iwl-4965-calib.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <linux/slab.h>
  63. #include <net/mac80211.h>
  64. #include "iwl-dev.h"
  65. #include "iwl-core.h"
  66. #include "iwl-4965-calib.h"
  67. /*****************************************************************************
  68. * INIT calibrations framework
  69. *****************************************************************************/
  70. struct statistics_general_data {
  71. u32 beacon_silence_rssi_a;
  72. u32 beacon_silence_rssi_b;
  73. u32 beacon_silence_rssi_c;
  74. u32 beacon_energy_a;
  75. u32 beacon_energy_b;
  76. u32 beacon_energy_c;
  77. };
  78. void iwl4965_calib_free_results(struct iwl_priv *priv)
  79. {
  80. int i;
  81. for (i = 0; i < IWL_CALIB_MAX; i++) {
  82. kfree(priv->calib_results[i].buf);
  83. priv->calib_results[i].buf = NULL;
  84. priv->calib_results[i].buf_len = 0;
  85. }
  86. }
  87. /*****************************************************************************
  88. * RUNTIME calibrations framework
  89. *****************************************************************************/
  90. /* "false alarms" are signals that our DSP tries to lock onto,
  91. * but then determines that they are either noise, or transmissions
  92. * from a distant wireless network (also "noise", really) that get
  93. * "stepped on" by stronger transmissions within our own network.
  94. * This algorithm attempts to set a sensitivity level that is high
  95. * enough to receive all of our own network traffic, but not so
  96. * high that our DSP gets too busy trying to lock onto non-network
  97. * activity/noise. */
  98. static int iwl4965_sens_energy_cck(struct iwl_priv *priv,
  99. u32 norm_fa,
  100. u32 rx_enable_time,
  101. struct statistics_general_data *rx_info)
  102. {
  103. u32 max_nrg_cck = 0;
  104. int i = 0;
  105. u8 max_silence_rssi = 0;
  106. u32 silence_ref = 0;
  107. u8 silence_rssi_a = 0;
  108. u8 silence_rssi_b = 0;
  109. u8 silence_rssi_c = 0;
  110. u32 val;
  111. /* "false_alarms" values below are cross-multiplications to assess the
  112. * numbers of false alarms within the measured period of actual Rx
  113. * (Rx is off when we're txing), vs the min/max expected false alarms
  114. * (some should be expected if rx is sensitive enough) in a
  115. * hypothetical listening period of 200 time units (TU), 204.8 msec:
  116. *
  117. * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
  118. *
  119. * */
  120. u32 false_alarms = norm_fa * 200 * 1024;
  121. u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
  122. u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
  123. struct iwl_sensitivity_data *data = NULL;
  124. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  125. data = &(priv->sensitivity_data);
  126. data->nrg_auto_corr_silence_diff = 0;
  127. /* Find max silence rssi among all 3 receivers.
  128. * This is background noise, which may include transmissions from other
  129. * networks, measured during silence before our network's beacon */
  130. silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
  131. ALL_BAND_FILTER) >> 8);
  132. silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
  133. ALL_BAND_FILTER) >> 8);
  134. silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
  135. ALL_BAND_FILTER) >> 8);
  136. val = max(silence_rssi_b, silence_rssi_c);
  137. max_silence_rssi = max(silence_rssi_a, (u8) val);
  138. /* Store silence rssi in 20-beacon history table */
  139. data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
  140. data->nrg_silence_idx++;
  141. if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
  142. data->nrg_silence_idx = 0;
  143. /* Find max silence rssi across 20 beacon history */
  144. for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
  145. val = data->nrg_silence_rssi[i];
  146. silence_ref = max(silence_ref, val);
  147. }
  148. IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
  149. silence_rssi_a, silence_rssi_b, silence_rssi_c,
  150. silence_ref);
  151. /* Find max rx energy (min value!) among all 3 receivers,
  152. * measured during beacon frame.
  153. * Save it in 10-beacon history table. */
  154. i = data->nrg_energy_idx;
  155. val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
  156. data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
  157. data->nrg_energy_idx++;
  158. if (data->nrg_energy_idx >= 10)
  159. data->nrg_energy_idx = 0;
  160. /* Find min rx energy (max value) across 10 beacon history.
  161. * This is the minimum signal level that we want to receive well.
  162. * Add backoff (margin so we don't miss slightly lower energy frames).
  163. * This establishes an upper bound (min value) for energy threshold. */
  164. max_nrg_cck = data->nrg_value[0];
  165. for (i = 1; i < 10; i++)
  166. max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
  167. max_nrg_cck += 6;
  168. IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
  169. rx_info->beacon_energy_a, rx_info->beacon_energy_b,
  170. rx_info->beacon_energy_c, max_nrg_cck - 6);
  171. /* Count number of consecutive beacons with fewer-than-desired
  172. * false alarms. */
  173. if (false_alarms < min_false_alarms)
  174. data->num_in_cck_no_fa++;
  175. else
  176. data->num_in_cck_no_fa = 0;
  177. IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
  178. data->num_in_cck_no_fa);
  179. /* If we got too many false alarms this time, reduce sensitivity */
  180. if ((false_alarms > max_false_alarms) &&
  181. (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
  182. IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
  183. false_alarms, max_false_alarms);
  184. IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
  185. data->nrg_curr_state = IWL_FA_TOO_MANY;
  186. /* Store for "fewer than desired" on later beacon */
  187. data->nrg_silence_ref = silence_ref;
  188. /* increase energy threshold (reduce nrg value)
  189. * to decrease sensitivity */
  190. data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
  191. /* Else if we got fewer than desired, increase sensitivity */
  192. } else if (false_alarms < min_false_alarms) {
  193. data->nrg_curr_state = IWL_FA_TOO_FEW;
  194. /* Compare silence level with silence level for most recent
  195. * healthy number or too many false alarms */
  196. data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
  197. (s32)silence_ref;
  198. IWL_DEBUG_CALIB(priv,
  199. "norm FA %u < min FA %u, silence diff %d\n",
  200. false_alarms, min_false_alarms,
  201. data->nrg_auto_corr_silence_diff);
  202. /* Increase value to increase sensitivity, but only if:
  203. * 1a) previous beacon did *not* have *too many* false alarms
  204. * 1b) AND there's a significant difference in Rx levels
  205. * from a previous beacon with too many, or healthy # FAs
  206. * OR 2) We've seen a lot of beacons (100) with too few
  207. * false alarms */
  208. if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
  209. ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
  210. (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
  211. IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
  212. /* Increase nrg value to increase sensitivity */
  213. val = data->nrg_th_cck + NRG_STEP_CCK;
  214. data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
  215. } else {
  216. IWL_DEBUG_CALIB(priv,
  217. "... but not changing sensitivity\n");
  218. }
  219. /* Else we got a healthy number of false alarms, keep status quo */
  220. } else {
  221. IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
  222. data->nrg_curr_state = IWL_FA_GOOD_RANGE;
  223. /* Store for use in "fewer than desired" with later beacon */
  224. data->nrg_silence_ref = silence_ref;
  225. /* If previous beacon had too many false alarms,
  226. * give it some extra margin by reducing sensitivity again
  227. * (but don't go below measured energy of desired Rx) */
  228. if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
  229. IWL_DEBUG_CALIB(priv, "... increasing margin\n");
  230. if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
  231. data->nrg_th_cck -= NRG_MARGIN;
  232. else
  233. data->nrg_th_cck = max_nrg_cck;
  234. }
  235. }
  236. /* Make sure the energy threshold does not go above the measured
  237. * energy of the desired Rx signals (reduced by backoff margin),
  238. * or else we might start missing Rx frames.
  239. * Lower value is higher energy, so we use max()!
  240. */
  241. data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
  242. IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
  243. data->nrg_prev_state = data->nrg_curr_state;
  244. /* Auto-correlation CCK algorithm */
  245. if (false_alarms > min_false_alarms) {
  246. /* increase auto_corr values to decrease sensitivity
  247. * so the DSP won't be disturbed by the noise
  248. */
  249. if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
  250. data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
  251. else {
  252. val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
  253. data->auto_corr_cck =
  254. min((u32)ranges->auto_corr_max_cck, val);
  255. }
  256. val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
  257. data->auto_corr_cck_mrc =
  258. min((u32)ranges->auto_corr_max_cck_mrc, val);
  259. } else if ((false_alarms < min_false_alarms) &&
  260. ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
  261. (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
  262. /* Decrease auto_corr values to increase sensitivity */
  263. val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
  264. data->auto_corr_cck =
  265. max((u32)ranges->auto_corr_min_cck, val);
  266. val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
  267. data->auto_corr_cck_mrc =
  268. max((u32)ranges->auto_corr_min_cck_mrc, val);
  269. }
  270. return 0;
  271. }
  272. static int iwl4965_sens_auto_corr_ofdm(struct iwl_priv *priv,
  273. u32 norm_fa,
  274. u32 rx_enable_time)
  275. {
  276. u32 val;
  277. u32 false_alarms = norm_fa * 200 * 1024;
  278. u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
  279. u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
  280. struct iwl_sensitivity_data *data = NULL;
  281. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  282. data = &(priv->sensitivity_data);
  283. /* If we got too many false alarms this time, reduce sensitivity */
  284. if (false_alarms > max_false_alarms) {
  285. IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
  286. false_alarms, max_false_alarms);
  287. val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
  288. data->auto_corr_ofdm =
  289. min((u32)ranges->auto_corr_max_ofdm, val);
  290. val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
  291. data->auto_corr_ofdm_mrc =
  292. min((u32)ranges->auto_corr_max_ofdm_mrc, val);
  293. val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
  294. data->auto_corr_ofdm_x1 =
  295. min((u32)ranges->auto_corr_max_ofdm_x1, val);
  296. val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
  297. data->auto_corr_ofdm_mrc_x1 =
  298. min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
  299. }
  300. /* Else if we got fewer than desired, increase sensitivity */
  301. else if (false_alarms < min_false_alarms) {
  302. IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
  303. false_alarms, min_false_alarms);
  304. val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
  305. data->auto_corr_ofdm =
  306. max((u32)ranges->auto_corr_min_ofdm, val);
  307. val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
  308. data->auto_corr_ofdm_mrc =
  309. max((u32)ranges->auto_corr_min_ofdm_mrc, val);
  310. val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
  311. data->auto_corr_ofdm_x1 =
  312. max((u32)ranges->auto_corr_min_ofdm_x1, val);
  313. val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
  314. data->auto_corr_ofdm_mrc_x1 =
  315. max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
  316. } else {
  317. IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
  318. min_false_alarms, false_alarms, max_false_alarms);
  319. }
  320. return 0;
  321. }
  322. static void iwl4965_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
  323. struct iwl_sensitivity_data *data,
  324. __le16 *tbl)
  325. {
  326. tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
  327. cpu_to_le16((u16)data->auto_corr_ofdm);
  328. tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
  329. cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
  330. tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
  331. cpu_to_le16((u16)data->auto_corr_ofdm_x1);
  332. tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
  333. cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
  334. tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
  335. cpu_to_le16((u16)data->auto_corr_cck);
  336. tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
  337. cpu_to_le16((u16)data->auto_corr_cck_mrc);
  338. tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
  339. cpu_to_le16((u16)data->nrg_th_cck);
  340. tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
  341. cpu_to_le16((u16)data->nrg_th_ofdm);
  342. tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
  343. cpu_to_le16(data->barker_corr_th_min);
  344. tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
  345. cpu_to_le16(data->barker_corr_th_min_mrc);
  346. tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
  347. cpu_to_le16(data->nrg_th_cca);
  348. IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
  349. data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
  350. data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
  351. data->nrg_th_ofdm);
  352. IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
  353. data->auto_corr_cck, data->auto_corr_cck_mrc,
  354. data->nrg_th_cck);
  355. }
  356. /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
  357. static int iwl4965_sensitivity_write(struct iwl_priv *priv)
  358. {
  359. struct iwl_sensitivity_cmd cmd;
  360. struct iwl_sensitivity_data *data = NULL;
  361. struct iwl_host_cmd cmd_out = {
  362. .id = SENSITIVITY_CMD,
  363. .len = sizeof(struct iwl_sensitivity_cmd),
  364. .flags = CMD_ASYNC,
  365. .data = &cmd,
  366. };
  367. data = &(priv->sensitivity_data);
  368. memset(&cmd, 0, sizeof(cmd));
  369. iwl4965_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
  370. /* Update uCode's "work" table, and copy it to DSP */
  371. cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
  372. /* Don't send command to uCode if nothing has changed */
  373. if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
  374. sizeof(u16)*HD_TABLE_SIZE)) {
  375. IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
  376. return 0;
  377. }
  378. /* Copy table for comparison next time */
  379. memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
  380. sizeof(u16)*HD_TABLE_SIZE);
  381. return iwl_legacy_send_cmd(priv, &cmd_out);
  382. }
  383. void iwl4965_init_sensitivity(struct iwl_priv *priv)
  384. {
  385. int ret = 0;
  386. int i;
  387. struct iwl_sensitivity_data *data = NULL;
  388. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  389. if (priv->disable_sens_cal)
  390. return;
  391. IWL_DEBUG_CALIB(priv, "Start iwl4965_init_sensitivity\n");
  392. /* Clear driver's sensitivity algo data */
  393. data = &(priv->sensitivity_data);
  394. if (ranges == NULL)
  395. return;
  396. memset(data, 0, sizeof(struct iwl_sensitivity_data));
  397. data->num_in_cck_no_fa = 0;
  398. data->nrg_curr_state = IWL_FA_TOO_MANY;
  399. data->nrg_prev_state = IWL_FA_TOO_MANY;
  400. data->nrg_silence_ref = 0;
  401. data->nrg_silence_idx = 0;
  402. data->nrg_energy_idx = 0;
  403. for (i = 0; i < 10; i++)
  404. data->nrg_value[i] = 0;
  405. for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
  406. data->nrg_silence_rssi[i] = 0;
  407. data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
  408. data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
  409. data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
  410. data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
  411. data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
  412. data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
  413. data->nrg_th_cck = ranges->nrg_th_cck;
  414. data->nrg_th_ofdm = ranges->nrg_th_ofdm;
  415. data->barker_corr_th_min = ranges->barker_corr_th_min;
  416. data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
  417. data->nrg_th_cca = ranges->nrg_th_cca;
  418. data->last_bad_plcp_cnt_ofdm = 0;
  419. data->last_fa_cnt_ofdm = 0;
  420. data->last_bad_plcp_cnt_cck = 0;
  421. data->last_fa_cnt_cck = 0;
  422. ret |= iwl4965_sensitivity_write(priv);
  423. IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
  424. }
  425. void iwl4965_sensitivity_calibration(struct iwl_priv *priv, void *resp)
  426. {
  427. u32 rx_enable_time;
  428. u32 fa_cck;
  429. u32 fa_ofdm;
  430. u32 bad_plcp_cck;
  431. u32 bad_plcp_ofdm;
  432. u32 norm_fa_ofdm;
  433. u32 norm_fa_cck;
  434. struct iwl_sensitivity_data *data = NULL;
  435. struct statistics_rx_non_phy *rx_info;
  436. struct statistics_rx_phy *ofdm, *cck;
  437. unsigned long flags;
  438. struct statistics_general_data statis;
  439. if (priv->disable_sens_cal)
  440. return;
  441. data = &(priv->sensitivity_data);
  442. if (!iwl_legacy_is_any_associated(priv)) {
  443. IWL_DEBUG_CALIB(priv, "<< - not associated\n");
  444. return;
  445. }
  446. spin_lock_irqsave(&priv->lock, flags);
  447. rx_info = &(((struct iwl_notif_statistics *)resp)->rx.general);
  448. ofdm = &(((struct iwl_notif_statistics *)resp)->rx.ofdm);
  449. cck = &(((struct iwl_notif_statistics *)resp)->rx.cck);
  450. if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
  451. IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
  452. spin_unlock_irqrestore(&priv->lock, flags);
  453. return;
  454. }
  455. /* Extract Statistics: */
  456. rx_enable_time = le32_to_cpu(rx_info->channel_load);
  457. fa_cck = le32_to_cpu(cck->false_alarm_cnt);
  458. fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
  459. bad_plcp_cck = le32_to_cpu(cck->plcp_err);
  460. bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
  461. statis.beacon_silence_rssi_a =
  462. le32_to_cpu(rx_info->beacon_silence_rssi_a);
  463. statis.beacon_silence_rssi_b =
  464. le32_to_cpu(rx_info->beacon_silence_rssi_b);
  465. statis.beacon_silence_rssi_c =
  466. le32_to_cpu(rx_info->beacon_silence_rssi_c);
  467. statis.beacon_energy_a =
  468. le32_to_cpu(rx_info->beacon_energy_a);
  469. statis.beacon_energy_b =
  470. le32_to_cpu(rx_info->beacon_energy_b);
  471. statis.beacon_energy_c =
  472. le32_to_cpu(rx_info->beacon_energy_c);
  473. spin_unlock_irqrestore(&priv->lock, flags);
  474. IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
  475. if (!rx_enable_time) {
  476. IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
  477. return;
  478. }
  479. /* These statistics increase monotonically, and do not reset
  480. * at each beacon. Calculate difference from last value, or just
  481. * use the new statistics value if it has reset or wrapped around. */
  482. if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
  483. data->last_bad_plcp_cnt_cck = bad_plcp_cck;
  484. else {
  485. bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
  486. data->last_bad_plcp_cnt_cck += bad_plcp_cck;
  487. }
  488. if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
  489. data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
  490. else {
  491. bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
  492. data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
  493. }
  494. if (data->last_fa_cnt_ofdm > fa_ofdm)
  495. data->last_fa_cnt_ofdm = fa_ofdm;
  496. else {
  497. fa_ofdm -= data->last_fa_cnt_ofdm;
  498. data->last_fa_cnt_ofdm += fa_ofdm;
  499. }
  500. if (data->last_fa_cnt_cck > fa_cck)
  501. data->last_fa_cnt_cck = fa_cck;
  502. else {
  503. fa_cck -= data->last_fa_cnt_cck;
  504. data->last_fa_cnt_cck += fa_cck;
  505. }
  506. /* Total aborted signal locks */
  507. norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
  508. norm_fa_cck = fa_cck + bad_plcp_cck;
  509. IWL_DEBUG_CALIB(priv,
  510. "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
  511. bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
  512. iwl4965_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
  513. iwl4965_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
  514. iwl4965_sensitivity_write(priv);
  515. }
  516. static inline u8 iwl4965_find_first_chain(u8 mask)
  517. {
  518. if (mask & ANT_A)
  519. return CHAIN_A;
  520. if (mask & ANT_B)
  521. return CHAIN_B;
  522. return CHAIN_C;
  523. }
  524. /**
  525. * Run disconnected antenna algorithm to find out which antennas are
  526. * disconnected.
  527. */
  528. static void
  529. iwl4965_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
  530. struct iwl_chain_noise_data *data)
  531. {
  532. u32 active_chains = 0;
  533. u32 max_average_sig;
  534. u16 max_average_sig_antenna_i;
  535. u8 num_tx_chains;
  536. u8 first_chain;
  537. u16 i = 0;
  538. average_sig[0] = data->chain_signal_a /
  539. priv->cfg->base_params->chain_noise_num_beacons;
  540. average_sig[1] = data->chain_signal_b /
  541. priv->cfg->base_params->chain_noise_num_beacons;
  542. average_sig[2] = data->chain_signal_c /
  543. priv->cfg->base_params->chain_noise_num_beacons;
  544. if (average_sig[0] >= average_sig[1]) {
  545. max_average_sig = average_sig[0];
  546. max_average_sig_antenna_i = 0;
  547. active_chains = (1 << max_average_sig_antenna_i);
  548. } else {
  549. max_average_sig = average_sig[1];
  550. max_average_sig_antenna_i = 1;
  551. active_chains = (1 << max_average_sig_antenna_i);
  552. }
  553. if (average_sig[2] >= max_average_sig) {
  554. max_average_sig = average_sig[2];
  555. max_average_sig_antenna_i = 2;
  556. active_chains = (1 << max_average_sig_antenna_i);
  557. }
  558. IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
  559. average_sig[0], average_sig[1], average_sig[2]);
  560. IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
  561. max_average_sig, max_average_sig_antenna_i);
  562. /* Compare signal strengths for all 3 receivers. */
  563. for (i = 0; i < NUM_RX_CHAINS; i++) {
  564. if (i != max_average_sig_antenna_i) {
  565. s32 rssi_delta = (max_average_sig - average_sig[i]);
  566. /* If signal is very weak, compared with
  567. * strongest, mark it as disconnected. */
  568. if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
  569. data->disconn_array[i] = 1;
  570. else
  571. active_chains |= (1 << i);
  572. IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
  573. "disconn_array[i] = %d\n",
  574. i, rssi_delta, data->disconn_array[i]);
  575. }
  576. }
  577. /*
  578. * The above algorithm sometimes fails when the ucode
  579. * reports 0 for all chains. It's not clear why that
  580. * happens to start with, but it is then causing trouble
  581. * because this can make us enable more chains than the
  582. * hardware really has.
  583. *
  584. * To be safe, simply mask out any chains that we know
  585. * are not on the device.
  586. */
  587. active_chains &= priv->hw_params.valid_rx_ant;
  588. num_tx_chains = 0;
  589. for (i = 0; i < NUM_RX_CHAINS; i++) {
  590. /* loops on all the bits of
  591. * priv->hw_setting.valid_tx_ant */
  592. u8 ant_msk = (1 << i);
  593. if (!(priv->hw_params.valid_tx_ant & ant_msk))
  594. continue;
  595. num_tx_chains++;
  596. if (data->disconn_array[i] == 0)
  597. /* there is a Tx antenna connected */
  598. break;
  599. if (num_tx_chains == priv->hw_params.tx_chains_num &&
  600. data->disconn_array[i]) {
  601. /*
  602. * If all chains are disconnected
  603. * connect the first valid tx chain
  604. */
  605. first_chain =
  606. iwl4965_find_first_chain(priv->cfg->valid_tx_ant);
  607. data->disconn_array[first_chain] = 0;
  608. active_chains |= BIT(first_chain);
  609. IWL_DEBUG_CALIB(priv,
  610. "All Tx chains are disconnected W/A - declare %d as connected\n",
  611. first_chain);
  612. break;
  613. }
  614. }
  615. if (active_chains != priv->hw_params.valid_rx_ant &&
  616. active_chains != priv->chain_noise_data.active_chains)
  617. IWL_DEBUG_CALIB(priv,
  618. "Detected that not all antennas are connected! "
  619. "Connected: %#x, valid: %#x.\n",
  620. active_chains, priv->hw_params.valid_rx_ant);
  621. /* Save for use within RXON, TX, SCAN commands, etc. */
  622. data->active_chains = active_chains;
  623. IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
  624. active_chains);
  625. }
  626. static void iwl4965_gain_computation(struct iwl_priv *priv,
  627. u32 *average_noise,
  628. u16 min_average_noise_antenna_i,
  629. u32 min_average_noise,
  630. u8 default_chain)
  631. {
  632. int i, ret;
  633. struct iwl_chain_noise_data *data = &priv->chain_noise_data;
  634. data->delta_gain_code[min_average_noise_antenna_i] = 0;
  635. for (i = default_chain; i < NUM_RX_CHAINS; i++) {
  636. s32 delta_g = 0;
  637. if (!(data->disconn_array[i]) &&
  638. (data->delta_gain_code[i] ==
  639. CHAIN_NOISE_DELTA_GAIN_INIT_VAL)) {
  640. delta_g = average_noise[i] - min_average_noise;
  641. data->delta_gain_code[i] = (u8)((delta_g * 10) / 15);
  642. data->delta_gain_code[i] =
  643. min(data->delta_gain_code[i],
  644. (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
  645. data->delta_gain_code[i] =
  646. (data->delta_gain_code[i] | (1 << 2));
  647. } else {
  648. data->delta_gain_code[i] = 0;
  649. }
  650. }
  651. IWL_DEBUG_CALIB(priv, "delta_gain_codes: a %d b %d c %d\n",
  652. data->delta_gain_code[0],
  653. data->delta_gain_code[1],
  654. data->delta_gain_code[2]);
  655. /* Differential gain gets sent to uCode only once */
  656. if (!data->radio_write) {
  657. struct iwl_calib_diff_gain_cmd cmd;
  658. data->radio_write = 1;
  659. memset(&cmd, 0, sizeof(cmd));
  660. cmd.hdr.op_code = IWL_PHY_CALIBRATE_DIFF_GAIN_CMD;
  661. cmd.diff_gain_a = data->delta_gain_code[0];
  662. cmd.diff_gain_b = data->delta_gain_code[1];
  663. cmd.diff_gain_c = data->delta_gain_code[2];
  664. ret = iwl_legacy_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
  665. sizeof(cmd), &cmd);
  666. if (ret)
  667. IWL_DEBUG_CALIB(priv, "fail sending cmd "
  668. "REPLY_PHY_CALIBRATION_CMD\n");
  669. /* TODO we might want recalculate
  670. * rx_chain in rxon cmd */
  671. /* Mark so we run this algo only once! */
  672. data->state = IWL_CHAIN_NOISE_CALIBRATED;
  673. }
  674. }
  675. /*
  676. * Accumulate 16 beacons of signal and noise statistics for each of
  677. * 3 receivers/antennas/rx-chains, then figure out:
  678. * 1) Which antennas are connected.
  679. * 2) Differential rx gain settings to balance the 3 receivers.
  680. */
  681. void iwl4965_chain_noise_calibration(struct iwl_priv *priv, void *stat_resp)
  682. {
  683. struct iwl_chain_noise_data *data = NULL;
  684. u32 chain_noise_a;
  685. u32 chain_noise_b;
  686. u32 chain_noise_c;
  687. u32 chain_sig_a;
  688. u32 chain_sig_b;
  689. u32 chain_sig_c;
  690. u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
  691. u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
  692. u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
  693. u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
  694. u16 i = 0;
  695. u16 rxon_chnum = INITIALIZATION_VALUE;
  696. u16 stat_chnum = INITIALIZATION_VALUE;
  697. u8 rxon_band24;
  698. u8 stat_band24;
  699. unsigned long flags;
  700. struct statistics_rx_non_phy *rx_info;
  701. struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
  702. if (priv->disable_chain_noise_cal)
  703. return;
  704. data = &(priv->chain_noise_data);
  705. /*
  706. * Accumulate just the first "chain_noise_num_beacons" after
  707. * the first association, then we're done forever.
  708. */
  709. if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
  710. if (data->state == IWL_CHAIN_NOISE_ALIVE)
  711. IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
  712. return;
  713. }
  714. spin_lock_irqsave(&priv->lock, flags);
  715. rx_info = &(((struct iwl_notif_statistics *)stat_resp)->
  716. rx.general);
  717. if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
  718. IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
  719. spin_unlock_irqrestore(&priv->lock, flags);
  720. return;
  721. }
  722. rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
  723. rxon_chnum = le16_to_cpu(ctx->staging.channel);
  724. stat_band24 = !!(((struct iwl_notif_statistics *)
  725. stat_resp)->flag &
  726. STATISTICS_REPLY_FLG_BAND_24G_MSK);
  727. stat_chnum = le32_to_cpu(((struct iwl_notif_statistics *)
  728. stat_resp)->flag) >> 16;
  729. /* Make sure we accumulate data for just the associated channel
  730. * (even if scanning). */
  731. if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
  732. IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
  733. rxon_chnum, rxon_band24);
  734. spin_unlock_irqrestore(&priv->lock, flags);
  735. return;
  736. }
  737. /*
  738. * Accumulate beacon statistics values across
  739. * "chain_noise_num_beacons"
  740. */
  741. chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
  742. IN_BAND_FILTER;
  743. chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
  744. IN_BAND_FILTER;
  745. chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
  746. IN_BAND_FILTER;
  747. chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
  748. chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
  749. chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
  750. spin_unlock_irqrestore(&priv->lock, flags);
  751. data->beacon_count++;
  752. data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
  753. data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
  754. data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
  755. data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
  756. data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
  757. data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
  758. IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
  759. rxon_chnum, rxon_band24, data->beacon_count);
  760. IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
  761. chain_sig_a, chain_sig_b, chain_sig_c);
  762. IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
  763. chain_noise_a, chain_noise_b, chain_noise_c);
  764. /* If this is the "chain_noise_num_beacons", determine:
  765. * 1) Disconnected antennas (using signal strengths)
  766. * 2) Differential gain (using silence noise) to balance receivers */
  767. if (data->beacon_count !=
  768. priv->cfg->base_params->chain_noise_num_beacons)
  769. return;
  770. /* Analyze signal for disconnected antenna */
  771. iwl4965_find_disconn_antenna(priv, average_sig, data);
  772. /* Analyze noise for rx balance */
  773. average_noise[0] = data->chain_noise_a /
  774. priv->cfg->base_params->chain_noise_num_beacons;
  775. average_noise[1] = data->chain_noise_b /
  776. priv->cfg->base_params->chain_noise_num_beacons;
  777. average_noise[2] = data->chain_noise_c /
  778. priv->cfg->base_params->chain_noise_num_beacons;
  779. for (i = 0; i < NUM_RX_CHAINS; i++) {
  780. if (!(data->disconn_array[i]) &&
  781. (average_noise[i] <= min_average_noise)) {
  782. /* This means that chain i is active and has
  783. * lower noise values so far: */
  784. min_average_noise = average_noise[i];
  785. min_average_noise_antenna_i = i;
  786. }
  787. }
  788. IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
  789. average_noise[0], average_noise[1],
  790. average_noise[2]);
  791. IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
  792. min_average_noise, min_average_noise_antenna_i);
  793. iwl4965_gain_computation(priv, average_noise,
  794. min_average_noise_antenna_i, min_average_noise,
  795. iwl4965_find_first_chain(priv->cfg->valid_rx_ant));
  796. /* Some power changes may have been made during the calibration.
  797. * Update and commit the RXON
  798. */
  799. if (priv->cfg->ops->lib->update_chain_flags)
  800. priv->cfg->ops->lib->update_chain_flags(priv);
  801. data->state = IWL_CHAIN_NOISE_DONE;
  802. iwl_legacy_power_update_mode(priv, false);
  803. }
  804. void iwl4965_reset_run_time_calib(struct iwl_priv *priv)
  805. {
  806. int i;
  807. memset(&(priv->sensitivity_data), 0,
  808. sizeof(struct iwl_sensitivity_data));
  809. memset(&(priv->chain_noise_data), 0,
  810. sizeof(struct iwl_chain_noise_data));
  811. for (i = 0; i < NUM_RX_CHAINS; i++)
  812. priv->chain_noise_data.delta_gain_code[i] =
  813. CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
  814. /* Ask for statistics now, the uCode will send notification
  815. * periodically after association */
  816. iwl_legacy_send_statistics_request(priv, CMD_ASYNC, true);
  817. }