  6813. init_cfs_rq(&rq->cfs, rq);
  6814. init_rt_rq(&rq->rt, rq);
  6815. #ifdef CONFIG_FAIR_GROUP_SCHED
  6816. root_task_group.shares = root_task_group_load;
  6817. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6818. /*
  6819. * How much cpu bandwidth does root_task_group get?
  6820. *
  6821. * In case of task-groups formed thr' the cgroup filesystem, it
  6822. * gets 100% of the cpu resources in the system. This overall
  6823. * system cpu resource is divided among the tasks of
  6824. * root_task_group and its child task-groups in a fair manner,
  6825. * based on each entity's (task or task-group's) weight
  6826. * (se->load.weight).
  6827. *
  6828. * In other words, if root_task_group has 10 tasks of weight
  6829. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6830. * then A0's share of the cpu resource is:
  6831. *
  6832. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6833. *
  6834. * We achieve this by letting root_task_group's tasks sit
  6835. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6836. */
  6837. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6838. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6839. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6840. #ifdef CONFIG_RT_GROUP_SCHED
  6841. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6842. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6843. #endif
  6844. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6845. rq->cpu_load[j] = 0;
  6846. rq->last_load_update_tick = jiffies;
  6847. #ifdef CONFIG_SMP
  6848. rq->sd = NULL;
  6849. rq->rd = NULL;
  6850. rq->cpu_power = SCHED_POWER_SCALE;
  6851. rq->post_schedule = 0;
  6852. rq->active_balance = 0;
  6853. rq->next_balance = jiffies;
  6854. rq->push_cpu = 0;
  6855. rq->cpu = i;
  6856. rq->online = 0;
  6857. rq->idle_stamp = 0;
  6858. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6859. rq_attach_root(rq, &def_root_domain);
  6860. #ifdef CONFIG_NO_HZ
  6861. rq->nohz_balance_kick = 0;
  6862. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6863. #endif
  6864. #endif
  6865. init_rq_hrtick(rq);
  6866. atomic_set(&rq->nr_iowait, 0);
  6867. }
  6868. set_load_weight(&init_task);
  6869. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6870. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6871. #endif
  6872. #ifdef CONFIG_SMP
  6873. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6874. #endif
  6875. #ifdef CONFIG_RT_MUTEXES
  6876. plist_head_init(&init_task.pi_waiters);
  6877. #endif
  6878. /*
  6879. * The boot idle thread does lazy MMU switching as well:
  6880. */
  6881. atomic_inc(&init_mm.mm_count);
  6882. enter_lazy_tlb(&init_mm, current);
  6883. /*
  6884. * Make us the idle thread. Technically, schedule() should not be
  6885. * called from this thread, however somewhere below it might be,
  6886. * but because we are the idle thread, we just pick up running again
  6887. * when this runqueue becomes "idle".
  6888. */
  6889. init_idle(current, smp_processor_id());
  6890. calc_load_update = jiffies + LOAD_FREQ;
  6891. /*
  6892. * During early bootup we pretend to be a normal task:
  6893. */
  6894. current->sched_class = &fair_sched_class;
  6895. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6896. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6897. #ifdef CONFIG_SMP
  6898. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6899. #ifdef CONFIG_NO_HZ
  6900. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6901. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6902. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6903. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6904. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6905. #endif
  6906. /* May be allocated at isolcpus cmdline parse time */
  6907. if (cpu_isolated_map == NULL)
  6908. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6909. #endif /* SMP */
  6910. scheduler_running = 1;
  6911. }
  6912. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6913. static inline int preempt_count_equals(int preempt_offset)
  6914. {
  6915. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6916. return (nested == preempt_offset);
  6917. }
  6918. static int __might_sleep_init_called;
  6919. int __init __might_sleep_init(void)
  6920. {
  6921. __might_sleep_init_called = 1;
  6922. return 0;
  6923. }
  6924. early_initcall(__might_sleep_init);
  6925. void __might_sleep(const char *file, int line, int preempt_offset)
  6926. {
  6927. #ifdef in_atomic
  6928. static unsigned long prev_jiffy; /* ratelimiting */
  6929. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6930. oops_in_progress)
  6931. return;
  6932. if (system_state != SYSTEM_RUNNING &&
  6933. (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
  6934. return;
  6935. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6936. return;
  6937. prev_jiffy = jiffies;
  6938. printk(KERN_ERR
  6939. "BUG: sleeping function called from invalid context at %s:%d\n",
  6940. file, line);
  6941. printk(KERN_ERR
  6942. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6943. in_atomic(), irqs_disabled(),
  6944. current->pid, current->comm);
  6945. debug_show_held_locks(current);
  6946. if (irqs_disabled())
  6947. print_irqtrace_events(current);
  6948. dump_stack();
  6949. #endif
  6950. }
  6951. EXPORT_SYMBOL(__might_sleep);
  6952. #endif
  6953. #ifdef CONFIG_MAGIC_SYSRQ
  6954. static void normalize_task(struct rq *rq, struct task_struct *p)
  6955. {
  6956. const struct sched_class *prev_class = p->sched_class;
  6957. int old_prio = p->prio;
  6958. int on_rq;
  6959. on_rq = p->on_rq;
  6960. if (on_rq)
  6961. deactivate_task(rq, p, 0);
  6962. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6963. if (on_rq) {
  6964. activate_task(rq, p, 0);
  6965. resched_task(rq->curr);
  6966. }
  6967. check_class_changed(rq, p, prev_class, old_prio);
  6968. }
  6969. void normalize_rt_tasks(void)
  6970. {
  6971. struct task_struct *g, *p;
  6972. unsigned long flags;
  6973. struct rq *rq;
  6974. read_lock_irqsave(&tasklist_lock, flags);
  6975. do_each_thread(g, p) {
  6976. /*
  6977. * Only normalize user tasks:
  6978. */
  6979. if (!p->mm)
  6980. continue;
  6981. p->se.exec_start = 0;
  6982. #ifdef CONFIG_SCHEDSTATS
  6983. p->se.statistics.wait_start = 0;
  6984. p->se.statistics.sleep_start = 0;
  6985. p->se.statistics.block_start = 0;
  6986. #endif
  6987. if (!rt_task(p)) {
  6988. /*
  6989. * Renice negative nice level userspace
  6990. * tasks back to 0:
  6991. */
  6992. if (TASK_NICE(p) < 0 && p->mm)
  6993. set_user_nice(p, 0);
  6994. continue;
  6995. }
  6996. raw_spin_lock(&p->pi_lock);
  6997. rq = __task_rq_lock(p);
  6998. normalize_task(rq, p);
  6999. __task_rq_unlock(rq);
  7000. raw_spin_unlock(&p->pi_lock);
  7001. } while_each_thread(g, p);
  7002. read_unlock_irqrestore(&tasklist_lock, flags);
  7003. }
  7004. #endif /* CONFIG_MAGIC_SYSRQ */
  7005. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7006. /*
  7007. * These functions are only useful for the IA64 MCA handling, or kdb.
  7008. *
  7009. * They can only be called when the whole system has been
  7010. * stopped - every CPU needs to be quiescent, and no scheduling
  7011. * activity can take place. Using them for anything else would
  7012. * be a serious bug, and as a result, they aren't even visible
  7013. * under any other configuration.
  7014. */
  7015. /**
  7016. * curr_task - return the current task for a given cpu.
  7017. * @cpu: the processor in question.
  7018. *
  7019. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7020. */
  7021. struct task_struct *curr_task(int cpu)
  7022. {
  7023. return cpu_curr(cpu);
  7024. }
  7025. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7026. #ifdef CONFIG_IA64
  7027. /**
  7028. * set_curr_task - set the current task for a given cpu.
  7029. * @cpu: the processor in question.
  7030. * @p: the task pointer to set.
  7031. *
  7032. * Description: This function must only be used when non-maskable interrupts
  7033. * are serviced on a separate stack. It allows the architecture to switch the
  7034. * notion of the current task on a cpu in a non-blocking manner. This function
  7035. * must be called with all CPU's synchronized, and interrupts disabled, the
  7036. * and caller must save the original value of the current task (see
  7037. * curr_task() above) and restore that value before reenabling interrupts and
  7038. * re-starting the system.
  7039. *
  7040. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7041. */
  7042. void set_curr_task(int cpu, struct task_struct *p)
  7043. {
  7044. cpu_curr(cpu) = p;
  7045. }
  7046. #endif
  7047. #ifdef CONFIG_FAIR_GROUP_SCHED
  7048. static void free_fair_sched_group(struct task_group *tg)
  7049. {
  7050. int i;
  7051. for_each_possible_cpu(i) {
  7052. if (tg->cfs_rq)
  7053. kfree(tg->cfs_rq[i]);
  7054. if (tg->se)
  7055. kfree(tg->se[i]);
  7056. }
  7057. kfree(tg->cfs_rq);
  7058. kfree(tg->se);
  7059. }
  7060. static
  7061. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7062. {
  7063. struct cfs_rq *cfs_rq;
  7064. struct sched_entity *se;
  7065. int i;
  7066. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7067. if (!tg->cfs_rq)
  7068. goto err;
  7069. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7070. if (!tg->se)
  7071. goto err;
  7072. tg->shares = NICE_0_LOAD;
  7073. for_each_possible_cpu(i) {
  7074. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7075. GFP_KERNEL, cpu_to_node(i));
  7076. if (!cfs_rq)
  7077. goto err;
  7078. se = kzalloc_node(sizeof(struct sched_entity),
  7079. GFP_KERNEL, cpu_to_node(i));
  7080. if (!se)
  7081. goto err_free_rq;
  7082. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7083. }
  7084. return 1;
  7085. err_free_rq:
  7086. kfree(cfs_rq);
  7087. err:
  7088. return 0;
  7089. }
  7090. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7091. {
  7092. struct rq *rq = cpu_rq(cpu);
  7093. unsigned long flags;
  7094. /*
  7095. * Only empty task groups can be destroyed; so we can speculatively
  7096. * check on_list without danger of it being re-added.
  7097. */
  7098. if (!tg->cfs_rq[cpu]->on_list)
  7099. return;
  7100. raw_spin_lock_irqsave(&rq->lock, flags);
  7101. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7102. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7103. }
  7104. #else /* !CONFG_FAIR_GROUP_SCHED */
  7105. static inline void free_fair_sched_group(struct task_group *tg)
  7106. {
  7107. }
  7108. static inline
  7109. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7110. {
  7111. return 1;
  7112. }
  7113. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7114. {
  7115. }
  7116. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7117. #ifdef CONFIG_RT_GROUP_SCHED
  7118. static void free_rt_sched_group(struct task_group *tg)
  7119. {
  7120. int i;
  7121. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7122. for_each_possible_cpu(i) {
  7123. if (tg->rt_rq)
  7124. kfree(tg->rt_rq[i]);
  7125. if (tg->rt_se)
  7126. kfree(tg->rt_se[i]);
  7127. }
  7128. kfree(tg->rt_rq);
  7129. kfree(tg->rt_se);
  7130. }
  7131. static
  7132. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7133. {
  7134. struct rt_rq *rt_rq;
  7135. struct sched_rt_entity *rt_se;
  7136. int i;
  7137. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7138. if (!tg->rt_rq)
  7139. goto err;
  7140. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7141. if (!tg->rt_se)
  7142. goto err;
  7143. init_rt_bandwidth(&tg->rt_bandwidth,
  7144. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7145. for_each_possible_cpu(i) {
  7146. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7147. GFP_KERNEL, cpu_to_node(i));
  7148. if (!rt_rq)
  7149. goto err;
  7150. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7151. GFP_KERNEL, cpu_to_node(i));
  7152. if (!rt_se)
  7153. goto err_free_rq;
  7154. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7155. }
  7156. return 1;
  7157. err_free_rq:
  7158. kfree(rt_rq);
  7159. err:
  7160. return 0;
  7161. }
  7162. #else /* !CONFIG_RT_GROUP_SCHED */
  7163. static inline void free_rt_sched_group(struct task_group *tg)
  7164. {
  7165. }
  7166. static inline
  7167. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7168. {
  7169. return 1;
  7170. }
  7171. #endif /* CONFIG_RT_GROUP_SCHED */
  7172. #ifdef CONFIG_CGROUP_SCHED
  7173. static void free_sched_group(struct task_group *tg)
  7174. {
  7175. free_fair_sched_group(tg);
  7176. free_rt_sched_group(tg);
  7177. autogroup_free(tg);
  7178. kfree(tg);
  7179. }
  7180. /* allocate runqueue etc for a new task group */
  7181. struct task_group *sched_create_group(struct task_group *parent)
  7182. {
  7183. struct task_group *tg;
  7184. unsigned long flags;
  7185. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7186. if (!tg)
  7187. return ERR_PTR(-ENOMEM);
  7188. if (!alloc_fair_sched_group(tg, parent))
  7189. goto err;
  7190. if (!alloc_rt_sched_group(tg, parent))
  7191. goto err;
  7192. spin_lock_irqsave(&task_group_lock, flags);
  7193. list_add_rcu(&tg->list, &task_groups);
  7194. WARN_ON(!parent); /* root should already exist */
  7195. tg->parent = parent;
  7196. INIT_LIST_HEAD(&tg->children);
  7197. list_add_rcu(&tg->siblings, &parent->children);
  7198. spin_unlock_irqrestore(&task_group_lock, flags);
  7199. return tg;
  7200. err:
  7201. free_sched_group(tg);
  7202. return ERR_PTR(-ENOMEM);
  7203. }
  7204. /* rcu callback to free various structures associated with a task group */
  7205. static void free_sched_group_rcu(struct rcu_head *rhp)
  7206. {
  7207. /* now it should be safe to free those cfs_rqs */
  7208. free_sched_group(container_of(rhp, struct task_group, rcu));
  7209. }
  7210. /* Destroy runqueue etc associated with a task group */
  7211. void sched_destroy_group(struct task_group *tg)
  7212. {
  7213. unsigned long flags;
  7214. int i;
  7215. /* end participation in shares distribution */
  7216. for_each_possible_cpu(i)
  7217. unregister_fair_sched_group(tg, i);
  7218. spin_lock_irqsave(&task_group_lock, flags);
  7219. list_del_rcu(&tg->list);
  7220. list_del_rcu(&tg->siblings);
  7221. spin_unlock_irqrestore(&task_group_lock, flags);
  7222. /* wait for possible concurrent references to cfs_rqs complete */
  7223. call_rcu(&tg->rcu, free_sched_group_rcu);
  7224. }
  7225. /* change task's runqueue when it moves between groups.
  7226. * The caller of this function should have put the task in its new group
  7227. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7228. * reflect its new group.
  7229. */
  7230. void sched_move_task(struct task_struct *tsk)
  7231. {
  7232. int on_rq, running;
  7233. unsigned long flags;
  7234. struct rq *rq;
  7235. rq = task_rq_lock(tsk, &flags);
  7236. running = task_current(rq, tsk);
  7237. on_rq = tsk->on_rq;
  7238. if (on_rq)
  7239. dequeue_task(rq, tsk, 0);
  7240. if (unlikely(running))
  7241. tsk->sched_class->put_prev_task(rq, tsk);
  7242. #ifdef CONFIG_FAIR_GROUP_SCHED
  7243. if (tsk->sched_class->task_move_group)
  7244. tsk->sched_class->task_move_group(tsk, on_rq);
  7245. else
  7246. #endif
  7247. set_task_rq(tsk, task_cpu(tsk));
  7248. if (unlikely(running))
  7249. tsk->sched_class->set_curr_task(rq);
  7250. if (on_rq)
  7251. enqueue_task(rq, tsk, 0);
  7252. task_rq_unlock(rq, tsk, &flags);
  7253. }
  7254. #endif /* CONFIG_CGROUP_SCHED */
  7255. #ifdef CONFIG_FAIR_GROUP_SCHED
  7256. static DEFINE_MUTEX(shares_mutex);
  7257. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7258. {
  7259. int i;
  7260. unsigned long flags;
  7261. /*
  7262. * We can't change the weight of the root cgroup.
  7263. */
  7264. if (!tg->se[0])
  7265. return -EINVAL;
  7266. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7267. mutex_lock(&shares_mutex);
  7268. if (tg->shares == shares)
  7269. goto done;
  7270. tg->shares = shares;
  7271. for_each_possible_cpu(i) {
  7272. struct rq *rq = cpu_rq(i);
  7273. struct sched_entity *se;
  7274. se = tg->se[i];
  7275. /* Propagate contribution to hierarchy */
  7276. raw_spin_lock_irqsave(&rq->lock, flags);
  7277. for_each_sched_entity(se)
  7278. update_cfs_shares(group_cfs_rq(se));
  7279. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7280. }
  7281. done:
  7282. mutex_unlock(&shares_mutex);
  7283. return 0;
  7284. }
  7285. unsigned long sched_group_shares(struct task_group *tg)
  7286. {
  7287. return tg->shares;
  7288. }
  7289. #endif
  7290. #ifdef CONFIG_RT_GROUP_SCHED
  7291. /*
  7292. * Ensure that the real time constraints are schedulable.
  7293. */
  7294. static DEFINE_MUTEX(rt_constraints_mutex);
  7295. static unsigned long to_ratio(u64 period, u64 runtime)
  7296. {
  7297. if (runtime == RUNTIME_INF)
  7298. return 1ULL << 20;
  7299. return div64_u64(runtime << 20, period);
  7300. }
  7301. /* Must be called with tasklist_lock held */
  7302. static inline int tg_has_rt_tasks(struct task_group *tg)
  7303. {
  7304. struct task_struct *g, *p;
  7305. do_each_thread(g, p) {
  7306. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7307. return 1;
  7308. } while_each_thread(g, p);
  7309. return 0;
  7310. }
  7311. struct rt_schedulable_data {
  7312. struct task_group *tg;
  7313. u64 rt_period;
  7314. u64 rt_runtime;
  7315. };
  7316. static int tg_schedulable(struct task_group *tg, void *data)
  7317. {
  7318. struct rt_schedulable_data *d = data;
  7319. struct task_group *child;
  7320. unsigned long total, sum = 0;
  7321. u64 period, runtime;
  7322. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7323. runtime = tg->rt_bandwidth.rt_runtime;
  7324. if (tg == d->tg) {
  7325. period = d->rt_period;
  7326. runtime = d->rt_runtime;
  7327. }
  7328. /*
  7329. * Cannot have more runtime than the period.
  7330. */
  7331. if (runtime > period && runtime != RUNTIME_INF)
  7332. return -EINVAL;
  7333. /*
  7334. * Ensure we don't starve existing RT tasks.
  7335. */
  7336. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7337. return -EBUSY;
  7338. total = to_ratio(period, runtime);
  7339. /*
  7340. * Nobody can have more than the global setting allows.
  7341. */
  7342. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7343. return -EINVAL;
  7344. /*
  7345. * The sum of our children's runtime should not exceed our own.
  7346. */
  7347. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7348. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7349. runtime = child->rt_bandwidth.rt_runtime;
  7350. if (child == d->tg) {
  7351. period = d->rt_period;
  7352. runtime = d->rt_runtime;
  7353. }
  7354. sum += to_ratio(period, runtime);
  7355. }
  7356. if (sum > total)
  7357. return -EINVAL;
  7358. return 0;
  7359. }
  7360. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7361. {
  7362. struct rt_schedulable_data data = {
  7363. .tg = tg,
  7364. .rt_period = period,
  7365. .rt_runtime = runtime,
  7366. };
  7367. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7368. }
  7369. static int tg_set_bandwidth(struct task_group *tg,
  7370. u64 rt_period, u64 rt_runtime)
  7371. {
  7372. int i, err = 0;
  7373. mutex_lock(&rt_constraints_mutex);
  7374. read_lock(&tasklist_lock);
  7375. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7376. if (err)
  7377. goto unlock;
  7378. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7379. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7380. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7381. for_each_possible_cpu(i) {
  7382. struct rt_rq *rt_rq = tg->rt_rq[i];
  7383. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7384. rt_rq->rt_runtime = rt_runtime;
  7385. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7386. }
  7387. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7388. unlock:
  7389. read_unlock(&tasklist_lock);
  7390. mutex_unlock(&rt_constraints_mutex);
  7391. return err;
  7392. }
  7393. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7394. {
  7395. u64 rt_runtime, rt_period;
  7396. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7397. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7398. if (rt_runtime_us < 0)
  7399. rt_runtime = RUNTIME_INF;
  7400. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7401. }
  7402. long sched_group_rt_runtime(struct task_group *tg)
  7403. {
  7404. u64 rt_runtime_us;
  7405. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7406. return -1;
  7407. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7408. do_div(rt_runtime_us, NSEC_PER_USEC);
  7409. return rt_runtime_us;
  7410. }
  7411. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7412. {
  7413. u64 rt_runtime, rt_period;
  7414. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7415. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7416. if (rt_period == 0)
  7417. return -EINVAL;
  7418. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7419. }
  7420. long sched_group_rt_period(struct task_group *tg)
  7421. {
  7422. u64 rt_period_us;
  7423. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7424. do_div(rt_period_us, NSEC_PER_USEC);
  7425. return rt_period_us;
  7426. }
  7427. static int sched_rt_global_constraints(void)
  7428. {
  7429. u64 runtime, period;
  7430. int ret = 0;
  7431. if (sysctl_sched_rt_period <= 0)
  7432. return -EINVAL;
  7433. runtime = global_rt_runtime();
  7434. period = global_rt_period();
  7435. /*
  7436. * Sanity check on the sysctl variables.
  7437. */
  7438. if (runtime > period && runtime != RUNTIME_INF)
  7439. return -EINVAL;
  7440. mutex_lock(&rt_constraints_mutex);
  7441. read_lock(&tasklist_lock);
  7442. ret = __rt_schedulable(NULL, 0, 0);
  7443. read_unlock(&tasklist_lock);
  7444. mutex_unlock(&rt_constraints_mutex);
  7445. return ret;
  7446. }
  7447. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7448. {
  7449. /* Don't accept realtime tasks when there is no way for them to run */
  7450. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7451. return 0;
  7452. return 1;
  7453. }
  7454. #else /* !CONFIG_RT_GROUP_SCHED */
  7455. static int sched_rt_global_constraints(void)
  7456. {
  7457. unsigned long flags;
  7458. int i;
  7459. if (sysctl_sched_rt_period <= 0)
  7460. return -EINVAL;
  7461. /*
  7462. * There's always some RT tasks in the root group
  7463. * -- migration, kstopmachine etc..
  7464. */
  7465. if (sysctl_sched_rt_runtime == 0)
  7466. return -EBUSY;
  7467. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7468. for_each_possible_cpu(i) {
  7469. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7470. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7471. rt_rq->rt_runtime = global_rt_runtime();
  7472. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7473. }
  7474. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7475. return 0;
  7476. }
  7477. #endif /* CONFIG_RT_GROUP_SCHED */
  7478. int sched_rt_handler(struct ctl_table *table, int write,
  7479. void __user *buffer, size_t *lenp,
  7480. loff_t *ppos)
  7481. {
  7482. int ret;
  7483. int old_period, old_runtime;
  7484. static DEFINE_MUTEX(mutex);
  7485. mutex_lock(&mutex);
  7486. old_period = sysctl_sched_rt_period;
  7487. old_runtime = sysctl_sched_rt_runtime;
  7488. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7489. if (!ret && write) {
  7490. ret = sched_rt_global_constraints();
  7491. if (ret) {
  7492. sysctl_sched_rt_period = old_period;
  7493. sysctl_sched_rt_runtime = old_runtime;
  7494. } else {
  7495. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7496. def_rt_bandwidth.rt_period =
  7497. ns_to_ktime(global_rt_period());
  7498. }
  7499. }
  7500. mutex_unlock(&mutex);
  7501. return ret;
  7502. }
  7503. #ifdef CONFIG_CGROUP_SCHED
  7504. /* return corresponding task_group object of a cgroup */
  7505. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7506. {
  7507. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7508. struct task_group, css);
  7509. }
  7510. static struct cgroup_subsys_state *
  7511. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7512. {
  7513. struct task_group *tg, *parent;
  7514. if (!cgrp->parent) {
  7515. /* This is early initialization for the top cgroup */
  7516. return &root_task_group.css;
  7517. }
  7518. parent = cgroup_tg(cgrp->parent);
  7519. tg = sched_create_group(parent);
  7520. if (IS_ERR(tg))
  7521. return ERR_PTR(-ENOMEM);
  7522. return &tg->css;
  7523. }
  7524. static void
  7525. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7526. {
  7527. struct task_group *tg = cgroup_tg(cgrp);
  7528. sched_destroy_group(tg);
  7529. }
  7530. static int
  7531. cpu_cgroup_allow_attach(struct cgroup *cgrp, struct task_struct *tsk)
  7532. {
  7533. const struct cred *cred = current_cred(), *tcred;
  7534. tcred = __task_cred(tsk);
  7535. if ((current != tsk) && !capable(CAP_SYS_NICE) &&
  7536. cred->euid != tcred->uid && cred->euid != tcred->suid)
  7537. return -EACCES;
  7538. return 0;
  7539. }
  7540. static int
  7541. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7542. {
  7543. #ifdef CONFIG_RT_GROUP_SCHED
  7544. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7545. return -EINVAL;
  7546. #else
  7547. /* We don't support RT-tasks being in separate groups */
  7548. if (tsk->sched_class != &fair_sched_class)
  7549. return -EINVAL;
  7550. #endif
  7551. return 0;
  7552. }
  7553. static void
  7554. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7555. {
  7556. sched_move_task(tsk);
  7557. }
  7558. static void
  7559. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7560. struct cgroup *old_cgrp, struct task_struct *task)
  7561. {
  7562. /*
  7563. * cgroup_exit() is called in the copy_process() failure path.
  7564. * Ignore this case since the task hasn't ran yet, this avoids
  7565. * trying to poke a half freed task state from generic code.
  7566. */
  7567. if (!(task->flags & PF_EXITING))
  7568. return;
  7569. sched_move_task(task);
  7570. }
  7571. #ifdef CONFIG_FAIR_GROUP_SCHED
  7572. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7573. u64 shareval)
  7574. {
  7575. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7576. }
  7577. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7578. {
  7579. struct task_group *tg = cgroup_tg(cgrp);
  7580. return (u64) scale_load_down(tg->shares);
  7581. }
  7582. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7583. #ifdef CONFIG_RT_GROUP_SCHED
  7584. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7585. s64 val)
  7586. {
  7587. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7588. }
  7589. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7590. {
  7591. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7592. }
  7593. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7594. u64 rt_period_us)
  7595. {
  7596. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7597. }
  7598. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7599. {
  7600. return sched_group_rt_period(cgroup_tg(cgrp));
  7601. }
  7602. #endif /* CONFIG_RT_GROUP_SCHED */
  7603. static struct cftype cpu_files[] = {
  7604. #ifdef CONFIG_FAIR_GROUP_SCHED
  7605. {
  7606. .name = "shares",
  7607. .read_u64 = cpu_shares_read_u64,
  7608. .write_u64 = cpu_shares_write_u64,
  7609. },
  7610. #endif
  7611. #ifdef CONFIG_RT_GROUP_SCHED
  7612. {
  7613. .name = "rt_runtime_us",
  7614. .read_s64 = cpu_rt_runtime_read,
  7615. .write_s64 = cpu_rt_runtime_write,
  7616. },
  7617. {
  7618. .name = "rt_period_us",
  7619. .read_u64 = cpu_rt_period_read_uint,
  7620. .write_u64 = cpu_rt_period_write_uint,
  7621. },
  7622. #endif
  7623. };
  7624. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7625. {
  7626. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7627. }
  7628. struct cgroup_subsys cpu_cgroup_subsys = {
  7629. .name = "cpu",
  7630. .create = cpu_cgroup_create,
  7631. .destroy = cpu_cgroup_destroy,
  7632. .allow_attach = cpu_cgroup_allow_attach,
  7633. .can_attach_task = cpu_cgroup_can_attach_task,
  7634. .attach_task = cpu_cgroup_attach_task,
  7635. .exit = cpu_cgroup_exit,
  7636. .populate = cpu_cgroup_populate,
  7637. .subsys_id = cpu_cgroup_subsys_id,
  7638. .early_init = 1,
  7639. };
  7640. #endif /* CONFIG_CGROUP_SCHED */
  7641. #ifdef CONFIG_CGROUP_CPUACCT
  7642. /*
  7643. * CPU accounting code for task groups.
  7644. *
  7645. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7646. * (balbir@in.ibm.com).
  7647. */
  7648. /* track cpu usage of a group of tasks and its child groups */
  7649. struct cpuacct {
  7650. struct cgroup_subsys_state css;
  7651. /* cpuusage holds pointer to a u64-type object on every cpu */
  7652. u64 __percpu *cpuusage;
  7653. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7654. struct cpuacct *parent;
  7655. struct cpuacct_charge_calls *cpufreq_fn;
  7656. void *cpuacct_data;
  7657. };
  7658. static struct cpuacct *cpuacct_root;
  7659. /* Default calls for cpufreq accounting */
  7660. static struct cpuacct_charge_calls *cpuacct_cpufreq;
  7661. int cpuacct_register_cpufreq(struct cpuacct_charge_calls *fn)
  7662. {
  7663. cpuacct_cpufreq = fn;
  7664. /*
  7665. * Root node is created before platform can register callbacks,
  7666. * initalize here.
  7667. */
  7668. if (cpuacct_root && fn) {
  7669. cpuacct_root->cpufreq_fn = fn;
  7670. if (fn->init)
  7671. fn->init(&cpuacct_root->cpuacct_data);
  7672. }
  7673. return 0;
  7674. }
  7675. struct cgroup_subsys cpuacct_subsys;
  7676. /* return cpu accounting group corresponding to this container */
  7677. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7678. {
  7679. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7680. struct cpuacct, css);
  7681. }
  7682. /* return cpu accounting group to which this task belongs */
  7683. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7684. {
  7685. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7686. struct cpuacct, css);
  7687. }
  7688. /* create a new cpu accounting group */
  7689. static struct cgroup_subsys_state *cpuacct_create(
  7690. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7691. {
  7692. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7693. int i;
  7694. if (!ca)
  7695. goto out;
  7696. ca->cpuusage = alloc_percpu(u64);
  7697. if (!ca->cpuusage)
  7698. goto out_free_ca;
  7699. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7700. if (percpu_counter_init(&ca->cpustat[i], 0))
  7701. goto out_free_counters;
  7702. ca->cpufreq_fn = cpuacct_cpufreq;
  7703. /* If available, have platform code initalize cpu frequency table */
  7704. if (ca->cpufreq_fn && ca->cpufreq_fn->init)
  7705. ca->cpufreq_fn->init(&ca->cpuacct_data);
  7706. if (cgrp->parent)
  7707. ca->parent = cgroup_ca(cgrp->parent);
  7708. else
  7709. cpuacct_root = ca;
  7710. return &ca->css;
  7711. out_free_counters:
  7712. while (--i >= 0)
  7713. percpu_counter_destroy(&ca->cpustat[i]);
  7714. free_percpu(ca->cpuusage);
  7715. out_free_ca:
  7716. kfree(ca);
  7717. out:
  7718. return ERR_PTR(-ENOMEM);
  7719. }
  7720. /* destroy an existing cpu accounting group */
  7721. static void
  7722. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7723. {
  7724. struct cpuacct *ca = cgroup_ca(cgrp);
  7725. int i;
  7726. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7727. percpu_counter_destroy(&ca->cpustat[i]);
  7728. free_percpu(ca->cpuusage);
  7729. kfree(ca);
  7730. }
  7731. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7732. {
  7733. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7734. u64 data;
  7735. #ifndef CONFIG_64BIT
  7736. /*
  7737. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7738. */
  7739. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7740. data = *cpuusage;
  7741. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7742. #else
  7743. data = *cpuusage;
  7744. #endif
  7745. return data;
  7746. }
  7747. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7748. {
  7749. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7750. #ifndef CONFIG_64BIT
  7751. /*
  7752. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7753. */
  7754. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7755. *cpuusage = val;
  7756. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7757. #else
  7758. *cpuusage = val;
  7759. #endif
  7760. }
  7761. /* return total cpu usage (in nanoseconds) of a group */
  7762. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7763. {
  7764. struct cpuacct *ca = cgroup_ca(cgrp);
  7765. u64 totalcpuusage = 0;
  7766. int i;
  7767. for_each_present_cpu(i)
  7768. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7769. return totalcpuusage;
  7770. }
  7771. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7772. u64 reset)
  7773. {
  7774. struct cpuacct *ca = cgroup_ca(cgrp);
  7775. int err = 0;
  7776. int i;
  7777. if (reset) {
  7778. err = -EINVAL;
  7779. goto out;
  7780. }
  7781. for_each_present_cpu(i)
  7782. cpuacct_cpuusage_write(ca, i, 0);
  7783. out:
  7784. return err;
  7785. }
  7786. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7787. struct seq_file *m)
  7788. {
  7789. struct cpuacct *ca = cgroup_ca(cgroup);
  7790. u64 percpu;
  7791. int i;
  7792. for_each_present_cpu(i) {
  7793. percpu = cpuacct_cpuusage_read(ca, i);
  7794. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7795. }
  7796. seq_printf(m, "\n");
  7797. return 0;
  7798. }
  7799. static const char *cpuacct_stat_desc[] = {
  7800. [CPUACCT_STAT_USER] = "user",
  7801. [CPUACCT_STAT_SYSTEM] = "system",
  7802. };
  7803. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7804. struct cgroup_map_cb *cb)
  7805. {
  7806. struct cpuacct *ca = cgroup_ca(cgrp);
  7807. int i;
  7808. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7809. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7810. val = cputime64_to_clock_t(val);
  7811. cb->fill(cb, cpuacct_stat_desc[i], val);
  7812. }
  7813. return 0;
  7814. }
  7815. static int cpuacct_cpufreq_show(struct cgroup *cgrp, struct cftype *cft,
  7816. struct cgroup_map_cb *cb)
  7817. {
  7818. struct cpuacct *ca = cgroup_ca(cgrp);
  7819. if (ca->cpufreq_fn && ca->cpufreq_fn->cpufreq_show)
  7820. ca->cpufreq_fn->cpufreq_show(ca->cpuacct_data, cb);
  7821. return 0;
  7822. }
  7823. /* return total cpu power usage (milliWatt second) of a group */
  7824. static u64 cpuacct_powerusage_read(struct cgroup *cgrp, struct cftype *cft)
  7825. {
  7826. int i;
  7827. struct cpuacct *ca = cgroup_ca(cgrp);
  7828. u64 totalpower = 0;
  7829. if (ca->cpufreq_fn && ca->cpufreq_fn->power_usage)
  7830. for_each_present_cpu(i) {
  7831. totalpower += ca->cpufreq_fn->power_usage(
  7832. ca->cpuacct_data);
  7833. }
  7834. return totalpower;
  7835. }
  7836. static struct cftype files[] = {
  7837. {
  7838. .name = "usage",
  7839. .read_u64 = cpuusage_read,
  7840. .write_u64 = cpuusage_write,
  7841. },
  7842. {
  7843. .name = "usage_percpu",
  7844. .read_seq_string = cpuacct_percpu_seq_read,
  7845. },
  7846. {
  7847. .name = "stat",
  7848. .read_map = cpuacct_stats_show,
  7849. },
  7850. {
  7851. .name = "cpufreq",
  7852. .read_map = cpuacct_cpufreq_show,
  7853. },
  7854. {
  7855. .name = "power",
  7856. .read_u64 = cpuacct_powerusage_read
  7857. },
  7858. };
  7859. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7860. {
  7861. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7862. }
  7863. /*
  7864. * charge this task's execution time to its accounting group.
  7865. *
  7866. * called with rq->lock held.
  7867. */
  7868. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7869. {
  7870. struct cpuacct *ca;
  7871. int cpu;
  7872. if (unlikely(!cpuacct_subsys.active))
  7873. return;
  7874. cpu = task_cpu(tsk);
  7875. rcu_read_lock();
  7876. ca = task_ca(tsk);
  7877. for (; ca; ca = ca->parent) {
  7878. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7879. *cpuusage += cputime;
  7880. /* Call back into platform code to account for CPU speeds */
  7881. if (ca->cpufreq_fn && ca->cpufreq_fn->charge)
  7882. ca->cpufreq_fn->charge(ca->cpuacct_data, cputime, cpu);
  7883. }
  7884. rcu_read_unlock();
  7885. }
  7886. /*
  7887. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7888. * in cputime_t units. As a result, cpuacct_update_stats calls
  7889. * percpu_counter_add with values large enough to always overflow the
  7890. * per cpu batch limit causing bad SMP scalability.
  7891. *
  7892. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7893. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7894. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7895. */
  7896. #ifdef CONFIG_SMP
  7897. #define CPUACCT_BATCH \
  7898. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7899. #else
  7900. #define CPUACCT_BATCH 0
  7901. #endif
  7902. /*
  7903. * Charge the system/user time to the task's accounting group.
  7904. */
  7905. static void cpuacct_update_stats(struct task_struct *tsk,
  7906. enum cpuacct_stat_index idx, cputime_t val)
  7907. {
  7908. struct cpuacct *ca;
  7909. int batch = CPUACCT_BATCH;
  7910. if (unlikely(!cpuacct_subsys.active))
  7911. return;
  7912. rcu_read_lock();
  7913. ca = task_ca(tsk);
  7914. do {
  7915. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7916. ca = ca->parent;
  7917. } while (ca);
  7918. rcu_read_unlock();
  7919. }
  7920. struct cgroup_subsys cpuacct_subsys = {
  7921. .name = "cpuacct",
  7922. .create = cpuacct_create,
  7923. .destroy = cpuacct_destroy,
  7924. .populate = cpuacct_populate,
  7925. .subsys_id = cpuacct_subsys_id,
  7926. };
  7927. #endif /* CONFIG_CGROUP_CPUACCT */