host.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755
  1. /*
  2. * This file is provided under a dual BSD/GPLv2 license. When using or
  3. * redistributing this file, you may do so under either license.
  4. *
  5. * GPL LICENSE SUMMARY
  6. *
  7. * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21. * The full GNU General Public License is included in this distribution
  22. * in the file called LICENSE.GPL.
  23. *
  24. * BSD LICENSE
  25. *
  26. * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27. * All rights reserved.
  28. *
  29. * Redistribution and use in source and binary forms, with or without
  30. * modification, are permitted provided that the following conditions
  31. * are met:
  32. *
  33. * * Redistributions of source code must retain the above copyright
  34. * notice, this list of conditions and the following disclaimer.
  35. * * Redistributions in binary form must reproduce the above copyright
  36. * notice, this list of conditions and the following disclaimer in
  37. * the documentation and/or other materials provided with the
  38. * distribution.
  39. * * Neither the name of Intel Corporation nor the names of its
  40. * contributors may be used to endorse or promote products derived
  41. * from this software without specific prior written permission.
  42. *
  43. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54. */
  55. #include <linux/circ_buf.h>
  56. #include <linux/device.h>
  57. #include <scsi/sas.h>
  58. #include "host.h"
  59. #include "isci.h"
  60. #include "port.h"
  61. #include "host.h"
  62. #include "probe_roms.h"
  63. #include "remote_device.h"
  64. #include "request.h"
  65. #include "scu_completion_codes.h"
  66. #include "scu_event_codes.h"
  67. #include "registers.h"
  68. #include "scu_remote_node_context.h"
  69. #include "scu_task_context.h"
  70. #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
  71. #define smu_max_ports(dcc_value) \
  72. (\
  73. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
  74. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
  75. )
  76. #define smu_max_task_contexts(dcc_value) \
  77. (\
  78. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
  79. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
  80. )
  81. #define smu_max_rncs(dcc_value) \
  82. (\
  83. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
  84. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
  85. )
  86. #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
  87. /**
  88. *
  89. *
  90. * The number of milliseconds to wait while a given phy is consuming power
  91. * before allowing another set of phys to consume power. Ultimately, this will
  92. * be specified by OEM parameter.
  93. */
  94. #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
  95. /**
  96. * NORMALIZE_PUT_POINTER() -
  97. *
  98. * This macro will normalize the completion queue put pointer so its value can
  99. * be used as an array inde
  100. */
  101. #define NORMALIZE_PUT_POINTER(x) \
  102. ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
  103. /**
  104. * NORMALIZE_EVENT_POINTER() -
  105. *
  106. * This macro will normalize the completion queue event entry so its value can
  107. * be used as an index.
  108. */
  109. #define NORMALIZE_EVENT_POINTER(x) \
  110. (\
  111. ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
  112. >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
  113. )
  114. /**
  115. * NORMALIZE_GET_POINTER() -
  116. *
  117. * This macro will normalize the completion queue get pointer so its value can
  118. * be used as an index into an array
  119. */
  120. #define NORMALIZE_GET_POINTER(x) \
  121. ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
  122. /**
  123. * NORMALIZE_GET_POINTER_CYCLE_BIT() -
  124. *
  125. * This macro will normalize the completion queue cycle pointer so it matches
  126. * the completion queue cycle bit
  127. */
  128. #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
  129. ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
  130. /**
  131. * COMPLETION_QUEUE_CYCLE_BIT() -
  132. *
  133. * This macro will return the cycle bit of the completion queue entry
  134. */
  135. #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
  136. /* Init the state machine and call the state entry function (if any) */
  137. void sci_init_sm(struct sci_base_state_machine *sm,
  138. const struct sci_base_state *state_table, u32 initial_state)
  139. {
  140. sci_state_transition_t handler;
  141. sm->initial_state_id = initial_state;
  142. sm->previous_state_id = initial_state;
  143. sm->current_state_id = initial_state;
  144. sm->state_table = state_table;
  145. handler = sm->state_table[initial_state].enter_state;
  146. if (handler)
  147. handler(sm);
  148. }
  149. /* Call the state exit fn, update the current state, call the state entry fn */
  150. void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
  151. {
  152. sci_state_transition_t handler;
  153. handler = sm->state_table[sm->current_state_id].exit_state;
  154. if (handler)
  155. handler(sm);
  156. sm->previous_state_id = sm->current_state_id;
  157. sm->current_state_id = next_state;
  158. handler = sm->state_table[sm->current_state_id].enter_state;
  159. if (handler)
  160. handler(sm);
  161. }
  162. static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
  163. {
  164. u32 get_value = ihost->completion_queue_get;
  165. u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
  166. if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
  167. COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
  168. return true;
  169. return false;
  170. }
  171. static bool sci_controller_isr(struct isci_host *ihost)
  172. {
  173. if (sci_controller_completion_queue_has_entries(ihost)) {
  174. return true;
  175. } else {
  176. /*
  177. * we have a spurious interrupt it could be that we have already
  178. * emptied the completion queue from a previous interrupt */
  179. writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
  180. /*
  181. * There is a race in the hardware that could cause us not to be notified
  182. * of an interrupt completion if we do not take this step. We will mask
  183. * then unmask the interrupts so if there is another interrupt pending
  184. * the clearing of the interrupt source we get the next interrupt message. */
  185. writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
  186. writel(0, &ihost->smu_registers->interrupt_mask);
  187. }
  188. return false;
  189. }
  190. irqreturn_t isci_msix_isr(int vec, void *data)
  191. {
  192. struct isci_host *ihost = data;
  193. if (sci_controller_isr(ihost))
  194. tasklet_schedule(&ihost->completion_tasklet);
  195. return IRQ_HANDLED;
  196. }
  197. static bool sci_controller_error_isr(struct isci_host *ihost)
  198. {
  199. u32 interrupt_status;
  200. interrupt_status =
  201. readl(&ihost->smu_registers->interrupt_status);
  202. interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
  203. if (interrupt_status != 0) {
  204. /*
  205. * There is an error interrupt pending so let it through and handle
  206. * in the callback */
  207. return true;
  208. }
  209. /*
  210. * There is a race in the hardware that could cause us not to be notified
  211. * of an interrupt completion if we do not take this step. We will mask
  212. * then unmask the error interrupts so if there was another interrupt
  213. * pending we will be notified.
  214. * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
  215. writel(0xff, &ihost->smu_registers->interrupt_mask);
  216. writel(0, &ihost->smu_registers->interrupt_mask);
  217. return false;
  218. }
  219. static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
  220. {
  221. u32 index = SCU_GET_COMPLETION_INDEX(ent);
  222. struct isci_request *ireq = ihost->reqs[index];
  223. /* Make sure that we really want to process this IO request */
  224. if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
  225. ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
  226. ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
  227. /* Yep this is a valid io request pass it along to the
  228. * io request handler
  229. */
  230. sci_io_request_tc_completion(ireq, ent);
  231. }
  232. static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
  233. {
  234. u32 index;
  235. struct isci_request *ireq;
  236. struct isci_remote_device *idev;
  237. index = SCU_GET_COMPLETION_INDEX(ent);
  238. switch (scu_get_command_request_type(ent)) {
  239. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
  240. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
  241. ireq = ihost->reqs[index];
  242. dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
  243. __func__, ent, ireq);
  244. /* @todo For a post TC operation we need to fail the IO
  245. * request
  246. */
  247. break;
  248. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
  249. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
  250. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
  251. idev = ihost->device_table[index];
  252. dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
  253. __func__, ent, idev);
  254. /* @todo For a port RNC operation we need to fail the
  255. * device
  256. */
  257. break;
  258. default:
  259. dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
  260. __func__, ent);
  261. break;
  262. }
  263. }
  264. static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
  265. {
  266. u32 index;
  267. u32 frame_index;
  268. struct scu_unsolicited_frame_header *frame_header;
  269. struct isci_phy *iphy;
  270. struct isci_remote_device *idev;
  271. enum sci_status result = SCI_FAILURE;
  272. frame_index = SCU_GET_FRAME_INDEX(ent);
  273. frame_header = ihost->uf_control.buffers.array[frame_index].header;
  274. ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
  275. if (SCU_GET_FRAME_ERROR(ent)) {
  276. /*
  277. * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
  278. * / this cause a problem? We expect the phy initialization will
  279. * / fail if there is an error in the frame. */
  280. sci_controller_release_frame(ihost, frame_index);
  281. return;
  282. }
  283. if (frame_header->is_address_frame) {
  284. index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
  285. iphy = &ihost->phys[index];
  286. result = sci_phy_frame_handler(iphy, frame_index);
  287. } else {
  288. index = SCU_GET_COMPLETION_INDEX(ent);
  289. if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
  290. /*
  291. * This is a signature fis or a frame from a direct attached SATA
  292. * device that has not yet been created. In either case forwared
  293. * the frame to the PE and let it take care of the frame data. */
  294. index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
  295. iphy = &ihost->phys[index];
  296. result = sci_phy_frame_handler(iphy, frame_index);
  297. } else {
  298. if (index < ihost->remote_node_entries)
  299. idev = ihost->device_table[index];
  300. else
  301. idev = NULL;
  302. if (idev != NULL)
  303. result = sci_remote_device_frame_handler(idev, frame_index);
  304. else
  305. sci_controller_release_frame(ihost, frame_index);
  306. }
  307. }
  308. if (result != SCI_SUCCESS) {
  309. /*
  310. * / @todo Is there any reason to report some additional error message
  311. * / when we get this failure notifiction? */
  312. }
  313. }
  314. static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
  315. {
  316. struct isci_remote_device *idev;
  317. struct isci_request *ireq;
  318. struct isci_phy *iphy;
  319. u32 index;
  320. index = SCU_GET_COMPLETION_INDEX(ent);
  321. switch (scu_get_event_type(ent)) {
  322. case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
  323. /* / @todo The driver did something wrong and we need to fix the condtion. */
  324. dev_err(&ihost->pdev->dev,
  325. "%s: SCIC Controller 0x%p received SMU command error "
  326. "0x%x\n",
  327. __func__,
  328. ihost,
  329. ent);
  330. break;
  331. case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
  332. case SCU_EVENT_TYPE_SMU_ERROR:
  333. case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
  334. /*
  335. * / @todo This is a hardware failure and its likely that we want to
  336. * / reset the controller. */
  337. dev_err(&ihost->pdev->dev,
  338. "%s: SCIC Controller 0x%p received fatal controller "
  339. "event 0x%x\n",
  340. __func__,
  341. ihost,
  342. ent);
  343. break;
  344. case SCU_EVENT_TYPE_TRANSPORT_ERROR:
  345. ireq = ihost->reqs[index];
  346. sci_io_request_event_handler(ireq, ent);
  347. break;
  348. case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
  349. switch (scu_get_event_specifier(ent)) {
  350. case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
  351. case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
  352. ireq = ihost->reqs[index];
  353. if (ireq != NULL)
  354. sci_io_request_event_handler(ireq, ent);
  355. else
  356. dev_warn(&ihost->pdev->dev,
  357. "%s: SCIC Controller 0x%p received "
  358. "event 0x%x for io request object "
  359. "that doesnt exist.\n",
  360. __func__,
  361. ihost,
  362. ent);
  363. break;
  364. case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
  365. idev = ihost->device_table[index];
  366. if (idev != NULL)
  367. sci_remote_device_event_handler(idev, ent);
  368. else
  369. dev_warn(&ihost->pdev->dev,
  370. "%s: SCIC Controller 0x%p received "
  371. "event 0x%x for remote device object "
  372. "that doesnt exist.\n",
  373. __func__,
  374. ihost,
  375. ent);
  376. break;
  377. }
  378. break;
  379. case SCU_EVENT_TYPE_BROADCAST_CHANGE:
  380. /*
  381. * direct the broadcast change event to the phy first and then let
  382. * the phy redirect the broadcast change to the port object */
  383. case SCU_EVENT_TYPE_ERR_CNT_EVENT:
  384. /*
  385. * direct error counter event to the phy object since that is where
  386. * we get the event notification. This is a type 4 event. */
  387. case SCU_EVENT_TYPE_OSSP_EVENT:
  388. index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
  389. iphy = &ihost->phys[index];
  390. sci_phy_event_handler(iphy, ent);
  391. break;
  392. case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
  393. case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
  394. case SCU_EVENT_TYPE_RNC_OPS_MISC:
  395. if (index < ihost->remote_node_entries) {
  396. idev = ihost->device_table[index];
  397. if (idev != NULL)
  398. sci_remote_device_event_handler(idev, ent);
  399. } else
  400. dev_err(&ihost->pdev->dev,
  401. "%s: SCIC Controller 0x%p received event 0x%x "
  402. "for remote device object 0x%0x that doesnt "
  403. "exist.\n",
  404. __func__,
  405. ihost,
  406. ent,
  407. index);
  408. break;
  409. default:
  410. dev_warn(&ihost->pdev->dev,
  411. "%s: SCIC Controller received unknown event code %x\n",
  412. __func__,
  413. ent);
  414. break;
  415. }
  416. }
  417. static void sci_controller_process_completions(struct isci_host *ihost)
  418. {
  419. u32 completion_count = 0;
  420. u32 ent;
  421. u32 get_index;
  422. u32 get_cycle;
  423. u32 event_get;
  424. u32 event_cycle;
  425. dev_dbg(&ihost->pdev->dev,
  426. "%s: completion queue begining get:0x%08x\n",
  427. __func__,
  428. ihost->completion_queue_get);
  429. /* Get the component parts of the completion queue */
  430. get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
  431. get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
  432. event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
  433. event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
  434. while (
  435. NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
  436. == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
  437. ) {
  438. completion_count++;
  439. ent = ihost->completion_queue[get_index];
  440. /* increment the get pointer and check for rollover to toggle the cycle bit */
  441. get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
  442. (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
  443. get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
  444. dev_dbg(&ihost->pdev->dev,
  445. "%s: completion queue entry:0x%08x\n",
  446. __func__,
  447. ent);
  448. switch (SCU_GET_COMPLETION_TYPE(ent)) {
  449. case SCU_COMPLETION_TYPE_TASK:
  450. sci_controller_task_completion(ihost, ent);
  451. break;
  452. case SCU_COMPLETION_TYPE_SDMA:
  453. sci_controller_sdma_completion(ihost, ent);
  454. break;
  455. case SCU_COMPLETION_TYPE_UFI:
  456. sci_controller_unsolicited_frame(ihost, ent);
  457. break;
  458. case SCU_COMPLETION_TYPE_EVENT:
  459. sci_controller_event_completion(ihost, ent);
  460. break;
  461. case SCU_COMPLETION_TYPE_NOTIFY: {
  462. event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
  463. (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
  464. event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
  465. sci_controller_event_completion(ihost, ent);
  466. break;
  467. }
  468. default:
  469. dev_warn(&ihost->pdev->dev,
  470. "%s: SCIC Controller received unknown "
  471. "completion type %x\n",
  472. __func__,
  473. ent);
  474. break;
  475. }
  476. }
  477. /* Update the get register if we completed one or more entries */
  478. if (completion_count > 0) {
  479. ihost->completion_queue_get =
  480. SMU_CQGR_GEN_BIT(ENABLE) |
  481. SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
  482. event_cycle |
  483. SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
  484. get_cycle |
  485. SMU_CQGR_GEN_VAL(POINTER, get_index);
  486. writel(ihost->completion_queue_get,
  487. &ihost->smu_registers->completion_queue_get);
  488. }
  489. dev_dbg(&ihost->pdev->dev,
  490. "%s: completion queue ending get:0x%08x\n",
  491. __func__,
  492. ihost->completion_queue_get);
  493. }
  494. static void sci_controller_error_handler(struct isci_host *ihost)
  495. {
  496. u32 interrupt_status;
  497. interrupt_status =
  498. readl(&ihost->smu_registers->interrupt_status);
  499. if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
  500. sci_controller_completion_queue_has_entries(ihost)) {
  501. sci_controller_process_completions(ihost);
  502. writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
  503. } else {
  504. dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
  505. interrupt_status);
  506. sci_change_state(&ihost->sm, SCIC_FAILED);
  507. return;
  508. }
  509. /* If we dont process any completions I am not sure that we want to do this.
  510. * We are in the middle of a hardware fault and should probably be reset.
  511. */
  512. writel(0, &ihost->smu_registers->interrupt_mask);
  513. }
  514. irqreturn_t isci_intx_isr(int vec, void *data)
  515. {
  516. irqreturn_t ret = IRQ_NONE;
  517. struct isci_host *ihost = data;
  518. if (sci_controller_isr(ihost)) {
  519. writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
  520. tasklet_schedule(&ihost->completion_tasklet);
  521. ret = IRQ_HANDLED;
  522. } else if (sci_controller_error_isr(ihost)) {
  523. spin_lock(&ihost->scic_lock);
  524. sci_controller_error_handler(ihost);
  525. spin_unlock(&ihost->scic_lock);
  526. ret = IRQ_HANDLED;
  527. }
  528. return ret;
  529. }
  530. irqreturn_t isci_error_isr(int vec, void *data)
  531. {
  532. struct isci_host *ihost = data;
  533. if (sci_controller_error_isr(ihost))
  534. sci_controller_error_handler(ihost);
  535. return IRQ_HANDLED;
  536. }
  537. /**
  538. * isci_host_start_complete() - This function is called by the core library,
  539. * through the ISCI Module, to indicate controller start status.
  540. * @isci_host: This parameter specifies the ISCI host object
  541. * @completion_status: This parameter specifies the completion status from the
  542. * core library.
  543. *
  544. */
  545. static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
  546. {
  547. if (completion_status != SCI_SUCCESS)
  548. dev_info(&ihost->pdev->dev,
  549. "controller start timed out, continuing...\n");
  550. isci_host_change_state(ihost, isci_ready);
  551. clear_bit(IHOST_START_PENDING, &ihost->flags);
  552. wake_up(&ihost->eventq);
  553. }
  554. int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
  555. {
  556. struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
  557. if (test_bit(IHOST_START_PENDING, &ihost->flags))
  558. return 0;
  559. /* todo: use sas_flush_discovery once it is upstream */
  560. scsi_flush_work(shost);
  561. scsi_flush_work(shost);
  562. dev_dbg(&ihost->pdev->dev,
  563. "%s: ihost->status = %d, time = %ld\n",
  564. __func__, isci_host_get_state(ihost), time);
  565. return 1;
  566. }
  567. /**
  568. * sci_controller_get_suggested_start_timeout() - This method returns the
  569. * suggested sci_controller_start() timeout amount. The user is free to
  570. * use any timeout value, but this method provides the suggested minimum
  571. * start timeout value. The returned value is based upon empirical
  572. * information determined as a result of interoperability testing.
  573. * @controller: the handle to the controller object for which to return the
  574. * suggested start timeout.
  575. *
  576. * This method returns the number of milliseconds for the suggested start
  577. * operation timeout.
  578. */
  579. static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
  580. {
  581. /* Validate the user supplied parameters. */
  582. if (!ihost)
  583. return 0;
  584. /*
  585. * The suggested minimum timeout value for a controller start operation:
  586. *
  587. * Signature FIS Timeout
  588. * + Phy Start Timeout
  589. * + Number of Phy Spin Up Intervals
  590. * ---------------------------------
  591. * Number of milliseconds for the controller start operation.
  592. *
  593. * NOTE: The number of phy spin up intervals will be equivalent
  594. * to the number of phys divided by the number phys allowed
  595. * per interval - 1 (once OEM parameters are supported).
  596. * Currently we assume only 1 phy per interval. */
  597. return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
  598. + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
  599. + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  600. }
  601. static void sci_controller_enable_interrupts(struct isci_host *ihost)
  602. {
  603. BUG_ON(ihost->smu_registers == NULL);
  604. writel(0, &ihost->smu_registers->interrupt_mask);
  605. }
  606. void sci_controller_disable_interrupts(struct isci_host *ihost)
  607. {
  608. BUG_ON(ihost->smu_registers == NULL);
  609. writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
  610. }
  611. static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
  612. {
  613. u32 port_task_scheduler_value;
  614. port_task_scheduler_value =
  615. readl(&ihost->scu_registers->peg0.ptsg.control);
  616. port_task_scheduler_value |=
  617. (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
  618. SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
  619. writel(port_task_scheduler_value,
  620. &ihost->scu_registers->peg0.ptsg.control);
  621. }
  622. static void sci_controller_assign_task_entries(struct isci_host *ihost)
  623. {
  624. u32 task_assignment;
  625. /*
  626. * Assign all the TCs to function 0
  627. * TODO: Do we actually need to read this register to write it back?
  628. */
  629. task_assignment =
  630. readl(&ihost->smu_registers->task_context_assignment[0]);
  631. task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
  632. (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) |
  633. (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
  634. writel(task_assignment,
  635. &ihost->smu_registers->task_context_assignment[0]);
  636. }
  637. static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
  638. {
  639. u32 index;
  640. u32 completion_queue_control_value;
  641. u32 completion_queue_get_value;
  642. u32 completion_queue_put_value;
  643. ihost->completion_queue_get = 0;
  644. completion_queue_control_value =
  645. (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
  646. SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
  647. writel(completion_queue_control_value,
  648. &ihost->smu_registers->completion_queue_control);
  649. /* Set the completion queue get pointer and enable the queue */
  650. completion_queue_get_value = (
  651. (SMU_CQGR_GEN_VAL(POINTER, 0))
  652. | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
  653. | (SMU_CQGR_GEN_BIT(ENABLE))
  654. | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
  655. );
  656. writel(completion_queue_get_value,
  657. &ihost->smu_registers->completion_queue_get);
  658. /* Set the completion queue put pointer */
  659. completion_queue_put_value = (
  660. (SMU_CQPR_GEN_VAL(POINTER, 0))
  661. | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
  662. );
  663. writel(completion_queue_put_value,
  664. &ihost->smu_registers->completion_queue_put);
  665. /* Initialize the cycle bit of the completion queue entries */
  666. for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
  667. /*
  668. * If get.cycle_bit != completion_queue.cycle_bit
  669. * its not a valid completion queue entry
  670. * so at system start all entries are invalid */
  671. ihost->completion_queue[index] = 0x80000000;
  672. }
  673. }
  674. static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
  675. {
  676. u32 frame_queue_control_value;
  677. u32 frame_queue_get_value;
  678. u32 frame_queue_put_value;
  679. /* Write the queue size */
  680. frame_queue_control_value =
  681. SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
  682. writel(frame_queue_control_value,
  683. &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
  684. /* Setup the get pointer for the unsolicited frame queue */
  685. frame_queue_get_value = (
  686. SCU_UFQGP_GEN_VAL(POINTER, 0)
  687. | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
  688. );
  689. writel(frame_queue_get_value,
  690. &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
  691. /* Setup the put pointer for the unsolicited frame queue */
  692. frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
  693. writel(frame_queue_put_value,
  694. &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
  695. }
  696. static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
  697. {
  698. if (ihost->sm.current_state_id == SCIC_STARTING) {
  699. /*
  700. * We move into the ready state, because some of the phys/ports
  701. * may be up and operational.
  702. */
  703. sci_change_state(&ihost->sm, SCIC_READY);
  704. isci_host_start_complete(ihost, status);
  705. }
  706. }
  707. static bool is_phy_starting(struct isci_phy *iphy)
  708. {
  709. enum sci_phy_states state;
  710. state = iphy->sm.current_state_id;
  711. switch (state) {
  712. case SCI_PHY_STARTING:
  713. case SCI_PHY_SUB_INITIAL:
  714. case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
  715. case SCI_PHY_SUB_AWAIT_IAF_UF:
  716. case SCI_PHY_SUB_AWAIT_SAS_POWER:
  717. case SCI_PHY_SUB_AWAIT_SATA_POWER:
  718. case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
  719. case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
  720. case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
  721. case SCI_PHY_SUB_FINAL:
  722. return true;
  723. default:
  724. return false;
  725. }
  726. }
  727. /**
  728. * sci_controller_start_next_phy - start phy
  729. * @scic: controller
  730. *
  731. * If all the phys have been started, then attempt to transition the
  732. * controller to the READY state and inform the user
  733. * (sci_cb_controller_start_complete()).
  734. */
  735. static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
  736. {
  737. struct sci_oem_params *oem = &ihost->oem_parameters;
  738. struct isci_phy *iphy;
  739. enum sci_status status;
  740. status = SCI_SUCCESS;
  741. if (ihost->phy_startup_timer_pending)
  742. return status;
  743. if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
  744. bool is_controller_start_complete = true;
  745. u32 state;
  746. u8 index;
  747. for (index = 0; index < SCI_MAX_PHYS; index++) {
  748. iphy = &ihost->phys[index];
  749. state = iphy->sm.current_state_id;
  750. if (!phy_get_non_dummy_port(iphy))
  751. continue;
  752. /* The controller start operation is complete iff:
  753. * - all links have been given an opportunity to start
  754. * - have no indication of a connected device
  755. * - have an indication of a connected device and it has
  756. * finished the link training process.
  757. */
  758. if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
  759. (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
  760. (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
  761. is_controller_start_complete = false;
  762. break;
  763. }
  764. }
  765. /*
  766. * The controller has successfully finished the start process.
  767. * Inform the SCI Core user and transition to the READY state. */
  768. if (is_controller_start_complete == true) {
  769. sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
  770. sci_del_timer(&ihost->phy_timer);
  771. ihost->phy_startup_timer_pending = false;
  772. }
  773. } else {
  774. iphy = &ihost->phys[ihost->next_phy_to_start];
  775. if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
  776. if (phy_get_non_dummy_port(iphy) == NULL) {
  777. ihost->next_phy_to_start++;
  778. /* Caution recursion ahead be forwarned
  779. *
  780. * The PHY was never added to a PORT in MPC mode
  781. * so start the next phy in sequence This phy
  782. * will never go link up and will not draw power
  783. * the OEM parameters either configured the phy
  784. * incorrectly for the PORT or it was never
  785. * assigned to a PORT
  786. */
  787. return sci_controller_start_next_phy(ihost);
  788. }
  789. }
  790. status = sci_phy_start(iphy);
  791. if (status == SCI_SUCCESS) {
  792. sci_mod_timer(&ihost->phy_timer,
  793. SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
  794. ihost->phy_startup_timer_pending = true;
  795. } else {
  796. dev_warn(&ihost->pdev->dev,
  797. "%s: Controller stop operation failed "
  798. "to stop phy %d because of status "
  799. "%d.\n",
  800. __func__,
  801. ihost->phys[ihost->next_phy_to_start].phy_index,
  802. status);
  803. }
  804. ihost->next_phy_to_start++;
  805. }
  806. return status;
  807. }
  808. static void phy_startup_timeout(unsigned long data)
  809. {
  810. struct sci_timer *tmr = (struct sci_timer *)data;
  811. struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
  812. unsigned long flags;
  813. enum sci_status status;
  814. spin_lock_irqsave(&ihost->scic_lock, flags);
  815. if (tmr->cancel)
  816. goto done;
  817. ihost->phy_startup_timer_pending = false;
  818. do {
  819. status = sci_controller_start_next_phy(ihost);
  820. } while (status != SCI_SUCCESS);
  821. done:
  822. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  823. }
  824. static u16 isci_tci_active(struct isci_host *ihost)
  825. {
  826. return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
  827. }
  828. static enum sci_status sci_controller_start(struct isci_host *ihost,
  829. u32 timeout)
  830. {
  831. enum sci_status result;
  832. u16 index;
  833. if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
  834. dev_warn(&ihost->pdev->dev,
  835. "SCIC Controller start operation requested in "
  836. "invalid state\n");
  837. return SCI_FAILURE_INVALID_STATE;
  838. }
  839. /* Build the TCi free pool */
  840. BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
  841. ihost->tci_head = 0;
  842. ihost->tci_tail = 0;
  843. for (index = 0; index < ihost->task_context_entries; index++)
  844. isci_tci_free(ihost, index);
  845. /* Build the RNi free pool */
  846. sci_remote_node_table_initialize(&ihost->available_remote_nodes,
  847. ihost->remote_node_entries);
  848. /*
  849. * Before anything else lets make sure we will not be
  850. * interrupted by the hardware.
  851. */
  852. sci_controller_disable_interrupts(ihost);
  853. /* Enable the port task scheduler */
  854. sci_controller_enable_port_task_scheduler(ihost);
  855. /* Assign all the task entries to ihost physical function */
  856. sci_controller_assign_task_entries(ihost);
  857. /* Now initialize the completion queue */
  858. sci_controller_initialize_completion_queue(ihost);
  859. /* Initialize the unsolicited frame queue for use */
  860. sci_controller_initialize_unsolicited_frame_queue(ihost);
  861. /* Start all of the ports on this controller */
  862. for (index = 0; index < ihost->logical_port_entries; index++) {
  863. struct isci_port *iport = &ihost->ports[index];
  864. result = sci_port_start(iport);
  865. if (result)
  866. return result;
  867. }
  868. sci_controller_start_next_phy(ihost);
  869. sci_mod_timer(&ihost->timer, timeout);
  870. sci_change_state(&ihost->sm, SCIC_STARTING);
  871. return SCI_SUCCESS;
  872. }
  873. void isci_host_scan_start(struct Scsi_Host *shost)
  874. {
  875. struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
  876. unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
  877. set_bit(IHOST_START_PENDING, &ihost->flags);
  878. spin_lock_irq(&ihost->scic_lock);
  879. sci_controller_start(ihost, tmo);
  880. sci_controller_enable_interrupts(ihost);
  881. spin_unlock_irq(&ihost->scic_lock);
  882. }
  883. static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
  884. {
  885. isci_host_change_state(ihost, isci_stopped);
  886. sci_controller_disable_interrupts(ihost);
  887. clear_bit(IHOST_STOP_PENDING, &ihost->flags);
  888. wake_up(&ihost->eventq);
  889. }
  890. static void sci_controller_completion_handler(struct isci_host *ihost)
  891. {
  892. /* Empty out the completion queue */
  893. if (sci_controller_completion_queue_has_entries(ihost))
  894. sci_controller_process_completions(ihost);
  895. /* Clear the interrupt and enable all interrupts again */
  896. writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
  897. /* Could we write the value of SMU_ISR_COMPLETION? */
  898. writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
  899. writel(0, &ihost->smu_registers->interrupt_mask);
  900. }
  901. /**
  902. * isci_host_completion_routine() - This function is the delayed service
  903. * routine that calls the sci core library's completion handler. It's
  904. * scheduled as a tasklet from the interrupt service routine when interrupts
  905. * in use, or set as the timeout function in polled mode.
  906. * @data: This parameter specifies the ISCI host object
  907. *
  908. */
  909. static void isci_host_completion_routine(unsigned long data)
  910. {
  911. struct isci_host *ihost = (struct isci_host *)data;
  912. struct list_head completed_request_list;
  913. struct list_head errored_request_list;
  914. struct list_head *current_position;
  915. struct list_head *next_position;
  916. struct isci_request *request;
  917. struct isci_request *next_request;
  918. struct sas_task *task;
  919. INIT_LIST_HEAD(&completed_request_list);
  920. INIT_LIST_HEAD(&errored_request_list);
  921. spin_lock_irq(&ihost->scic_lock);
  922. sci_controller_completion_handler(ihost);
  923. /* Take the lists of completed I/Os from the host. */
  924. list_splice_init(&ihost->requests_to_complete,
  925. &completed_request_list);
  926. /* Take the list of errored I/Os from the host. */
  927. list_splice_init(&ihost->requests_to_errorback,
  928. &errored_request_list);
  929. spin_unlock_irq(&ihost->scic_lock);
  930. /* Process any completions in the lists. */
  931. list_for_each_safe(current_position, next_position,
  932. &completed_request_list) {
  933. request = list_entry(current_position, struct isci_request,
  934. completed_node);
  935. task = isci_request_access_task(request);
  936. /* Normal notification (task_done) */
  937. dev_dbg(&ihost->pdev->dev,
  938. "%s: Normal - request/task = %p/%p\n",
  939. __func__,
  940. request,
  941. task);
  942. /* Return the task to libsas */
  943. if (task != NULL) {
  944. task->lldd_task = NULL;
  945. if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  946. /* If the task is already in the abort path,
  947. * the task_done callback cannot be called.
  948. */
  949. task->task_done(task);
  950. }
  951. }
  952. spin_lock_irq(&ihost->scic_lock);
  953. isci_free_tag(ihost, request->io_tag);
  954. spin_unlock_irq(&ihost->scic_lock);
  955. }
  956. list_for_each_entry_safe(request, next_request, &errored_request_list,
  957. completed_node) {
  958. task = isci_request_access_task(request);
  959. /* Use sas_task_abort */
  960. dev_warn(&ihost->pdev->dev,
  961. "%s: Error - request/task = %p/%p\n",
  962. __func__,
  963. request,
  964. task);
  965. if (task != NULL) {
  966. /* Put the task into the abort path if it's not there
  967. * already.
  968. */
  969. if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
  970. sas_task_abort(task);
  971. } else {
  972. /* This is a case where the request has completed with a
  973. * status such that it needed further target servicing,
  974. * but the sas_task reference has already been removed
  975. * from the request. Since it was errored, it was not
  976. * being aborted, so there is nothing to do except free
  977. * it.
  978. */
  979. spin_lock_irq(&ihost->scic_lock);
  980. /* Remove the request from the remote device's list
  981. * of pending requests.
  982. */
  983. list_del_init(&request->dev_node);
  984. isci_free_tag(ihost, request->io_tag);
  985. spin_unlock_irq(&ihost->scic_lock);
  986. }
  987. }
  988. }
  989. /**
  990. * sci_controller_stop() - This method will stop an individual controller
  991. * object.This method will invoke the associated user callback upon
  992. * completion. The completion callback is called when the following
  993. * conditions are met: -# the method return status is SCI_SUCCESS. -# the
  994. * controller has been quiesced. This method will ensure that all IO
  995. * requests are quiesced, phys are stopped, and all additional operation by
  996. * the hardware is halted.
  997. * @controller: the handle to the controller object to stop.
  998. * @timeout: This parameter specifies the number of milliseconds in which the
  999. * stop operation should complete.
  1000. *
  1001. * The controller must be in the STARTED or STOPPED state. Indicate if the
  1002. * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
  1003. * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
  1004. * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
  1005. * controller is not either in the STARTED or STOPPED states.
  1006. */
  1007. static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
  1008. {
  1009. if (ihost->sm.current_state_id != SCIC_READY) {
  1010. dev_warn(&ihost->pdev->dev,
  1011. "SCIC Controller stop operation requested in "
  1012. "invalid state\n");
  1013. return SCI_FAILURE_INVALID_STATE;
  1014. }
  1015. sci_mod_timer(&ihost->timer, timeout);
  1016. sci_change_state(&ihost->sm, SCIC_STOPPING);
  1017. return SCI_SUCCESS;
  1018. }
  1019. /**
  1020. * sci_controller_reset() - This method will reset the supplied core
  1021. * controller regardless of the state of said controller. This operation is
  1022. * considered destructive. In other words, all current operations are wiped
  1023. * out. No IO completions for outstanding devices occur. Outstanding IO
  1024. * requests are not aborted or completed at the actual remote device.
  1025. * @controller: the handle to the controller object to reset.
  1026. *
  1027. * Indicate if the controller reset method succeeded or failed in some way.
  1028. * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
  1029. * the controller reset operation is unable to complete.
  1030. */
  1031. static enum sci_status sci_controller_reset(struct isci_host *ihost)
  1032. {
  1033. switch (ihost->sm.current_state_id) {
  1034. case SCIC_RESET:
  1035. case SCIC_READY:
  1036. case SCIC_STOPPED:
  1037. case SCIC_FAILED:
  1038. /*
  1039. * The reset operation is not a graceful cleanup, just
  1040. * perform the state transition.
  1041. */
  1042. sci_change_state(&ihost->sm, SCIC_RESETTING);
  1043. return SCI_SUCCESS;
  1044. default:
  1045. dev_warn(&ihost->pdev->dev,
  1046. "SCIC Controller reset operation requested in "
  1047. "invalid state\n");
  1048. return SCI_FAILURE_INVALID_STATE;
  1049. }
  1050. }
  1051. void isci_host_deinit(struct isci_host *ihost)
  1052. {
  1053. int i;
  1054. isci_host_change_state(ihost, isci_stopping);
  1055. for (i = 0; i < SCI_MAX_PORTS; i++) {
  1056. struct isci_port *iport = &ihost->ports[i];
  1057. struct isci_remote_device *idev, *d;
  1058. list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
  1059. if (test_bit(IDEV_ALLOCATED, &idev->flags))
  1060. isci_remote_device_stop(ihost, idev);
  1061. }
  1062. }
  1063. set_bit(IHOST_STOP_PENDING, &ihost->flags);
  1064. spin_lock_irq(&ihost->scic_lock);
  1065. sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
  1066. spin_unlock_irq(&ihost->scic_lock);
  1067. wait_for_stop(ihost);
  1068. sci_controller_reset(ihost);
  1069. /* Cancel any/all outstanding port timers */
  1070. for (i = 0; i < ihost->logical_port_entries; i++) {
  1071. struct isci_port *iport = &ihost->ports[i];
  1072. del_timer_sync(&iport->timer.timer);
  1073. }
  1074. /* Cancel any/all outstanding phy timers */
  1075. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1076. struct isci_phy *iphy = &ihost->phys[i];
  1077. del_timer_sync(&iphy->sata_timer.timer);
  1078. }
  1079. del_timer_sync(&ihost->port_agent.timer.timer);
  1080. del_timer_sync(&ihost->power_control.timer.timer);
  1081. del_timer_sync(&ihost->timer.timer);
  1082. del_timer_sync(&ihost->phy_timer.timer);
  1083. }
  1084. static void __iomem *scu_base(struct isci_host *isci_host)
  1085. {
  1086. struct pci_dev *pdev = isci_host->pdev;
  1087. int id = isci_host->id;
  1088. return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
  1089. }
  1090. static void __iomem *smu_base(struct isci_host *isci_host)
  1091. {
  1092. struct pci_dev *pdev = isci_host->pdev;
  1093. int id = isci_host->id;
  1094. return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
  1095. }
  1096. static void isci_user_parameters_get(struct sci_user_parameters *u)
  1097. {
  1098. int i;
  1099. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1100. struct sci_phy_user_params *u_phy = &u->phys[i];
  1101. u_phy->max_speed_generation = phy_gen;
  1102. /* we are not exporting these for now */
  1103. u_phy->align_insertion_frequency = 0x7f;
  1104. u_phy->in_connection_align_insertion_frequency = 0xff;
  1105. u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
  1106. }
  1107. u->stp_inactivity_timeout = stp_inactive_to;
  1108. u->ssp_inactivity_timeout = ssp_inactive_to;
  1109. u->stp_max_occupancy_timeout = stp_max_occ_to;
  1110. u->ssp_max_occupancy_timeout = ssp_max_occ_to;
  1111. u->no_outbound_task_timeout = no_outbound_task_to;
  1112. u->max_number_concurrent_device_spin_up = max_concurr_spinup;
  1113. }
  1114. static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
  1115. {
  1116. struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
  1117. sci_change_state(&ihost->sm, SCIC_RESET);
  1118. }
  1119. static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
  1120. {
  1121. struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
  1122. sci_del_timer(&ihost->timer);
  1123. }
  1124. #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
  1125. #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
  1126. #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
  1127. #define INTERRUPT_COALESCE_NUMBER_MAX 256
  1128. #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
  1129. #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
  1130. /**
  1131. * sci_controller_set_interrupt_coalescence() - This method allows the user to
  1132. * configure the interrupt coalescence.
  1133. * @controller: This parameter represents the handle to the controller object
  1134. * for which its interrupt coalesce register is overridden.
  1135. * @coalesce_number: Used to control the number of entries in the Completion
  1136. * Queue before an interrupt is generated. If the number of entries exceed
  1137. * this number, an interrupt will be generated. The valid range of the input
  1138. * is [0, 256]. A setting of 0 results in coalescing being disabled.
  1139. * @coalesce_timeout: Timeout value in microseconds. The valid range of the
  1140. * input is [0, 2700000] . A setting of 0 is allowed and results in no
  1141. * interrupt coalescing timeout.
  1142. *
  1143. * Indicate if the user successfully set the interrupt coalesce parameters.
  1144. * SCI_SUCCESS The user successfully updated the interrutp coalescence.
  1145. * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
  1146. */
  1147. static enum sci_status
  1148. sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
  1149. u32 coalesce_number,
  1150. u32 coalesce_timeout)
  1151. {
  1152. u8 timeout_encode = 0;
  1153. u32 min = 0;
  1154. u32 max = 0;
  1155. /* Check if the input parameters fall in the range. */
  1156. if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
  1157. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1158. /*
  1159. * Defined encoding for interrupt coalescing timeout:
  1160. * Value Min Max Units
  1161. * ----- --- --- -----
  1162. * 0 - - Disabled
  1163. * 1 13.3 20.0 ns
  1164. * 2 26.7 40.0
  1165. * 3 53.3 80.0
  1166. * 4 106.7 160.0
  1167. * 5 213.3 320.0
  1168. * 6 426.7 640.0
  1169. * 7 853.3 1280.0
  1170. * 8 1.7 2.6 us
  1171. * 9 3.4 5.1
  1172. * 10 6.8 10.2
  1173. * 11 13.7 20.5
  1174. * 12 27.3 41.0
  1175. * 13 54.6 81.9
  1176. * 14 109.2 163.8
  1177. * 15 218.5 327.7
  1178. * 16 436.9 655.4
  1179. * 17 873.8 1310.7
  1180. * 18 1.7 2.6 ms
  1181. * 19 3.5 5.2
  1182. * 20 7.0 10.5
  1183. * 21 14.0 21.0
  1184. * 22 28.0 41.9
  1185. * 23 55.9 83.9
  1186. * 24 111.8 167.8
  1187. * 25 223.7 335.5
  1188. * 26 447.4 671.1
  1189. * 27 894.8 1342.2
  1190. * 28 1.8 2.7 s
  1191. * Others Undefined */
  1192. /*
  1193. * Use the table above to decide the encode of interrupt coalescing timeout
  1194. * value for register writing. */
  1195. if (coalesce_timeout == 0)
  1196. timeout_encode = 0;
  1197. else{
  1198. /* make the timeout value in unit of (10 ns). */
  1199. coalesce_timeout = coalesce_timeout * 100;
  1200. min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
  1201. max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
  1202. /* get the encode of timeout for register writing. */
  1203. for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
  1204. timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
  1205. timeout_encode++) {
  1206. if (min <= coalesce_timeout && max > coalesce_timeout)
  1207. break;
  1208. else if (coalesce_timeout >= max && coalesce_timeout < min * 2
  1209. && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
  1210. if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
  1211. break;
  1212. else{
  1213. timeout_encode++;
  1214. break;
  1215. }
  1216. } else {
  1217. max = max * 2;
  1218. min = min * 2;
  1219. }
  1220. }
  1221. if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
  1222. /* the value is out of range. */
  1223. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1224. }
  1225. writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
  1226. SMU_ICC_GEN_VAL(TIMER, timeout_encode),
  1227. &ihost->smu_registers->interrupt_coalesce_control);
  1228. ihost->interrupt_coalesce_number = (u16)coalesce_number;
  1229. ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
  1230. return SCI_SUCCESS;
  1231. }
  1232. static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
  1233. {
  1234. struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
  1235. /* set the default interrupt coalescence number and timeout value. */
  1236. sci_controller_set_interrupt_coalescence(ihost, 0x10, 250);
  1237. }
  1238. static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
  1239. {
  1240. struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
  1241. /* disable interrupt coalescence. */
  1242. sci_controller_set_interrupt_coalescence(ihost, 0, 0);
  1243. }
  1244. static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
  1245. {
  1246. u32 index;
  1247. enum sci_status status;
  1248. enum sci_status phy_status;
  1249. status = SCI_SUCCESS;
  1250. for (index = 0; index < SCI_MAX_PHYS; index++) {
  1251. phy_status = sci_phy_stop(&ihost->phys[index]);
  1252. if (phy_status != SCI_SUCCESS &&
  1253. phy_status != SCI_FAILURE_INVALID_STATE) {
  1254. status = SCI_FAILURE;
  1255. dev_warn(&ihost->pdev->dev,
  1256. "%s: Controller stop operation failed to stop "
  1257. "phy %d because of status %d.\n",
  1258. __func__,
  1259. ihost->phys[index].phy_index, phy_status);
  1260. }
  1261. }
  1262. return status;
  1263. }
  1264. static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
  1265. {
  1266. u32 index;
  1267. enum sci_status port_status;
  1268. enum sci_status status = SCI_SUCCESS;
  1269. for (index = 0; index < ihost->logical_port_entries; index++) {
  1270. struct isci_port *iport = &ihost->ports[index];
  1271. port_status = sci_port_stop(iport);
  1272. if ((port_status != SCI_SUCCESS) &&
  1273. (port_status != SCI_FAILURE_INVALID_STATE)) {
  1274. status = SCI_FAILURE;
  1275. dev_warn(&ihost->pdev->dev,
  1276. "%s: Controller stop operation failed to "
  1277. "stop port %d because of status %d.\n",
  1278. __func__,
  1279. iport->logical_port_index,
  1280. port_status);
  1281. }
  1282. }
  1283. return status;
  1284. }
  1285. static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
  1286. {
  1287. u32 index;
  1288. enum sci_status status;
  1289. enum sci_status device_status;
  1290. status = SCI_SUCCESS;
  1291. for (index = 0; index < ihost->remote_node_entries; index++) {
  1292. if (ihost->device_table[index] != NULL) {
  1293. /* / @todo What timeout value do we want to provide to this request? */
  1294. device_status = sci_remote_device_stop(ihost->device_table[index], 0);
  1295. if ((device_status != SCI_SUCCESS) &&
  1296. (device_status != SCI_FAILURE_INVALID_STATE)) {
  1297. dev_warn(&ihost->pdev->dev,
  1298. "%s: Controller stop operation failed "
  1299. "to stop device 0x%p because of "
  1300. "status %d.\n",
  1301. __func__,
  1302. ihost->device_table[index], device_status);
  1303. }
  1304. }
  1305. }
  1306. return status;
  1307. }
  1308. static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
  1309. {
  1310. struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
  1311. /* Stop all of the components for this controller */
  1312. sci_controller_stop_phys(ihost);
  1313. sci_controller_stop_ports(ihost);
  1314. sci_controller_stop_devices(ihost);
  1315. }
  1316. static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
  1317. {
  1318. struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
  1319. sci_del_timer(&ihost->timer);
  1320. }
  1321. static void sci_controller_reset_hardware(struct isci_host *ihost)
  1322. {
  1323. /* Disable interrupts so we dont take any spurious interrupts */
  1324. sci_controller_disable_interrupts(ihost);
  1325. /* Reset the SCU */
  1326. writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
  1327. /* Delay for 1ms to before clearing the CQP and UFQPR. */
  1328. udelay(1000);
  1329. /* The write to the CQGR clears the CQP */
  1330. writel(0x00000000, &ihost->smu_registers->completion_queue_get);
  1331. /* The write to the UFQGP clears the UFQPR */
  1332. writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
  1333. }
  1334. static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
  1335. {
  1336. struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
  1337. sci_controller_reset_hardware(ihost);
  1338. sci_change_state(&ihost->sm, SCIC_RESET);
  1339. }
  1340. static const struct sci_base_state sci_controller_state_table[] = {
  1341. [SCIC_INITIAL] = {
  1342. .enter_state = sci_controller_initial_state_enter,
  1343. },
  1344. [SCIC_RESET] = {},
  1345. [SCIC_INITIALIZING] = {},
  1346. [SCIC_INITIALIZED] = {},
  1347. [SCIC_STARTING] = {
  1348. .exit_state = sci_controller_starting_state_exit,
  1349. },
  1350. [SCIC_READY] = {
  1351. .enter_state = sci_controller_ready_state_enter,
  1352. .exit_state = sci_controller_ready_state_exit,
  1353. },
  1354. [SCIC_RESETTING] = {
  1355. .enter_state = sci_controller_resetting_state_enter,
  1356. },
  1357. [SCIC_STOPPING] = {
  1358. .enter_state = sci_controller_stopping_state_enter,
  1359. .exit_state = sci_controller_stopping_state_exit,
  1360. },
  1361. [SCIC_STOPPED] = {},
  1362. [SCIC_FAILED] = {}
  1363. };
  1364. static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
  1365. {
  1366. /* these defaults are overridden by the platform / firmware */
  1367. u16 index;
  1368. /* Default to APC mode. */
  1369. ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
  1370. /* Default to APC mode. */
  1371. ihost->oem_parameters.controller.max_concurrent_dev_spin_up = 1;
  1372. /* Default to no SSC operation. */
  1373. ihost->oem_parameters.controller.do_enable_ssc = false;
  1374. /* Initialize all of the port parameter information to narrow ports. */
  1375. for (index = 0; index < SCI_MAX_PORTS; index++) {
  1376. ihost->oem_parameters.ports[index].phy_mask = 0;
  1377. }
  1378. /* Initialize all of the phy parameter information. */
  1379. for (index = 0; index < SCI_MAX_PHYS; index++) {
  1380. /* Default to 6G (i.e. Gen 3) for now. */
  1381. ihost->user_parameters.phys[index].max_speed_generation = 3;
  1382. /* the frequencies cannot be 0 */
  1383. ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
  1384. ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
  1385. ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
  1386. /*
  1387. * Previous Vitesse based expanders had a arbitration issue that
  1388. * is worked around by having the upper 32-bits of SAS address
  1389. * with a value greater then the Vitesse company identifier.
  1390. * Hence, usage of 0x5FCFFFFF. */
  1391. ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
  1392. ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
  1393. }
  1394. ihost->user_parameters.stp_inactivity_timeout = 5;
  1395. ihost->user_parameters.ssp_inactivity_timeout = 5;
  1396. ihost->user_parameters.stp_max_occupancy_timeout = 5;
  1397. ihost->user_parameters.ssp_max_occupancy_timeout = 20;
  1398. ihost->user_parameters.no_outbound_task_timeout = 20;
  1399. }
  1400. static void controller_timeout(unsigned long data)
  1401. {
  1402. struct sci_timer *tmr = (struct sci_timer *)data;
  1403. struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
  1404. struct sci_base_state_machine *sm = &ihost->sm;
  1405. unsigned long flags;
  1406. spin_lock_irqsave(&ihost->scic_lock, flags);
  1407. if (tmr->cancel)
  1408. goto done;
  1409. if (sm->current_state_id == SCIC_STARTING)
  1410. sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
  1411. else if (sm->current_state_id == SCIC_STOPPING) {
  1412. sci_change_state(sm, SCIC_FAILED);
  1413. isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
  1414. } else /* / @todo Now what do we want to do in this case? */
  1415. dev_err(&ihost->pdev->dev,
  1416. "%s: Controller timer fired when controller was not "
  1417. "in a state being timed.\n",
  1418. __func__);
  1419. done:
  1420. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  1421. }
  1422. static enum sci_status sci_controller_construct(struct isci_host *ihost,
  1423. void __iomem *scu_base,
  1424. void __iomem *smu_base)
  1425. {
  1426. u8 i;
  1427. sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
  1428. ihost->scu_registers = scu_base;
  1429. ihost->smu_registers = smu_base;
  1430. sci_port_configuration_agent_construct(&ihost->port_agent);
  1431. /* Construct the ports for this controller */
  1432. for (i = 0; i < SCI_MAX_PORTS; i++)
  1433. sci_port_construct(&ihost->ports[i], i, ihost);
  1434. sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
  1435. /* Construct the phys for this controller */
  1436. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1437. /* Add all the PHYs to the dummy port */
  1438. sci_phy_construct(&ihost->phys[i],
  1439. &ihost->ports[SCI_MAX_PORTS], i);
  1440. }
  1441. ihost->invalid_phy_mask = 0;
  1442. sci_init_timer(&ihost->timer, controller_timeout);
  1443. /* Initialize the User and OEM parameters to default values. */
  1444. sci_controller_set_default_config_parameters(ihost);
  1445. return sci_controller_reset(ihost);
  1446. }
  1447. int sci_oem_parameters_validate(struct sci_oem_params *oem)
  1448. {
  1449. int i;
  1450. for (i = 0; i < SCI_MAX_PORTS; i++)
  1451. if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
  1452. return -EINVAL;
  1453. for (i = 0; i < SCI_MAX_PHYS; i++)
  1454. if (oem->phys[i].sas_address.high == 0 &&
  1455. oem->phys[i].sas_address.low == 0)
  1456. return -EINVAL;
  1457. if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
  1458. for (i = 0; i < SCI_MAX_PHYS; i++)
  1459. if (oem->ports[i].phy_mask != 0)
  1460. return -EINVAL;
  1461. } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
  1462. u8 phy_mask = 0;
  1463. for (i = 0; i < SCI_MAX_PHYS; i++)
  1464. phy_mask |= oem->ports[i].phy_mask;
  1465. if (phy_mask == 0)
  1466. return -EINVAL;
  1467. } else
  1468. return -EINVAL;
  1469. if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
  1470. return -EINVAL;
  1471. return 0;
  1472. }
  1473. static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
  1474. {
  1475. u32 state = ihost->sm.current_state_id;
  1476. if (state == SCIC_RESET ||
  1477. state == SCIC_INITIALIZING ||
  1478. state == SCIC_INITIALIZED) {
  1479. if (sci_oem_parameters_validate(&ihost->oem_parameters))
  1480. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1481. return SCI_SUCCESS;
  1482. }
  1483. return SCI_FAILURE_INVALID_STATE;
  1484. }
  1485. static void power_control_timeout(unsigned long data)
  1486. {
  1487. struct sci_timer *tmr = (struct sci_timer *)data;
  1488. struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
  1489. struct isci_phy *iphy;
  1490. unsigned long flags;
  1491. u8 i;
  1492. spin_lock_irqsave(&ihost->scic_lock, flags);
  1493. if (tmr->cancel)
  1494. goto done;
  1495. ihost->power_control.phys_granted_power = 0;
  1496. if (ihost->power_control.phys_waiting == 0) {
  1497. ihost->power_control.timer_started = false;
  1498. goto done;
  1499. }
  1500. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1501. if (ihost->power_control.phys_waiting == 0)
  1502. break;
  1503. iphy = ihost->power_control.requesters[i];
  1504. if (iphy == NULL)
  1505. continue;
  1506. if (ihost->power_control.phys_granted_power >=
  1507. ihost->oem_parameters.controller.max_concurrent_dev_spin_up)
  1508. break;
  1509. ihost->power_control.requesters[i] = NULL;
  1510. ihost->power_control.phys_waiting--;
  1511. ihost->power_control.phys_granted_power++;
  1512. sci_phy_consume_power_handler(iphy);
  1513. }
  1514. /*
  1515. * It doesn't matter if the power list is empty, we need to start the
  1516. * timer in case another phy becomes ready.
  1517. */
  1518. sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  1519. ihost->power_control.timer_started = true;
  1520. done:
  1521. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  1522. }
  1523. void sci_controller_power_control_queue_insert(struct isci_host *ihost,
  1524. struct isci_phy *iphy)
  1525. {
  1526. BUG_ON(iphy == NULL);
  1527. if (ihost->power_control.phys_granted_power <
  1528. ihost->oem_parameters.controller.max_concurrent_dev_spin_up) {
  1529. ihost->power_control.phys_granted_power++;
  1530. sci_phy_consume_power_handler(iphy);
  1531. /*
  1532. * stop and start the power_control timer. When the timer fires, the
  1533. * no_of_phys_granted_power will be set to 0
  1534. */
  1535. if (ihost->power_control.timer_started)
  1536. sci_del_timer(&ihost->power_control.timer);
  1537. sci_mod_timer(&ihost->power_control.timer,
  1538. SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  1539. ihost->power_control.timer_started = true;
  1540. } else {
  1541. /* Add the phy in the waiting list */
  1542. ihost->power_control.requesters[iphy->phy_index] = iphy;
  1543. ihost->power_control.phys_waiting++;
  1544. }
  1545. }
  1546. void sci_controller_power_control_queue_remove(struct isci_host *ihost,
  1547. struct isci_phy *iphy)
  1548. {
  1549. BUG_ON(iphy == NULL);
  1550. if (ihost->power_control.requesters[iphy->phy_index])
  1551. ihost->power_control.phys_waiting--;
  1552. ihost->power_control.requesters[iphy->phy_index] = NULL;
  1553. }
  1554. #define AFE_REGISTER_WRITE_DELAY 10
  1555. /* Initialize the AFE for this phy index. We need to read the AFE setup from
  1556. * the OEM parameters
  1557. */
  1558. static void sci_controller_afe_initialization(struct isci_host *ihost)
  1559. {
  1560. const struct sci_oem_params *oem = &ihost->oem_parameters;
  1561. struct pci_dev *pdev = ihost->pdev;
  1562. u32 afe_status;
  1563. u32 phy_id;
  1564. /* Clear DFX Status registers */
  1565. writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
  1566. udelay(AFE_REGISTER_WRITE_DELAY);
  1567. if (is_b0(pdev)) {
  1568. /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
  1569. * Timer, PM Stagger Timer */
  1570. writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
  1571. udelay(AFE_REGISTER_WRITE_DELAY);
  1572. }
  1573. /* Configure bias currents to normal */
  1574. if (is_a2(pdev))
  1575. writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
  1576. else if (is_b0(pdev) || is_c0(pdev))
  1577. writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
  1578. udelay(AFE_REGISTER_WRITE_DELAY);
  1579. /* Enable PLL */
  1580. if (is_b0(pdev) || is_c0(pdev))
  1581. writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
  1582. else
  1583. writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
  1584. udelay(AFE_REGISTER_WRITE_DELAY);
  1585. /* Wait for the PLL to lock */
  1586. do {
  1587. afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
  1588. udelay(AFE_REGISTER_WRITE_DELAY);
  1589. } while ((afe_status & 0x00001000) == 0);
  1590. if (is_a2(pdev)) {
  1591. /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
  1592. writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
  1593. udelay(AFE_REGISTER_WRITE_DELAY);
  1594. }
  1595. for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
  1596. const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
  1597. if (is_b0(pdev)) {
  1598. /* Configure transmitter SSC parameters */
  1599. writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
  1600. udelay(AFE_REGISTER_WRITE_DELAY);
  1601. } else if (is_c0(pdev)) {
  1602. /* Configure transmitter SSC parameters */
  1603. writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
  1604. udelay(AFE_REGISTER_WRITE_DELAY);
  1605. /*
  1606. * All defaults, except the Receive Word Alignament/Comma Detect
  1607. * Enable....(0xe800) */
  1608. writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
  1609. udelay(AFE_REGISTER_WRITE_DELAY);
  1610. } else {
  1611. /*
  1612. * All defaults, except the Receive Word Alignament/Comma Detect
  1613. * Enable....(0xe800) */
  1614. writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
  1615. udelay(AFE_REGISTER_WRITE_DELAY);
  1616. writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
  1617. udelay(AFE_REGISTER_WRITE_DELAY);
  1618. }
  1619. /*
  1620. * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
  1621. * & increase TX int & ext bias 20%....(0xe85c) */
  1622. if (is_a2(pdev))
  1623. writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1624. else if (is_b0(pdev)) {
  1625. /* Power down TX and RX (PWRDNTX and PWRDNRX) */
  1626. writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1627. udelay(AFE_REGISTER_WRITE_DELAY);
  1628. /*
  1629. * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
  1630. * & increase TX int & ext bias 20%....(0xe85c) */
  1631. writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1632. } else {
  1633. writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1634. udelay(AFE_REGISTER_WRITE_DELAY);
  1635. /*
  1636. * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
  1637. * & increase TX int & ext bias 20%....(0xe85c) */
  1638. writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1639. }
  1640. udelay(AFE_REGISTER_WRITE_DELAY);
  1641. if (is_a2(pdev)) {
  1642. /* Enable TX equalization (0xe824) */
  1643. writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
  1644. udelay(AFE_REGISTER_WRITE_DELAY);
  1645. }
  1646. /*
  1647. * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
  1648. * RDD=0x0(RX Detect Enabled) ....(0xe800) */
  1649. writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
  1650. udelay(AFE_REGISTER_WRITE_DELAY);
  1651. /* Leave DFE/FFE on */
  1652. if (is_a2(pdev))
  1653. writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1654. else if (is_b0(pdev)) {
  1655. writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1656. udelay(AFE_REGISTER_WRITE_DELAY);
  1657. /* Enable TX equalization (0xe824) */
  1658. writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
  1659. } else {
  1660. writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
  1661. udelay(AFE_REGISTER_WRITE_DELAY);
  1662. writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1663. udelay(AFE_REGISTER_WRITE_DELAY);
  1664. /* Enable TX equalization (0xe824) */
  1665. writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
  1666. }
  1667. udelay(AFE_REGISTER_WRITE_DELAY);
  1668. writel(oem_phy->afe_tx_amp_control0,
  1669. &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
  1670. udelay(AFE_REGISTER_WRITE_DELAY);
  1671. writel(oem_phy->afe_tx_amp_control1,
  1672. &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
  1673. udelay(AFE_REGISTER_WRITE_DELAY);
  1674. writel(oem_phy->afe_tx_amp_control2,
  1675. &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
  1676. udelay(AFE_REGISTER_WRITE_DELAY);
  1677. writel(oem_phy->afe_tx_amp_control3,
  1678. &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
  1679. udelay(AFE_REGISTER_WRITE_DELAY);
  1680. }
  1681. /* Transfer control to the PEs */
  1682. writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
  1683. udelay(AFE_REGISTER_WRITE_DELAY);
  1684. }
  1685. static void sci_controller_initialize_power_control(struct isci_host *ihost)
  1686. {
  1687. sci_init_timer(&ihost->power_control.timer, power_control_timeout);
  1688. memset(ihost->power_control.requesters, 0,
  1689. sizeof(ihost->power_control.requesters));
  1690. ihost->power_control.phys_waiting = 0;
  1691. ihost->power_control.phys_granted_power = 0;
  1692. }
  1693. static enum sci_status sci_controller_initialize(struct isci_host *ihost)
  1694. {
  1695. struct sci_base_state_machine *sm = &ihost->sm;
  1696. enum sci_status result = SCI_FAILURE;
  1697. unsigned long i, state, val;
  1698. if (ihost->sm.current_state_id != SCIC_RESET) {
  1699. dev_warn(&ihost->pdev->dev,
  1700. "SCIC Controller initialize operation requested "
  1701. "in invalid state\n");
  1702. return SCI_FAILURE_INVALID_STATE;
  1703. }
  1704. sci_change_state(sm, SCIC_INITIALIZING);
  1705. sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
  1706. ihost->next_phy_to_start = 0;
  1707. ihost->phy_startup_timer_pending = false;
  1708. sci_controller_initialize_power_control(ihost);
  1709. /*
  1710. * There is nothing to do here for B0 since we do not have to
  1711. * program the AFE registers.
  1712. * / @todo The AFE settings are supposed to be correct for the B0 but
  1713. * / presently they seem to be wrong. */
  1714. sci_controller_afe_initialization(ihost);
  1715. /* Take the hardware out of reset */
  1716. writel(0, &ihost->smu_registers->soft_reset_control);
  1717. /*
  1718. * / @todo Provide meaningfull error code for hardware failure
  1719. * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
  1720. for (i = 100; i >= 1; i--) {
  1721. u32 status;
  1722. /* Loop until the hardware reports success */
  1723. udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
  1724. status = readl(&ihost->smu_registers->control_status);
  1725. if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
  1726. break;
  1727. }
  1728. if (i == 0)
  1729. goto out;
  1730. /*
  1731. * Determine what are the actaul device capacities that the
  1732. * hardware will support */
  1733. val = readl(&ihost->smu_registers->device_context_capacity);
  1734. /* Record the smaller of the two capacity values */
  1735. ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
  1736. ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
  1737. ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
  1738. /*
  1739. * Make all PEs that are unassigned match up with the
  1740. * logical ports
  1741. */
  1742. for (i = 0; i < ihost->logical_port_entries; i++) {
  1743. struct scu_port_task_scheduler_group_registers __iomem
  1744. *ptsg = &ihost->scu_registers->peg0.ptsg;
  1745. writel(i, &ptsg->protocol_engine[i]);
  1746. }
  1747. /* Initialize hardware PCI Relaxed ordering in DMA engines */
  1748. val = readl(&ihost->scu_registers->sdma.pdma_configuration);
  1749. val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
  1750. writel(val, &ihost->scu_registers->sdma.pdma_configuration);
  1751. val = readl(&ihost->scu_registers->sdma.cdma_configuration);
  1752. val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
  1753. writel(val, &ihost->scu_registers->sdma.cdma_configuration);
  1754. /*
  1755. * Initialize the PHYs before the PORTs because the PHY registers
  1756. * are accessed during the port initialization.
  1757. */
  1758. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1759. result = sci_phy_initialize(&ihost->phys[i],
  1760. &ihost->scu_registers->peg0.pe[i].tl,
  1761. &ihost->scu_registers->peg0.pe[i].ll);
  1762. if (result != SCI_SUCCESS)
  1763. goto out;
  1764. }
  1765. for (i = 0; i < ihost->logical_port_entries; i++) {
  1766. struct isci_port *iport = &ihost->ports[i];
  1767. iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
  1768. iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
  1769. iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
  1770. }
  1771. result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
  1772. out:
  1773. /* Advance the controller state machine */
  1774. if (result == SCI_SUCCESS)
  1775. state = SCIC_INITIALIZED;
  1776. else
  1777. state = SCIC_FAILED;
  1778. sci_change_state(sm, state);
  1779. return result;
  1780. }
  1781. static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
  1782. struct sci_user_parameters *sci_parms)
  1783. {
  1784. u32 state = ihost->sm.current_state_id;
  1785. if (state == SCIC_RESET ||
  1786. state == SCIC_INITIALIZING ||
  1787. state == SCIC_INITIALIZED) {
  1788. u16 index;
  1789. /*
  1790. * Validate the user parameters. If they are not legal, then
  1791. * return a failure.
  1792. */
  1793. for (index = 0; index < SCI_MAX_PHYS; index++) {
  1794. struct sci_phy_user_params *user_phy;
  1795. user_phy = &sci_parms->phys[index];
  1796. if (!((user_phy->max_speed_generation <=
  1797. SCIC_SDS_PARM_MAX_SPEED) &&
  1798. (user_phy->max_speed_generation >
  1799. SCIC_SDS_PARM_NO_SPEED)))
  1800. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1801. if (user_phy->in_connection_align_insertion_frequency <
  1802. 3)
  1803. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1804. if ((user_phy->in_connection_align_insertion_frequency <
  1805. 3) ||
  1806. (user_phy->align_insertion_frequency == 0) ||
  1807. (user_phy->
  1808. notify_enable_spin_up_insertion_frequency ==
  1809. 0))
  1810. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1811. }
  1812. if ((sci_parms->stp_inactivity_timeout == 0) ||
  1813. (sci_parms->ssp_inactivity_timeout == 0) ||
  1814. (sci_parms->stp_max_occupancy_timeout == 0) ||
  1815. (sci_parms->ssp_max_occupancy_timeout == 0) ||
  1816. (sci_parms->no_outbound_task_timeout == 0))
  1817. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1818. memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
  1819. return SCI_SUCCESS;
  1820. }
  1821. return SCI_FAILURE_INVALID_STATE;
  1822. }
  1823. static int sci_controller_mem_init(struct isci_host *ihost)
  1824. {
  1825. struct device *dev = &ihost->pdev->dev;
  1826. dma_addr_t dma;
  1827. size_t size;
  1828. int err;
  1829. size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
  1830. ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
  1831. if (!ihost->completion_queue)
  1832. return -ENOMEM;
  1833. writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
  1834. writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
  1835. size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
  1836. ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
  1837. GFP_KERNEL);
  1838. if (!ihost->remote_node_context_table)
  1839. return -ENOMEM;
  1840. writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
  1841. writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
  1842. size = ihost->task_context_entries * sizeof(struct scu_task_context),
  1843. ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
  1844. if (!ihost->task_context_table)
  1845. return -ENOMEM;
  1846. ihost->task_context_dma = dma;
  1847. writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
  1848. writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
  1849. err = sci_unsolicited_frame_control_construct(ihost);
  1850. if (err)
  1851. return err;
  1852. /*
  1853. * Inform the silicon as to the location of the UF headers and
  1854. * address table.
  1855. */
  1856. writel(lower_32_bits(ihost->uf_control.headers.physical_address),
  1857. &ihost->scu_registers->sdma.uf_header_base_address_lower);
  1858. writel(upper_32_bits(ihost->uf_control.headers.physical_address),
  1859. &ihost->scu_registers->sdma.uf_header_base_address_upper);
  1860. writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
  1861. &ihost->scu_registers->sdma.uf_address_table_lower);
  1862. writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
  1863. &ihost->scu_registers->sdma.uf_address_table_upper);
  1864. return 0;
  1865. }
  1866. int isci_host_init(struct isci_host *ihost)
  1867. {
  1868. int err = 0, i;
  1869. enum sci_status status;
  1870. struct sci_user_parameters sci_user_params;
  1871. struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
  1872. spin_lock_init(&ihost->state_lock);
  1873. spin_lock_init(&ihost->scic_lock);
  1874. init_waitqueue_head(&ihost->eventq);
  1875. isci_host_change_state(ihost, isci_starting);
  1876. status = sci_controller_construct(ihost, scu_base(ihost),
  1877. smu_base(ihost));
  1878. if (status != SCI_SUCCESS) {
  1879. dev_err(&ihost->pdev->dev,
  1880. "%s: sci_controller_construct failed - status = %x\n",
  1881. __func__,
  1882. status);
  1883. return -ENODEV;
  1884. }
  1885. ihost->sas_ha.dev = &ihost->pdev->dev;
  1886. ihost->sas_ha.lldd_ha = ihost;
  1887. /*
  1888. * grab initial values stored in the controller object for OEM and USER
  1889. * parameters
  1890. */
  1891. isci_user_parameters_get(&sci_user_params);
  1892. status = sci_user_parameters_set(ihost, &sci_user_params);
  1893. if (status != SCI_SUCCESS) {
  1894. dev_warn(&ihost->pdev->dev,
  1895. "%s: sci_user_parameters_set failed\n",
  1896. __func__);
  1897. return -ENODEV;
  1898. }
  1899. /* grab any OEM parameters specified in orom */
  1900. if (pci_info->orom) {
  1901. status = isci_parse_oem_parameters(&ihost->oem_parameters,
  1902. pci_info->orom,
  1903. ihost->id);
  1904. if (status != SCI_SUCCESS) {
  1905. dev_warn(&ihost->pdev->dev,
  1906. "parsing firmware oem parameters failed\n");
  1907. return -EINVAL;
  1908. }
  1909. }
  1910. status = sci_oem_parameters_set(ihost);
  1911. if (status != SCI_SUCCESS) {
  1912. dev_warn(&ihost->pdev->dev,
  1913. "%s: sci_oem_parameters_set failed\n",
  1914. __func__);
  1915. return -ENODEV;
  1916. }
  1917. tasklet_init(&ihost->completion_tasklet,
  1918. isci_host_completion_routine, (unsigned long)ihost);
  1919. INIT_LIST_HEAD(&ihost->requests_to_complete);
  1920. INIT_LIST_HEAD(&ihost->requests_to_errorback);
  1921. spin_lock_irq(&ihost->scic_lock);
  1922. status = sci_controller_initialize(ihost);
  1923. spin_unlock_irq(&ihost->scic_lock);
  1924. if (status != SCI_SUCCESS) {
  1925. dev_warn(&ihost->pdev->dev,
  1926. "%s: sci_controller_initialize failed -"
  1927. " status = 0x%x\n",
  1928. __func__, status);
  1929. return -ENODEV;
  1930. }
  1931. err = sci_controller_mem_init(ihost);
  1932. if (err)
  1933. return err;
  1934. for (i = 0; i < SCI_MAX_PORTS; i++)
  1935. isci_port_init(&ihost->ports[i], ihost, i);
  1936. for (i = 0; i < SCI_MAX_PHYS; i++)
  1937. isci_phy_init(&ihost->phys[i], ihost, i);
  1938. for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
  1939. struct isci_remote_device *idev = &ihost->devices[i];
  1940. INIT_LIST_HEAD(&idev->reqs_in_process);
  1941. INIT_LIST_HEAD(&idev->node);
  1942. }
  1943. for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
  1944. struct isci_request *ireq;
  1945. dma_addr_t dma;
  1946. ireq = dmam_alloc_coherent(&ihost->pdev->dev,
  1947. sizeof(struct isci_request), &dma,
  1948. GFP_KERNEL);
  1949. if (!ireq)
  1950. return -ENOMEM;
  1951. ireq->tc = &ihost->task_context_table[i];
  1952. ireq->owning_controller = ihost;
  1953. spin_lock_init(&ireq->state_lock);
  1954. ireq->request_daddr = dma;
  1955. ireq->isci_host = ihost;
  1956. ihost->reqs[i] = ireq;
  1957. }
  1958. return 0;
  1959. }
  1960. void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
  1961. struct isci_phy *iphy)
  1962. {
  1963. switch (ihost->sm.current_state_id) {
  1964. case SCIC_STARTING:
  1965. sci_del_timer(&ihost->phy_timer);
  1966. ihost->phy_startup_timer_pending = false;
  1967. ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
  1968. iport, iphy);
  1969. sci_controller_start_next_phy(ihost);
  1970. break;
  1971. case SCIC_READY:
  1972. ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
  1973. iport, iphy);
  1974. break;
  1975. default:
  1976. dev_dbg(&ihost->pdev->dev,
  1977. "%s: SCIC Controller linkup event from phy %d in "
  1978. "unexpected state %d\n", __func__, iphy->phy_index,
  1979. ihost->sm.current_state_id);
  1980. }
  1981. }
  1982. void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
  1983. struct isci_phy *iphy)
  1984. {
  1985. switch (ihost->sm.current_state_id) {
  1986. case SCIC_STARTING:
  1987. case SCIC_READY:
  1988. ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
  1989. iport, iphy);
  1990. break;
  1991. default:
  1992. dev_dbg(&ihost->pdev->dev,
  1993. "%s: SCIC Controller linkdown event from phy %d in "
  1994. "unexpected state %d\n",
  1995. __func__,
  1996. iphy->phy_index,
  1997. ihost->sm.current_state_id);
  1998. }
  1999. }
  2000. static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
  2001. {
  2002. u32 index;
  2003. for (index = 0; index < ihost->remote_node_entries; index++) {
  2004. if ((ihost->device_table[index] != NULL) &&
  2005. (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
  2006. return true;
  2007. }
  2008. return false;
  2009. }
  2010. void sci_controller_remote_device_stopped(struct isci_host *ihost,
  2011. struct isci_remote_device *idev)
  2012. {
  2013. if (ihost->sm.current_state_id != SCIC_STOPPING) {
  2014. dev_dbg(&ihost->pdev->dev,
  2015. "SCIC Controller 0x%p remote device stopped event "
  2016. "from device 0x%p in unexpected state %d\n",
  2017. ihost, idev,
  2018. ihost->sm.current_state_id);
  2019. return;
  2020. }
  2021. if (!sci_controller_has_remote_devices_stopping(ihost))
  2022. sci_change_state(&ihost->sm, SCIC_STOPPED);
  2023. }
  2024. void sci_controller_post_request(struct isci_host *ihost, u32 request)
  2025. {
  2026. dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
  2027. __func__, ihost->id, request);
  2028. writel(request, &ihost->smu_registers->post_context_port);
  2029. }
  2030. struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
  2031. {
  2032. u16 task_index;
  2033. u16 task_sequence;
  2034. task_index = ISCI_TAG_TCI(io_tag);
  2035. if (task_index < ihost->task_context_entries) {
  2036. struct isci_request *ireq = ihost->reqs[task_index];
  2037. if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
  2038. task_sequence = ISCI_TAG_SEQ(io_tag);
  2039. if (task_sequence == ihost->io_request_sequence[task_index])
  2040. return ireq;
  2041. }
  2042. }
  2043. return NULL;
  2044. }
  2045. /**
  2046. * This method allocates remote node index and the reserves the remote node
  2047. * context space for use. This method can fail if there are no more remote
  2048. * node index available.
  2049. * @scic: This is the controller object which contains the set of
  2050. * free remote node ids
  2051. * @sci_dev: This is the device object which is requesting the a remote node
  2052. * id
  2053. * @node_id: This is the remote node id that is assinged to the device if one
  2054. * is available
  2055. *
  2056. * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
  2057. * node index available.
  2058. */
  2059. enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
  2060. struct isci_remote_device *idev,
  2061. u16 *node_id)
  2062. {
  2063. u16 node_index;
  2064. u32 remote_node_count = sci_remote_device_node_count(idev);
  2065. node_index = sci_remote_node_table_allocate_remote_node(
  2066. &ihost->available_remote_nodes, remote_node_count
  2067. );
  2068. if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
  2069. ihost->device_table[node_index] = idev;
  2070. *node_id = node_index;
  2071. return SCI_SUCCESS;
  2072. }
  2073. return SCI_FAILURE_INSUFFICIENT_RESOURCES;
  2074. }
  2075. void sci_controller_free_remote_node_context(struct isci_host *ihost,
  2076. struct isci_remote_device *idev,
  2077. u16 node_id)
  2078. {
  2079. u32 remote_node_count = sci_remote_device_node_count(idev);
  2080. if (ihost->device_table[node_id] == idev) {
  2081. ihost->device_table[node_id] = NULL;
  2082. sci_remote_node_table_release_remote_node_index(
  2083. &ihost->available_remote_nodes, remote_node_count, node_id
  2084. );
  2085. }
  2086. }
  2087. void sci_controller_copy_sata_response(void *response_buffer,
  2088. void *frame_header,
  2089. void *frame_buffer)
  2090. {
  2091. /* XXX type safety? */
  2092. memcpy(response_buffer, frame_header, sizeof(u32));
  2093. memcpy(response_buffer + sizeof(u32),
  2094. frame_buffer,
  2095. sizeof(struct dev_to_host_fis) - sizeof(u32));
  2096. }
  2097. void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
  2098. {
  2099. if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
  2100. writel(ihost->uf_control.get,
  2101. &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
  2102. }
  2103. void isci_tci_free(struct isci_host *ihost, u16 tci)
  2104. {
  2105. u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
  2106. ihost->tci_pool[tail] = tci;
  2107. ihost->tci_tail = tail + 1;
  2108. }
  2109. static u16 isci_tci_alloc(struct isci_host *ihost)
  2110. {
  2111. u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
  2112. u16 tci = ihost->tci_pool[head];
  2113. ihost->tci_head = head + 1;
  2114. return tci;
  2115. }
  2116. static u16 isci_tci_space(struct isci_host *ihost)
  2117. {
  2118. return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
  2119. }
  2120. u16 isci_alloc_tag(struct isci_host *ihost)
  2121. {
  2122. if (isci_tci_space(ihost)) {
  2123. u16 tci = isci_tci_alloc(ihost);
  2124. u8 seq = ihost->io_request_sequence[tci];
  2125. return ISCI_TAG(seq, tci);
  2126. }
  2127. return SCI_CONTROLLER_INVALID_IO_TAG;
  2128. }
  2129. enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
  2130. {
  2131. u16 tci = ISCI_TAG_TCI(io_tag);
  2132. u16 seq = ISCI_TAG_SEQ(io_tag);
  2133. /* prevent tail from passing head */
  2134. if (isci_tci_active(ihost) == 0)
  2135. return SCI_FAILURE_INVALID_IO_TAG;
  2136. if (seq == ihost->io_request_sequence[tci]) {
  2137. ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
  2138. isci_tci_free(ihost, tci);
  2139. return SCI_SUCCESS;
  2140. }
  2141. return SCI_FAILURE_INVALID_IO_TAG;
  2142. }
  2143. enum sci_status sci_controller_start_io(struct isci_host *ihost,
  2144. struct isci_remote_device *idev,
  2145. struct isci_request *ireq)
  2146. {
  2147. enum sci_status status;
  2148. if (ihost->sm.current_state_id != SCIC_READY) {
  2149. dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
  2150. return SCI_FAILURE_INVALID_STATE;
  2151. }
  2152. status = sci_remote_device_start_io(ihost, idev, ireq);
  2153. if (status != SCI_SUCCESS)
  2154. return status;
  2155. set_bit(IREQ_ACTIVE, &ireq->flags);
  2156. sci_controller_post_request(ihost, ireq->post_context);
  2157. return SCI_SUCCESS;
  2158. }
  2159. enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
  2160. struct isci_remote_device *idev,
  2161. struct isci_request *ireq)
  2162. {
  2163. /* terminate an ongoing (i.e. started) core IO request. This does not
  2164. * abort the IO request at the target, but rather removes the IO
  2165. * request from the host controller.
  2166. */
  2167. enum sci_status status;
  2168. if (ihost->sm.current_state_id != SCIC_READY) {
  2169. dev_warn(&ihost->pdev->dev,
  2170. "invalid state to terminate request\n");
  2171. return SCI_FAILURE_INVALID_STATE;
  2172. }
  2173. status = sci_io_request_terminate(ireq);
  2174. if (status != SCI_SUCCESS)
  2175. return status;
  2176. /*
  2177. * Utilize the original post context command and or in the POST_TC_ABORT
  2178. * request sub-type.
  2179. */
  2180. sci_controller_post_request(ihost,
  2181. ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
  2182. return SCI_SUCCESS;
  2183. }
  2184. /**
  2185. * sci_controller_complete_io() - This method will perform core specific
  2186. * completion operations for an IO request. After this method is invoked,
  2187. * the user should consider the IO request as invalid until it is properly
  2188. * reused (i.e. re-constructed).
  2189. * @ihost: The handle to the controller object for which to complete the
  2190. * IO request.
  2191. * @idev: The handle to the remote device object for which to complete
  2192. * the IO request.
  2193. * @ireq: the handle to the io request object to complete.
  2194. */
  2195. enum sci_status sci_controller_complete_io(struct isci_host *ihost,
  2196. struct isci_remote_device *idev,
  2197. struct isci_request *ireq)
  2198. {
  2199. enum sci_status status;
  2200. u16 index;
  2201. switch (ihost->sm.current_state_id) {
  2202. case SCIC_STOPPING:
  2203. /* XXX: Implement this function */
  2204. return SCI_FAILURE;
  2205. case SCIC_READY:
  2206. status = sci_remote_device_complete_io(ihost, idev, ireq);
  2207. if (status != SCI_SUCCESS)
  2208. return status;
  2209. index = ISCI_TAG_TCI(ireq->io_tag);
  2210. clear_bit(IREQ_ACTIVE, &ireq->flags);
  2211. return SCI_SUCCESS;
  2212. default:
  2213. dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
  2214. return SCI_FAILURE_INVALID_STATE;
  2215. }
  2216. }
  2217. enum sci_status sci_controller_continue_io(struct isci_request *ireq)
  2218. {
  2219. struct isci_host *ihost = ireq->owning_controller;
  2220. if (ihost->sm.current_state_id != SCIC_READY) {
  2221. dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
  2222. return SCI_FAILURE_INVALID_STATE;
  2223. }
  2224. set_bit(IREQ_ACTIVE, &ireq->flags);
  2225. sci_controller_post_request(ihost, ireq->post_context);
  2226. return SCI_SUCCESS;
  2227. }
  2228. /**
  2229. * sci_controller_start_task() - This method is called by the SCIC user to
  2230. * send/start a framework task management request.
  2231. * @controller: the handle to the controller object for which to start the task
  2232. * management request.
  2233. * @remote_device: the handle to the remote device object for which to start
  2234. * the task management request.
  2235. * @task_request: the handle to the task request object to start.
  2236. */
  2237. enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
  2238. struct isci_remote_device *idev,
  2239. struct isci_request *ireq)
  2240. {
  2241. enum sci_status status;
  2242. if (ihost->sm.current_state_id != SCIC_READY) {
  2243. dev_warn(&ihost->pdev->dev,
  2244. "%s: SCIC Controller starting task from invalid "
  2245. "state\n",
  2246. __func__);
  2247. return SCI_TASK_FAILURE_INVALID_STATE;
  2248. }
  2249. status = sci_remote_device_start_task(ihost, idev, ireq);
  2250. switch (status) {
  2251. case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
  2252. set_bit(IREQ_ACTIVE, &ireq->flags);
  2253. /*
  2254. * We will let framework know this task request started successfully,
  2255. * although core is still woring on starting the request (to post tc when
  2256. * RNC is resumed.)
  2257. */
  2258. return SCI_SUCCESS;
  2259. case SCI_SUCCESS:
  2260. set_bit(IREQ_ACTIVE, &ireq->flags);
  2261. sci_controller_post_request(ihost, ireq->post_context);
  2262. break;
  2263. default:
  2264. break;
  2265. }
  2266. return status;
  2267. }