efuse.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * Tmis program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * tmis program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * Tme full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "wifi.h"
  30. #include "efuse.h"
  31. static const u8 MAX_PGPKT_SIZE = 9;
  32. static const u8 PGPKT_DATA_SIZE = 8;
  33. static const int EFUSE_MAX_SIZE = 512;
  34. static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
  35. static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  36. {0, 0, 0, 2},
  37. {0, 1, 0, 2},
  38. {0, 2, 0, 2},
  39. {1, 0, 0, 1},
  40. {1, 0, 1, 1},
  41. {1, 1, 0, 1},
  42. {1, 1, 1, 3},
  43. {1, 3, 0, 17},
  44. {3, 3, 1, 48},
  45. {10, 0, 0, 6},
  46. {10, 3, 0, 1},
  47. {10, 3, 1, 1},
  48. {11, 0, 0, 28}
  49. };
  50. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  51. u8 *value);
  52. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  53. u16 *value);
  54. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  55. u32 *value);
  56. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  57. u8 value);
  58. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  59. u16 value);
  60. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  61. u32 value);
  62. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
  63. u8 *data);
  64. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  65. u8 data);
  66. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  67. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  68. u8 *data);
  69. static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  70. u8 word_en, u8 *data);
  71. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  72. u8 *targetdata);
  73. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  74. u16 efuse_addr, u8 word_en, u8 *data);
  75. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
  76. u8 pwrstate);
  77. static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  78. static u8 efuse_calculate_word_cnts(u8 word_en);
  79. void efuse_initialize(struct ieee80211_hw *hw)
  80. {
  81. struct rtl_priv *rtlpriv = rtl_priv(hw);
  82. u8 bytetemp;
  83. u8 temp;
  84. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  85. temp = bytetemp | 0x20;
  86. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  87. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  88. temp = bytetemp & 0xFE;
  89. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  90. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  91. temp = bytetemp | 0x80;
  92. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
  93. rtl_write_byte(rtlpriv, 0x2F8, 0x3);
  94. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  95. }
  96. u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
  97. {
  98. struct rtl_priv *rtlpriv = rtl_priv(hw);
  99. u8 data;
  100. u8 bytetemp;
  101. u8 temp;
  102. u32 k = 0;
  103. const u32 efuse_len =
  104. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  105. if (address < efuse_len) {
  106. temp = address & 0xFF;
  107. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  108. temp);
  109. bytetemp = rtl_read_byte(rtlpriv,
  110. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  111. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  112. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  113. temp);
  114. bytetemp = rtl_read_byte(rtlpriv,
  115. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  116. temp = bytetemp & 0x7F;
  117. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  118. temp);
  119. bytetemp = rtl_read_byte(rtlpriv,
  120. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  121. while (!(bytetemp & 0x80)) {
  122. bytetemp = rtl_read_byte(rtlpriv,
  123. rtlpriv->cfg->
  124. maps[EFUSE_CTRL] + 3);
  125. k++;
  126. if (k == 1000) {
  127. k = 0;
  128. break;
  129. }
  130. }
  131. data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  132. return data;
  133. } else
  134. return 0xFF;
  135. }
  136. EXPORT_SYMBOL(efuse_read_1byte);
  137. void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
  138. {
  139. struct rtl_priv *rtlpriv = rtl_priv(hw);
  140. u8 bytetemp;
  141. u8 temp;
  142. u32 k = 0;
  143. const u32 efuse_len =
  144. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  145. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  146. ("Addr=%x Data =%x\n", address, value));
  147. if (address < efuse_len) {
  148. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
  149. temp = address & 0xFF;
  150. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  151. temp);
  152. bytetemp = rtl_read_byte(rtlpriv,
  153. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  154. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  155. rtl_write_byte(rtlpriv,
  156. rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
  157. bytetemp = rtl_read_byte(rtlpriv,
  158. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  159. temp = bytetemp | 0x80;
  160. rtl_write_byte(rtlpriv,
  161. rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
  162. bytetemp = rtl_read_byte(rtlpriv,
  163. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  164. while (bytetemp & 0x80) {
  165. bytetemp = rtl_read_byte(rtlpriv,
  166. rtlpriv->cfg->
  167. maps[EFUSE_CTRL] + 3);
  168. k++;
  169. if (k == 100) {
  170. k = 0;
  171. break;
  172. }
  173. }
  174. }
  175. }
  176. void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
  177. {
  178. struct rtl_priv *rtlpriv = rtl_priv(hw);
  179. u32 value32;
  180. u8 readbyte;
  181. u16 retry;
  182. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  183. (_offset & 0xff));
  184. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  185. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  186. ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  187. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  188. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  189. (readbyte & 0x7f));
  190. retry = 0;
  191. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  192. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  193. value32 = rtl_read_dword(rtlpriv,
  194. rtlpriv->cfg->maps[EFUSE_CTRL]);
  195. retry++;
  196. }
  197. udelay(50);
  198. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  199. *pbuf = (u8) (value32 & 0xff);
  200. }
  201. void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
  202. {
  203. struct rtl_priv *rtlpriv = rtl_priv(hw);
  204. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  205. u8 *efuse_tbl;
  206. u8 rtemp8[1];
  207. u16 efuse_addr = 0;
  208. u8 offset, wren;
  209. u16 i;
  210. u16 j;
  211. const u16 efuse_max_section =
  212. rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
  213. const u32 efuse_len =
  214. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  215. u16 **efuse_word;
  216. u16 efuse_utilized = 0;
  217. u8 efuse_usage;
  218. if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
  219. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  220. ("read_efuse(): Invalid offset(%#x) with read "
  221. "bytes(%#x)!!\n", _offset, _size_byte));
  222. return;
  223. }
  224. /* allocate memory for efuse_tbl and efuse_word */
  225. efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
  226. sizeof(u8), GFP_ATOMIC);
  227. if (!efuse_tbl)
  228. return;
  229. efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
  230. if (!efuse_word)
  231. goto done;
  232. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  233. efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
  234. GFP_ATOMIC);
  235. if (!efuse_word[i])
  236. goto done;
  237. }
  238. for (i = 0; i < efuse_max_section; i++)
  239. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
  240. efuse_word[j][i] = 0xFFFF;
  241. read_efuse_byte(hw, efuse_addr, rtemp8);
  242. if (*rtemp8 != 0xFF) {
  243. efuse_utilized++;
  244. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  245. ("Addr=%d\n", efuse_addr));
  246. efuse_addr++;
  247. }
  248. while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
  249. offset = ((*rtemp8 >> 4) & 0x0f);
  250. if (offset < efuse_max_section) {
  251. wren = (*rtemp8 & 0x0f);
  252. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  253. ("offset-%d Worden=%x\n", offset, wren));
  254. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  255. if (!(wren & 0x01)) {
  256. RTPRINT(rtlpriv, FEEPROM,
  257. EFUSE_READ_ALL, ("Addr=%d\n",
  258. efuse_addr));
  259. read_efuse_byte(hw, efuse_addr, rtemp8);
  260. efuse_addr++;
  261. efuse_utilized++;
  262. efuse_word[i][offset] =
  263. (*rtemp8 & 0xff);
  264. if (efuse_addr >= efuse_len)
  265. break;
  266. RTPRINT(rtlpriv, FEEPROM,
  267. EFUSE_READ_ALL, ("Addr=%d\n",
  268. efuse_addr));
  269. read_efuse_byte(hw, efuse_addr, rtemp8);
  270. efuse_addr++;
  271. efuse_utilized++;
  272. efuse_word[i][offset] |=
  273. (((u16)*rtemp8 << 8) & 0xff00);
  274. if (efuse_addr >= efuse_len)
  275. break;
  276. }
  277. wren >>= 1;
  278. }
  279. }
  280. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  281. ("Addr=%d\n", efuse_addr));
  282. read_efuse_byte(hw, efuse_addr, rtemp8);
  283. if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
  284. efuse_utilized++;
  285. efuse_addr++;
  286. }
  287. }
  288. for (i = 0; i < efuse_max_section; i++) {
  289. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  290. efuse_tbl[(i * 8) + (j * 2)] =
  291. (efuse_word[j][i] & 0xff);
  292. efuse_tbl[(i * 8) + ((j * 2) + 1)] =
  293. ((efuse_word[j][i] >> 8) & 0xff);
  294. }
  295. }
  296. for (i = 0; i < _size_byte; i++)
  297. pbuf[i] = efuse_tbl[_offset + i];
  298. rtlefuse->efuse_usedbytes = efuse_utilized;
  299. efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
  300. rtlefuse->efuse_usedpercentage = efuse_usage;
  301. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
  302. (u8 *)&efuse_utilized);
  303. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
  304. (u8 *)&efuse_usage);
  305. done:
  306. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
  307. kfree(efuse_word[i]);
  308. kfree(efuse_word);
  309. kfree(efuse_tbl);
  310. }
  311. bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
  312. {
  313. struct rtl_priv *rtlpriv = rtl_priv(hw);
  314. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  315. u8 section_idx, i, Base;
  316. u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
  317. bool wordchanged, result = true;
  318. for (section_idx = 0; section_idx < 16; section_idx++) {
  319. Base = section_idx * 8;
  320. wordchanged = false;
  321. for (i = 0; i < 8; i = i + 2) {
  322. if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
  323. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
  324. (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
  325. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
  326. 1])) {
  327. words_need++;
  328. wordchanged = true;
  329. }
  330. }
  331. if (wordchanged == true)
  332. hdr_num++;
  333. }
  334. totalbytes = hdr_num + words_need * 2;
  335. efuse_used = rtlefuse->efuse_usedbytes;
  336. if ((totalbytes + efuse_used) >=
  337. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
  338. result = false;
  339. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  340. ("efuse_shadow_update_chk(): totalbytes(%#x), "
  341. "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
  342. totalbytes, hdr_num, words_need, efuse_used));
  343. return result;
  344. }
  345. void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
  346. u16 offset, u32 *value)
  347. {
  348. if (type == 1)
  349. efuse_shadow_read_1byte(hw, offset, (u8 *) value);
  350. else if (type == 2)
  351. efuse_shadow_read_2byte(hw, offset, (u16 *) value);
  352. else if (type == 4)
  353. efuse_shadow_read_4byte(hw, offset, (u32 *) value);
  354. }
  355. void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
  356. u32 value)
  357. {
  358. if (type == 1)
  359. efuse_shadow_write_1byte(hw, offset, (u8) value);
  360. else if (type == 2)
  361. efuse_shadow_write_2byte(hw, offset, (u16) value);
  362. else if (type == 4)
  363. efuse_shadow_write_4byte(hw, offset, value);
  364. }
  365. bool efuse_shadow_update(struct ieee80211_hw *hw)
  366. {
  367. struct rtl_priv *rtlpriv = rtl_priv(hw);
  368. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  369. u16 i, offset, base;
  370. u8 word_en = 0x0F;
  371. u8 first_pg = false;
  372. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
  373. if (!efuse_shadow_update_chk(hw)) {
  374. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  375. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  376. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  377. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  378. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  379. ("<---efuse out of capacity!!\n"));
  380. return false;
  381. }
  382. efuse_power_switch(hw, true, true);
  383. for (offset = 0; offset < 16; offset++) {
  384. word_en = 0x0F;
  385. base = offset * 8;
  386. for (i = 0; i < 8; i++) {
  387. if (first_pg == true) {
  388. word_en &= ~(BIT(i / 2));
  389. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  390. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  391. } else {
  392. if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
  393. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
  394. word_en &= ~(BIT(i / 2));
  395. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  396. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  397. }
  398. }
  399. }
  400. if (word_en != 0x0F) {
  401. u8 tmpdata[8];
  402. memcpy(tmpdata,
  403. &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
  404. 8);
  405. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
  406. ("U-efuse\n"), tmpdata, 8);
  407. if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
  408. tmpdata)) {
  409. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  410. ("PG section(%#x) fail!!\n", offset));
  411. break;
  412. }
  413. }
  414. }
  415. efuse_power_switch(hw, true, false);
  416. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  417. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  418. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  419. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  420. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
  421. return true;
  422. }
  423. void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
  424. {
  425. struct rtl_priv *rtlpriv = rtl_priv(hw);
  426. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  427. if (rtlefuse->autoload_failflag == true)
  428. memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
  429. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  430. else
  431. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  432. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  433. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  434. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  435. }
  436. EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
  437. void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
  438. {
  439. u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
  440. efuse_power_switch(hw, true, true);
  441. efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
  442. efuse_power_switch(hw, true, false);
  443. }
  444. void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
  445. {
  446. }
  447. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
  448. u16 offset, u8 *value)
  449. {
  450. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  451. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  452. }
  453. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
  454. u16 offset, u16 *value)
  455. {
  456. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  457. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  458. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  459. }
  460. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
  461. u16 offset, u32 *value)
  462. {
  463. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  464. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  465. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  466. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
  467. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
  468. }
  469. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
  470. u16 offset, u8 value)
  471. {
  472. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  473. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
  474. }
  475. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
  476. u16 offset, u16 value)
  477. {
  478. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  479. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
  480. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
  481. }
  482. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
  483. u16 offset, u32 value)
  484. {
  485. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  486. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
  487. (u8) (value & 0x000000FF);
  488. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
  489. (u8) ((value >> 8) & 0x0000FF);
  490. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
  491. (u8) ((value >> 16) & 0x00FF);
  492. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
  493. (u8) ((value >> 24) & 0xFF);
  494. }
  495. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
  496. {
  497. struct rtl_priv *rtlpriv = rtl_priv(hw);
  498. u8 tmpidx = 0;
  499. int result;
  500. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  501. (u8) (addr & 0xff));
  502. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  503. ((u8) ((addr >> 8) & 0x03)) |
  504. (rtl_read_byte(rtlpriv,
  505. rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
  506. 0xFC));
  507. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  508. while (!(0x80 & rtl_read_byte(rtlpriv,
  509. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  510. && (tmpidx < 100)) {
  511. tmpidx++;
  512. }
  513. if (tmpidx < 100) {
  514. *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  515. result = true;
  516. } else {
  517. *data = 0xff;
  518. result = false;
  519. }
  520. return result;
  521. }
  522. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
  523. {
  524. struct rtl_priv *rtlpriv = rtl_priv(hw);
  525. u8 tmpidx = 0;
  526. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  527. ("Addr = %x Data=%x\n", addr, data));
  528. rtl_write_byte(rtlpriv,
  529. rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
  530. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  531. (rtl_read_byte(rtlpriv,
  532. rtlpriv->cfg->maps[EFUSE_CTRL] +
  533. 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
  534. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
  535. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
  536. while ((0x80 & rtl_read_byte(rtlpriv,
  537. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  538. && (tmpidx < 100)) {
  539. tmpidx++;
  540. }
  541. if (tmpidx < 100)
  542. return true;
  543. return false;
  544. }
  545. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
  546. {
  547. struct rtl_priv *rtlpriv = rtl_priv(hw);
  548. efuse_power_switch(hw, false, true);
  549. read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
  550. efuse_power_switch(hw, false, false);
  551. }
  552. static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  553. u8 efuse_data, u8 offset, u8 *tmpdata,
  554. u8 *readstate)
  555. {
  556. bool dataempty = true;
  557. u8 hoffset;
  558. u8 tmpidx;
  559. u8 hworden;
  560. u8 word_cnts;
  561. hoffset = (efuse_data >> 4) & 0x0F;
  562. hworden = efuse_data & 0x0F;
  563. word_cnts = efuse_calculate_word_cnts(hworden);
  564. if (hoffset == offset) {
  565. for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
  566. if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
  567. &efuse_data)) {
  568. tmpdata[tmpidx] = efuse_data;
  569. if (efuse_data != 0xff)
  570. dataempty = true;
  571. }
  572. }
  573. if (dataempty == true) {
  574. *readstate = PG_STATE_DATA;
  575. } else {
  576. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  577. *readstate = PG_STATE_HEADER;
  578. }
  579. } else {
  580. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  581. *readstate = PG_STATE_HEADER;
  582. }
  583. }
  584. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
  585. {
  586. u8 readstate = PG_STATE_HEADER;
  587. bool continual = true;
  588. u8 efuse_data, word_cnts = 0;
  589. u16 efuse_addr = 0;
  590. u8 tmpdata[8];
  591. if (data == NULL)
  592. return false;
  593. if (offset > 15)
  594. return false;
  595. memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  596. memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  597. while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
  598. if (readstate & PG_STATE_HEADER) {
  599. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  600. && (efuse_data != 0xFF))
  601. efuse_read_data_case1(hw, &efuse_addr,
  602. efuse_data,
  603. offset, tmpdata,
  604. &readstate);
  605. else
  606. continual = false;
  607. } else if (readstate & PG_STATE_DATA) {
  608. efuse_word_enable_data_read(0, tmpdata, data);
  609. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  610. readstate = PG_STATE_HEADER;
  611. }
  612. }
  613. if ((data[0] == 0xff) && (data[1] == 0xff) &&
  614. (data[2] == 0xff) && (data[3] == 0xff) &&
  615. (data[4] == 0xff) && (data[5] == 0xff) &&
  616. (data[6] == 0xff) && (data[7] == 0xff))
  617. return false;
  618. else
  619. return true;
  620. }
  621. static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  622. u8 efuse_data, u8 offset, int *continual,
  623. u8 *write_state, struct pgpkt_struct *target_pkt,
  624. int *repeat_times, int *result, u8 word_en)
  625. {
  626. struct rtl_priv *rtlpriv = rtl_priv(hw);
  627. struct pgpkt_struct tmp_pkt;
  628. bool dataempty = true;
  629. u8 originaldata[8 * sizeof(u8)];
  630. u8 badworden = 0x0F;
  631. u8 match_word_en, tmp_word_en;
  632. u8 tmpindex;
  633. u8 tmp_header = efuse_data;
  634. u8 tmp_word_cnts;
  635. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  636. tmp_pkt.word_en = tmp_header & 0x0F;
  637. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  638. if (tmp_pkt.offset != target_pkt->offset) {
  639. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  640. *write_state = PG_STATE_HEADER;
  641. } else {
  642. for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
  643. u16 address = *efuse_addr + 1 + tmpindex;
  644. if (efuse_one_byte_read(hw, address,
  645. &efuse_data) && (efuse_data != 0xFF))
  646. dataempty = false;
  647. }
  648. if (dataempty == false) {
  649. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  650. *write_state = PG_STATE_HEADER;
  651. } else {
  652. match_word_en = 0x0F;
  653. if (!((target_pkt->word_en & BIT(0)) |
  654. (tmp_pkt.word_en & BIT(0))))
  655. match_word_en &= (~BIT(0));
  656. if (!((target_pkt->word_en & BIT(1)) |
  657. (tmp_pkt.word_en & BIT(1))))
  658. match_word_en &= (~BIT(1));
  659. if (!((target_pkt->word_en & BIT(2)) |
  660. (tmp_pkt.word_en & BIT(2))))
  661. match_word_en &= (~BIT(2));
  662. if (!((target_pkt->word_en & BIT(3)) |
  663. (tmp_pkt.word_en & BIT(3))))
  664. match_word_en &= (~BIT(3));
  665. if ((match_word_en & 0x0F) != 0x0F) {
  666. badworden = efuse_word_enable_data_write(
  667. hw, *efuse_addr + 1,
  668. tmp_pkt.word_en,
  669. target_pkt->data);
  670. if (0x0F != (badworden & 0x0F)) {
  671. u8 reorg_offset = offset;
  672. u8 reorg_worden = badworden;
  673. efuse_pg_packet_write(hw, reorg_offset,
  674. reorg_worden,
  675. originaldata);
  676. }
  677. tmp_word_en = 0x0F;
  678. if ((target_pkt->word_en & BIT(0)) ^
  679. (match_word_en & BIT(0)))
  680. tmp_word_en &= (~BIT(0));
  681. if ((target_pkt->word_en & BIT(1)) ^
  682. (match_word_en & BIT(1)))
  683. tmp_word_en &= (~BIT(1));
  684. if ((target_pkt->word_en & BIT(2)) ^
  685. (match_word_en & BIT(2)))
  686. tmp_word_en &= (~BIT(2));
  687. if ((target_pkt->word_en & BIT(3)) ^
  688. (match_word_en & BIT(3)))
  689. tmp_word_en &= (~BIT(3));
  690. if ((tmp_word_en & 0x0F) != 0x0F) {
  691. *efuse_addr = efuse_get_current_size(hw);
  692. target_pkt->offset = offset;
  693. target_pkt->word_en = tmp_word_en;
  694. } else {
  695. *continual = false;
  696. }
  697. *write_state = PG_STATE_HEADER;
  698. *repeat_times += 1;
  699. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  700. *continual = false;
  701. *result = false;
  702. }
  703. } else {
  704. *efuse_addr += (2 * tmp_word_cnts) + 1;
  705. target_pkt->offset = offset;
  706. target_pkt->word_en = word_en;
  707. *write_state = PG_STATE_HEADER;
  708. }
  709. }
  710. }
  711. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
  712. }
  713. static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
  714. int *continual, u8 *write_state,
  715. struct pgpkt_struct target_pkt,
  716. int *repeat_times, int *result)
  717. {
  718. struct rtl_priv *rtlpriv = rtl_priv(hw);
  719. struct pgpkt_struct tmp_pkt;
  720. u8 pg_header;
  721. u8 tmp_header;
  722. u8 originaldata[8 * sizeof(u8)];
  723. u8 tmp_word_cnts;
  724. u8 badworden = 0x0F;
  725. pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
  726. efuse_one_byte_write(hw, *efuse_addr, pg_header);
  727. efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
  728. if (tmp_header == pg_header) {
  729. *write_state = PG_STATE_DATA;
  730. } else if (tmp_header == 0xFF) {
  731. *write_state = PG_STATE_HEADER;
  732. *repeat_times += 1;
  733. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  734. *continual = false;
  735. *result = false;
  736. }
  737. } else {
  738. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  739. tmp_pkt.word_en = tmp_header & 0x0F;
  740. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  741. memset(originaldata, 0xff, 8 * sizeof(u8));
  742. if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
  743. badworden = efuse_word_enable_data_write(hw,
  744. *efuse_addr + 1, tmp_pkt.word_en,
  745. originaldata);
  746. if (0x0F != (badworden & 0x0F)) {
  747. u8 reorg_offset = tmp_pkt.offset;
  748. u8 reorg_worden = badworden;
  749. efuse_pg_packet_write(hw, reorg_offset,
  750. reorg_worden,
  751. originaldata);
  752. *efuse_addr = efuse_get_current_size(hw);
  753. } else {
  754. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
  755. + 1;
  756. }
  757. } else {
  758. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  759. }
  760. *write_state = PG_STATE_HEADER;
  761. *repeat_times += 1;
  762. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  763. *continual = false;
  764. *result = false;
  765. }
  766. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  767. ("efuse PG_STATE_HEADER-2\n"));
  768. }
  769. }
  770. static int efuse_pg_packet_write(struct ieee80211_hw *hw,
  771. u8 offset, u8 word_en, u8 *data)
  772. {
  773. struct rtl_priv *rtlpriv = rtl_priv(hw);
  774. struct pgpkt_struct target_pkt;
  775. u8 write_state = PG_STATE_HEADER;
  776. int continual = true, dataempty = true, result = true;
  777. u16 efuse_addr = 0;
  778. u8 efuse_data;
  779. u8 target_word_cnts = 0;
  780. u8 badworden = 0x0F;
  781. static int repeat_times;
  782. if (efuse_get_current_size(hw) >=
  783. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  784. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  785. ("efuse_pg_packet_write error\n"));
  786. return false;
  787. }
  788. target_pkt.offset = offset;
  789. target_pkt.word_en = word_en;
  790. memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
  791. efuse_word_enable_data_read(word_en, data, target_pkt.data);
  792. target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
  793. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
  794. while (continual && (efuse_addr <
  795. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
  796. if (write_state == PG_STATE_HEADER) {
  797. dataempty = true;
  798. badworden = 0x0F;
  799. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  800. ("efuse PG_STATE_HEADER\n"));
  801. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  802. (efuse_data != 0xFF))
  803. efuse_write_data_case1(hw, &efuse_addr,
  804. efuse_data, offset,
  805. &continual,
  806. &write_state, &target_pkt,
  807. &repeat_times, &result,
  808. word_en);
  809. else
  810. efuse_write_data_case2(hw, &efuse_addr,
  811. &continual,
  812. &write_state,
  813. target_pkt,
  814. &repeat_times,
  815. &result);
  816. } else if (write_state == PG_STATE_DATA) {
  817. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  818. ("efuse PG_STATE_DATA\n"));
  819. badworden =
  820. efuse_word_enable_data_write(hw, efuse_addr + 1,
  821. target_pkt.word_en,
  822. target_pkt.data);
  823. if ((badworden & 0x0F) == 0x0F) {
  824. continual = false;
  825. } else {
  826. efuse_addr += (2 * target_word_cnts) + 1;
  827. target_pkt.offset = offset;
  828. target_pkt.word_en = badworden;
  829. target_word_cnts =
  830. efuse_calculate_word_cnts(target_pkt.
  831. word_en);
  832. write_state = PG_STATE_HEADER;
  833. repeat_times++;
  834. if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  835. continual = false;
  836. result = false;
  837. }
  838. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  839. ("efuse PG_STATE_HEADER-3\n"));
  840. }
  841. }
  842. }
  843. if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  844. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  845. ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
  846. }
  847. return true;
  848. }
  849. static void efuse_word_enable_data_read(u8 word_en,
  850. u8 *sourdata, u8 *targetdata)
  851. {
  852. if (!(word_en & BIT(0))) {
  853. targetdata[0] = sourdata[0];
  854. targetdata[1] = sourdata[1];
  855. }
  856. if (!(word_en & BIT(1))) {
  857. targetdata[2] = sourdata[2];
  858. targetdata[3] = sourdata[3];
  859. }
  860. if (!(word_en & BIT(2))) {
  861. targetdata[4] = sourdata[4];
  862. targetdata[5] = sourdata[5];
  863. }
  864. if (!(word_en & BIT(3))) {
  865. targetdata[6] = sourdata[6];
  866. targetdata[7] = sourdata[7];
  867. }
  868. }
  869. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  870. u16 efuse_addr, u8 word_en, u8 *data)
  871. {
  872. struct rtl_priv *rtlpriv = rtl_priv(hw);
  873. u16 tmpaddr;
  874. u16 start_addr = efuse_addr;
  875. u8 badworden = 0x0F;
  876. u8 tmpdata[8];
  877. memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
  878. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  879. ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
  880. if (!(word_en & BIT(0))) {
  881. tmpaddr = start_addr;
  882. efuse_one_byte_write(hw, start_addr++, data[0]);
  883. efuse_one_byte_write(hw, start_addr++, data[1]);
  884. efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
  885. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
  886. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  887. badworden &= (~BIT(0));
  888. }
  889. if (!(word_en & BIT(1))) {
  890. tmpaddr = start_addr;
  891. efuse_one_byte_write(hw, start_addr++, data[2]);
  892. efuse_one_byte_write(hw, start_addr++, data[3]);
  893. efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
  894. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
  895. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  896. badworden &= (~BIT(1));
  897. }
  898. if (!(word_en & BIT(2))) {
  899. tmpaddr = start_addr;
  900. efuse_one_byte_write(hw, start_addr++, data[4]);
  901. efuse_one_byte_write(hw, start_addr++, data[5]);
  902. efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
  903. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
  904. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  905. badworden &= (~BIT(2));
  906. }
  907. if (!(word_en & BIT(3))) {
  908. tmpaddr = start_addr;
  909. efuse_one_byte_write(hw, start_addr++, data[6]);
  910. efuse_one_byte_write(hw, start_addr++, data[7]);
  911. efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
  912. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
  913. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  914. badworden &= (~BIT(3));
  915. }
  916. return badworden;
  917. }
  918. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
  919. {
  920. struct rtl_priv *rtlpriv = rtl_priv(hw);
  921. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  922. u8 tempval;
  923. u16 tmpV16;
  924. if (pwrstate && (rtlhal->hw_type !=
  925. HARDWARE_TYPE_RTL8192SE)) {
  926. tmpV16 = rtl_read_word(rtlpriv,
  927. rtlpriv->cfg->maps[SYS_ISO_CTRL]);
  928. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
  929. tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
  930. rtl_write_word(rtlpriv,
  931. rtlpriv->cfg->maps[SYS_ISO_CTRL],
  932. tmpV16);
  933. }
  934. tmpV16 = rtl_read_word(rtlpriv,
  935. rtlpriv->cfg->maps[SYS_FUNC_EN]);
  936. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
  937. tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
  938. rtl_write_word(rtlpriv,
  939. rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
  940. }
  941. tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
  942. if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
  943. (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
  944. tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
  945. rtlpriv->cfg->maps[EFUSE_ANA8M]);
  946. rtl_write_word(rtlpriv,
  947. rtlpriv->cfg->maps[SYS_CLK], tmpV16);
  948. }
  949. }
  950. if (pwrstate) {
  951. if (write) {
  952. tempval = rtl_read_byte(rtlpriv,
  953. rtlpriv->cfg->maps[EFUSE_TEST] +
  954. 3);
  955. if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
  956. tempval &= 0x0F;
  957. tempval |= (VOLTAGE_V25 << 4);
  958. }
  959. rtl_write_byte(rtlpriv,
  960. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  961. (tempval | 0x80));
  962. }
  963. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  964. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  965. 0x03);
  966. }
  967. } else {
  968. if (write) {
  969. tempval = rtl_read_byte(rtlpriv,
  970. rtlpriv->cfg->maps[EFUSE_TEST] +
  971. 3);
  972. rtl_write_byte(rtlpriv,
  973. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  974. (tempval & 0x7F));
  975. }
  976. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  977. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  978. 0x02);
  979. }
  980. }
  981. }
  982. static u16 efuse_get_current_size(struct ieee80211_hw *hw)
  983. {
  984. int continual = true;
  985. u16 efuse_addr = 0;
  986. u8 hoffset, hworden;
  987. u8 efuse_data, word_cnts;
  988. while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  989. && (efuse_addr < EFUSE_MAX_SIZE)) {
  990. if (efuse_data != 0xFF) {
  991. hoffset = (efuse_data >> 4) & 0x0F;
  992. hworden = efuse_data & 0x0F;
  993. word_cnts = efuse_calculate_word_cnts(hworden);
  994. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  995. } else {
  996. continual = false;
  997. }
  998. }
  999. return efuse_addr;
  1000. }
  1001. static u8 efuse_calculate_word_cnts(u8 word_en)
  1002. {
  1003. u8 word_cnts = 0;
  1004. if (!(word_en & BIT(0)))
  1005. word_cnts++;
  1006. if (!(word_en & BIT(1)))
  1007. word_cnts++;
  1008. if (!(word_en & BIT(2)))
  1009. word_cnts++;
  1010. if (!(word_en & BIT(3)))
  1011. word_cnts++;
  1012. return word_cnts;
  1013. }