skge.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/sched.h>
  41. #include <linux/seq_file.h>
  42. #include <linux/mii.h>
  43. #include <linux/slab.h>
  44. #include <linux/dmi.h>
  45. #include <linux/prefetch.h>
  46. #include <asm/irq.h>
  47. #include "skge.h"
  48. #define DRV_NAME "skge"
  49. #define DRV_VERSION "1.13"
  50. #define DEFAULT_TX_RING_SIZE 128
  51. #define DEFAULT_RX_RING_SIZE 512
  52. #define MAX_TX_RING_SIZE 1024
  53. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  54. #define MAX_RX_RING_SIZE 4096
  55. #define RX_COPY_THRESHOLD 128
  56. #define RX_BUF_SIZE 1536
  57. #define PHY_RETRIES 1000
  58. #define ETH_JUMBO_MTU 9000
  59. #define TX_WATCHDOG (5 * HZ)
  60. #define NAPI_WEIGHT 64
  61. #define BLINK_MS 250
  62. #define LINK_HZ HZ
  63. #define SKGE_EEPROM_MAGIC 0x9933aabb
  64. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  65. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  66. MODULE_LICENSE("GPL");
  67. MODULE_VERSION(DRV_VERSION);
  68. static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  69. NETIF_MSG_LINK | NETIF_MSG_IFUP |
  70. NETIF_MSG_IFDOWN);
  71. static int debug = -1; /* defaults above */
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  74. static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  75. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  79. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  80. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  81. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  82. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  83. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  84. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  85. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  86. { 0 }
  87. };
  88. MODULE_DEVICE_TABLE(pci, skge_id_table);
  89. static int skge_up(struct net_device *dev);
  90. static int skge_down(struct net_device *dev);
  91. static void skge_phy_reset(struct skge_port *skge);
  92. static void skge_tx_clean(struct net_device *dev);
  93. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  94. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  95. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  96. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  97. static void yukon_init(struct skge_hw *hw, int port);
  98. static void genesis_mac_init(struct skge_hw *hw, int port);
  99. static void genesis_link_up(struct skge_port *skge);
  100. static void skge_set_multicast(struct net_device *dev);
  101. /* Avoid conditionals by using array */
  102. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  103. static const int rxqaddr[] = { Q_R1, Q_R2 };
  104. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  105. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  106. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  107. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  108. static int skge_get_regs_len(struct net_device *dev)
  109. {
  110. return 0x4000;
  111. }
  112. /*
  113. * Returns copy of whole control register region
  114. * Note: skip RAM address register because accessing it will
  115. * cause bus hangs!
  116. */
  117. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  118. void *p)
  119. {
  120. const struct skge_port *skge = netdev_priv(dev);
  121. const void __iomem *io = skge->hw->regs;
  122. regs->version = 1;
  123. memset(p, 0, regs->len);
  124. memcpy_fromio(p, io, B3_RAM_ADDR);
  125. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  126. regs->len - B3_RI_WTO_R1);
  127. }
  128. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  129. static u32 wol_supported(const struct skge_hw *hw)
  130. {
  131. if (hw->chip_id == CHIP_ID_GENESIS)
  132. return 0;
  133. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  134. return 0;
  135. return WAKE_MAGIC | WAKE_PHY;
  136. }
  137. static void skge_wol_init(struct skge_port *skge)
  138. {
  139. struct skge_hw *hw = skge->hw;
  140. int port = skge->port;
  141. u16 ctrl;
  142. skge_write16(hw, B0_CTST, CS_RST_CLR);
  143. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  144. /* Turn on Vaux */
  145. skge_write8(hw, B0_POWER_CTRL,
  146. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  147. /* WA code for COMA mode -- clear PHY reset */
  148. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  149. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  150. u32 reg = skge_read32(hw, B2_GP_IO);
  151. reg |= GP_DIR_9;
  152. reg &= ~GP_IO_9;
  153. skge_write32(hw, B2_GP_IO, reg);
  154. }
  155. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  156. GPC_DIS_SLEEP |
  157. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  158. GPC_ANEG_1 | GPC_RST_SET);
  159. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  160. GPC_DIS_SLEEP |
  161. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  162. GPC_ANEG_1 | GPC_RST_CLR);
  163. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  164. /* Force to 10/100 skge_reset will re-enable on resume */
  165. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  166. (PHY_AN_100FULL | PHY_AN_100HALF |
  167. PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
  168. /* no 1000 HD/FD */
  169. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  170. gm_phy_write(hw, port, PHY_MARV_CTRL,
  171. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  172. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  173. /* Set GMAC to no flow control and auto update for speed/duplex */
  174. gma_write16(hw, port, GM_GP_CTRL,
  175. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  176. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  177. /* Set WOL address */
  178. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  179. skge->netdev->dev_addr, ETH_ALEN);
  180. /* Turn on appropriate WOL control bits */
  181. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  182. ctrl = 0;
  183. if (skge->wol & WAKE_PHY)
  184. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  185. else
  186. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  187. if (skge->wol & WAKE_MAGIC)
  188. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  189. else
  190. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  191. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  192. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  193. /* block receiver */
  194. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  195. }
  196. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  197. {
  198. struct skge_port *skge = netdev_priv(dev);
  199. wol->supported = wol_supported(skge->hw);
  200. wol->wolopts = skge->wol;
  201. }
  202. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  203. {
  204. struct skge_port *skge = netdev_priv(dev);
  205. struct skge_hw *hw = skge->hw;
  206. if ((wol->wolopts & ~wol_supported(hw)) ||
  207. !device_can_wakeup(&hw->pdev->dev))
  208. return -EOPNOTSUPP;
  209. skge->wol = wol->wolopts;
  210. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  211. return 0;
  212. }
  213. /* Determine supported/advertised modes based on hardware.
  214. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  215. */
  216. static u32 skge_supported_modes(const struct skge_hw *hw)
  217. {
  218. u32 supported;
  219. if (hw->copper) {
  220. supported = (SUPPORTED_10baseT_Half |
  221. SUPPORTED_10baseT_Full |
  222. SUPPORTED_100baseT_Half |
  223. SUPPORTED_100baseT_Full |
  224. SUPPORTED_1000baseT_Half |
  225. SUPPORTED_1000baseT_Full |
  226. SUPPORTED_Autoneg |
  227. SUPPORTED_TP);
  228. if (hw->chip_id == CHIP_ID_GENESIS)
  229. supported &= ~(SUPPORTED_10baseT_Half |
  230. SUPPORTED_10baseT_Full |
  231. SUPPORTED_100baseT_Half |
  232. SUPPORTED_100baseT_Full);
  233. else if (hw->chip_id == CHIP_ID_YUKON)
  234. supported &= ~SUPPORTED_1000baseT_Half;
  235. } else
  236. supported = (SUPPORTED_1000baseT_Full |
  237. SUPPORTED_1000baseT_Half |
  238. SUPPORTED_FIBRE |
  239. SUPPORTED_Autoneg);
  240. return supported;
  241. }
  242. static int skge_get_settings(struct net_device *dev,
  243. struct ethtool_cmd *ecmd)
  244. {
  245. struct skge_port *skge = netdev_priv(dev);
  246. struct skge_hw *hw = skge->hw;
  247. ecmd->transceiver = XCVR_INTERNAL;
  248. ecmd->supported = skge_supported_modes(hw);
  249. if (hw->copper) {
  250. ecmd->port = PORT_TP;
  251. ecmd->phy_address = hw->phy_addr;
  252. } else
  253. ecmd->port = PORT_FIBRE;
  254. ecmd->advertising = skge->advertising;
  255. ecmd->autoneg = skge->autoneg;
  256. ethtool_cmd_speed_set(ecmd, skge->speed);
  257. ecmd->duplex = skge->duplex;
  258. return 0;
  259. }
  260. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  261. {
  262. struct skge_port *skge = netdev_priv(dev);
  263. const struct skge_hw *hw = skge->hw;
  264. u32 supported = skge_supported_modes(hw);
  265. int err = 0;
  266. if (ecmd->autoneg == AUTONEG_ENABLE) {
  267. ecmd->advertising = supported;
  268. skge->duplex = -1;
  269. skge->speed = -1;
  270. } else {
  271. u32 setting;
  272. u32 speed = ethtool_cmd_speed(ecmd);
  273. switch (speed) {
  274. case SPEED_1000:
  275. if (ecmd->duplex == DUPLEX_FULL)
  276. setting = SUPPORTED_1000baseT_Full;
  277. else if (ecmd->duplex == DUPLEX_HALF)
  278. setting = SUPPORTED_1000baseT_Half;
  279. else
  280. return -EINVAL;
  281. break;
  282. case SPEED_100:
  283. if (ecmd->duplex == DUPLEX_FULL)
  284. setting = SUPPORTED_100baseT_Full;
  285. else if (ecmd->duplex == DUPLEX_HALF)
  286. setting = SUPPORTED_100baseT_Half;
  287. else
  288. return -EINVAL;
  289. break;
  290. case SPEED_10:
  291. if (ecmd->duplex == DUPLEX_FULL)
  292. setting = SUPPORTED_10baseT_Full;
  293. else if (ecmd->duplex == DUPLEX_HALF)
  294. setting = SUPPORTED_10baseT_Half;
  295. else
  296. return -EINVAL;
  297. break;
  298. default:
  299. return -EINVAL;
  300. }
  301. if ((setting & supported) == 0)
  302. return -EINVAL;
  303. skge->speed = speed;
  304. skge->duplex = ecmd->duplex;
  305. }
  306. skge->autoneg = ecmd->autoneg;
  307. skge->advertising = ecmd->advertising;
  308. if (netif_running(dev)) {
  309. skge_down(dev);
  310. err = skge_up(dev);
  311. if (err) {
  312. dev_close(dev);
  313. return err;
  314. }
  315. }
  316. return 0;
  317. }
  318. static void skge_get_drvinfo(struct net_device *dev,
  319. struct ethtool_drvinfo *info)
  320. {
  321. struct skge_port *skge = netdev_priv(dev);
  322. strcpy(info->driver, DRV_NAME);
  323. strcpy(info->version, DRV_VERSION);
  324. strcpy(info->fw_version, "N/A");
  325. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  326. }
  327. static const struct skge_stat {
  328. char name[ETH_GSTRING_LEN];
  329. u16 xmac_offset;
  330. u16 gma_offset;
  331. } skge_stats[] = {
  332. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  333. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  334. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  335. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  336. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  337. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  338. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  339. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  340. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  341. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  342. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  343. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  344. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  345. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  346. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  347. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  348. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  349. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  350. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  351. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  352. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  353. };
  354. static int skge_get_sset_count(struct net_device *dev, int sset)
  355. {
  356. switch (sset) {
  357. case ETH_SS_STATS:
  358. return ARRAY_SIZE(skge_stats);
  359. default:
  360. return -EOPNOTSUPP;
  361. }
  362. }
  363. static void skge_get_ethtool_stats(struct net_device *dev,
  364. struct ethtool_stats *stats, u64 *data)
  365. {
  366. struct skge_port *skge = netdev_priv(dev);
  367. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  368. genesis_get_stats(skge, data);
  369. else
  370. yukon_get_stats(skge, data);
  371. }
  372. /* Use hardware MIB variables for critical path statistics and
  373. * transmit feedback not reported at interrupt.
  374. * Other errors are accounted for in interrupt handler.
  375. */
  376. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  377. {
  378. struct skge_port *skge = netdev_priv(dev);
  379. u64 data[ARRAY_SIZE(skge_stats)];
  380. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  381. genesis_get_stats(skge, data);
  382. else
  383. yukon_get_stats(skge, data);
  384. dev->stats.tx_bytes = data[0];
  385. dev->stats.rx_bytes = data[1];
  386. dev->stats.tx_packets = data[2] + data[4] + data[6];
  387. dev->stats.rx_packets = data[3] + data[5] + data[7];
  388. dev->stats.multicast = data[3] + data[5];
  389. dev->stats.collisions = data[10];
  390. dev->stats.tx_aborted_errors = data[12];
  391. return &dev->stats;
  392. }
  393. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  394. {
  395. int i;
  396. switch (stringset) {
  397. case ETH_SS_STATS:
  398. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  399. memcpy(data + i * ETH_GSTRING_LEN,
  400. skge_stats[i].name, ETH_GSTRING_LEN);
  401. break;
  402. }
  403. }
  404. static void skge_get_ring_param(struct net_device *dev,
  405. struct ethtool_ringparam *p)
  406. {
  407. struct skge_port *skge = netdev_priv(dev);
  408. p->rx_max_pending = MAX_RX_RING_SIZE;
  409. p->tx_max_pending = MAX_TX_RING_SIZE;
  410. p->rx_mini_max_pending = 0;
  411. p->rx_jumbo_max_pending = 0;
  412. p->rx_pending = skge->rx_ring.count;
  413. p->tx_pending = skge->tx_ring.count;
  414. p->rx_mini_pending = 0;
  415. p->rx_jumbo_pending = 0;
  416. }
  417. static int skge_set_ring_param(struct net_device *dev,
  418. struct ethtool_ringparam *p)
  419. {
  420. struct skge_port *skge = netdev_priv(dev);
  421. int err = 0;
  422. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  423. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  424. return -EINVAL;
  425. skge->rx_ring.count = p->rx_pending;
  426. skge->tx_ring.count = p->tx_pending;
  427. if (netif_running(dev)) {
  428. skge_down(dev);
  429. err = skge_up(dev);
  430. if (err)
  431. dev_close(dev);
  432. }
  433. return err;
  434. }
  435. static u32 skge_get_msglevel(struct net_device *netdev)
  436. {
  437. struct skge_port *skge = netdev_priv(netdev);
  438. return skge->msg_enable;
  439. }
  440. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  441. {
  442. struct skge_port *skge = netdev_priv(netdev);
  443. skge->msg_enable = value;
  444. }
  445. static int skge_nway_reset(struct net_device *dev)
  446. {
  447. struct skge_port *skge = netdev_priv(dev);
  448. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  449. return -EINVAL;
  450. skge_phy_reset(skge);
  451. return 0;
  452. }
  453. static void skge_get_pauseparam(struct net_device *dev,
  454. struct ethtool_pauseparam *ecmd)
  455. {
  456. struct skge_port *skge = netdev_priv(dev);
  457. ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
  458. (skge->flow_control == FLOW_MODE_SYM_OR_REM));
  459. ecmd->tx_pause = (ecmd->rx_pause ||
  460. (skge->flow_control == FLOW_MODE_LOC_SEND));
  461. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  462. }
  463. static int skge_set_pauseparam(struct net_device *dev,
  464. struct ethtool_pauseparam *ecmd)
  465. {
  466. struct skge_port *skge = netdev_priv(dev);
  467. struct ethtool_pauseparam old;
  468. int err = 0;
  469. skge_get_pauseparam(dev, &old);
  470. if (ecmd->autoneg != old.autoneg)
  471. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  472. else {
  473. if (ecmd->rx_pause && ecmd->tx_pause)
  474. skge->flow_control = FLOW_MODE_SYMMETRIC;
  475. else if (ecmd->rx_pause && !ecmd->tx_pause)
  476. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  477. else if (!ecmd->rx_pause && ecmd->tx_pause)
  478. skge->flow_control = FLOW_MODE_LOC_SEND;
  479. else
  480. skge->flow_control = FLOW_MODE_NONE;
  481. }
  482. if (netif_running(dev)) {
  483. skge_down(dev);
  484. err = skge_up(dev);
  485. if (err) {
  486. dev_close(dev);
  487. return err;
  488. }
  489. }
  490. return 0;
  491. }
  492. /* Chip internal frequency for clock calculations */
  493. static inline u32 hwkhz(const struct skge_hw *hw)
  494. {
  495. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  496. }
  497. /* Chip HZ to microseconds */
  498. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  499. {
  500. return (ticks * 1000) / hwkhz(hw);
  501. }
  502. /* Microseconds to chip HZ */
  503. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  504. {
  505. return hwkhz(hw) * usec / 1000;
  506. }
  507. static int skge_get_coalesce(struct net_device *dev,
  508. struct ethtool_coalesce *ecmd)
  509. {
  510. struct skge_port *skge = netdev_priv(dev);
  511. struct skge_hw *hw = skge->hw;
  512. int port = skge->port;
  513. ecmd->rx_coalesce_usecs = 0;
  514. ecmd->tx_coalesce_usecs = 0;
  515. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  516. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  517. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  518. if (msk & rxirqmask[port])
  519. ecmd->rx_coalesce_usecs = delay;
  520. if (msk & txirqmask[port])
  521. ecmd->tx_coalesce_usecs = delay;
  522. }
  523. return 0;
  524. }
  525. /* Note: interrupt timer is per board, but can turn on/off per port */
  526. static int skge_set_coalesce(struct net_device *dev,
  527. struct ethtool_coalesce *ecmd)
  528. {
  529. struct skge_port *skge = netdev_priv(dev);
  530. struct skge_hw *hw = skge->hw;
  531. int port = skge->port;
  532. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  533. u32 delay = 25;
  534. if (ecmd->rx_coalesce_usecs == 0)
  535. msk &= ~rxirqmask[port];
  536. else if (ecmd->rx_coalesce_usecs < 25 ||
  537. ecmd->rx_coalesce_usecs > 33333)
  538. return -EINVAL;
  539. else {
  540. msk |= rxirqmask[port];
  541. delay = ecmd->rx_coalesce_usecs;
  542. }
  543. if (ecmd->tx_coalesce_usecs == 0)
  544. msk &= ~txirqmask[port];
  545. else if (ecmd->tx_coalesce_usecs < 25 ||
  546. ecmd->tx_coalesce_usecs > 33333)
  547. return -EINVAL;
  548. else {
  549. msk |= txirqmask[port];
  550. delay = min(delay, ecmd->rx_coalesce_usecs);
  551. }
  552. skge_write32(hw, B2_IRQM_MSK, msk);
  553. if (msk == 0)
  554. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  555. else {
  556. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  557. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  558. }
  559. return 0;
  560. }
  561. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  562. static void skge_led(struct skge_port *skge, enum led_mode mode)
  563. {
  564. struct skge_hw *hw = skge->hw;
  565. int port = skge->port;
  566. spin_lock_bh(&hw->phy_lock);
  567. if (hw->chip_id == CHIP_ID_GENESIS) {
  568. switch (mode) {
  569. case LED_MODE_OFF:
  570. if (hw->phy_type == SK_PHY_BCOM)
  571. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  572. else {
  573. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  574. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  575. }
  576. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  577. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  578. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  579. break;
  580. case LED_MODE_ON:
  581. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  582. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  583. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  584. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  585. break;
  586. case LED_MODE_TST:
  587. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  588. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  589. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  590. if (hw->phy_type == SK_PHY_BCOM)
  591. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  592. else {
  593. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  594. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  595. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  596. }
  597. }
  598. } else {
  599. switch (mode) {
  600. case LED_MODE_OFF:
  601. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  602. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  603. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  604. PHY_M_LED_MO_10(MO_LED_OFF) |
  605. PHY_M_LED_MO_100(MO_LED_OFF) |
  606. PHY_M_LED_MO_1000(MO_LED_OFF) |
  607. PHY_M_LED_MO_RX(MO_LED_OFF));
  608. break;
  609. case LED_MODE_ON:
  610. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  611. PHY_M_LED_PULS_DUR(PULS_170MS) |
  612. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  613. PHY_M_LEDC_TX_CTRL |
  614. PHY_M_LEDC_DP_CTRL);
  615. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  616. PHY_M_LED_MO_RX(MO_LED_OFF) |
  617. (skge->speed == SPEED_100 ?
  618. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  619. break;
  620. case LED_MODE_TST:
  621. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  622. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  623. PHY_M_LED_MO_DUP(MO_LED_ON) |
  624. PHY_M_LED_MO_10(MO_LED_ON) |
  625. PHY_M_LED_MO_100(MO_LED_ON) |
  626. PHY_M_LED_MO_1000(MO_LED_ON) |
  627. PHY_M_LED_MO_RX(MO_LED_ON));
  628. }
  629. }
  630. spin_unlock_bh(&hw->phy_lock);
  631. }
  632. /* blink LED's for finding board */
  633. static int skge_set_phys_id(struct net_device *dev,
  634. enum ethtool_phys_id_state state)
  635. {
  636. struct skge_port *skge = netdev_priv(dev);
  637. switch (state) {
  638. case ETHTOOL_ID_ACTIVE:
  639. return 2; /* cycle on/off twice per second */
  640. case ETHTOOL_ID_ON:
  641. skge_led(skge, LED_MODE_TST);
  642. break;
  643. case ETHTOOL_ID_OFF:
  644. skge_led(skge, LED_MODE_OFF);
  645. break;
  646. case ETHTOOL_ID_INACTIVE:
  647. /* back to regular LED state */
  648. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  649. }
  650. return 0;
  651. }
  652. static int skge_get_eeprom_len(struct net_device *dev)
  653. {
  654. struct skge_port *skge = netdev_priv(dev);
  655. u32 reg2;
  656. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  657. return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  658. }
  659. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  660. {
  661. u32 val;
  662. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  663. do {
  664. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  665. } while (!(offset & PCI_VPD_ADDR_F));
  666. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  667. return val;
  668. }
  669. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  670. {
  671. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  672. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  673. offset | PCI_VPD_ADDR_F);
  674. do {
  675. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  676. } while (offset & PCI_VPD_ADDR_F);
  677. }
  678. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  679. u8 *data)
  680. {
  681. struct skge_port *skge = netdev_priv(dev);
  682. struct pci_dev *pdev = skge->hw->pdev;
  683. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  684. int length = eeprom->len;
  685. u16 offset = eeprom->offset;
  686. if (!cap)
  687. return -EINVAL;
  688. eeprom->magic = SKGE_EEPROM_MAGIC;
  689. while (length > 0) {
  690. u32 val = skge_vpd_read(pdev, cap, offset);
  691. int n = min_t(int, length, sizeof(val));
  692. memcpy(data, &val, n);
  693. length -= n;
  694. data += n;
  695. offset += n;
  696. }
  697. return 0;
  698. }
  699. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  700. u8 *data)
  701. {
  702. struct skge_port *skge = netdev_priv(dev);
  703. struct pci_dev *pdev = skge->hw->pdev;
  704. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  705. int length = eeprom->len;
  706. u16 offset = eeprom->offset;
  707. if (!cap)
  708. return -EINVAL;
  709. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  710. return -EINVAL;
  711. while (length > 0) {
  712. u32 val;
  713. int n = min_t(int, length, sizeof(val));
  714. if (n < sizeof(val))
  715. val = skge_vpd_read(pdev, cap, offset);
  716. memcpy(&val, data, n);
  717. skge_vpd_write(pdev, cap, offset, val);
  718. length -= n;
  719. data += n;
  720. offset += n;
  721. }
  722. return 0;
  723. }
  724. static const struct ethtool_ops skge_ethtool_ops = {
  725. .get_settings = skge_get_settings,
  726. .set_settings = skge_set_settings,
  727. .get_drvinfo = skge_get_drvinfo,
  728. .get_regs_len = skge_get_regs_len,
  729. .get_regs = skge_get_regs,
  730. .get_wol = skge_get_wol,
  731. .set_wol = skge_set_wol,
  732. .get_msglevel = skge_get_msglevel,
  733. .set_msglevel = skge_set_msglevel,
  734. .nway_reset = skge_nway_reset,
  735. .get_link = ethtool_op_get_link,
  736. .get_eeprom_len = skge_get_eeprom_len,
  737. .get_eeprom = skge_get_eeprom,
  738. .set_eeprom = skge_set_eeprom,
  739. .get_ringparam = skge_get_ring_param,
  740. .set_ringparam = skge_set_ring_param,
  741. .get_pauseparam = skge_get_pauseparam,
  742. .set_pauseparam = skge_set_pauseparam,
  743. .get_coalesce = skge_get_coalesce,
  744. .set_coalesce = skge_set_coalesce,
  745. .get_strings = skge_get_strings,
  746. .set_phys_id = skge_set_phys_id,
  747. .get_sset_count = skge_get_sset_count,
  748. .get_ethtool_stats = skge_get_ethtool_stats,
  749. };
  750. /*
  751. * Allocate ring elements and chain them together
  752. * One-to-one association of board descriptors with ring elements
  753. */
  754. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  755. {
  756. struct skge_tx_desc *d;
  757. struct skge_element *e;
  758. int i;
  759. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  760. if (!ring->start)
  761. return -ENOMEM;
  762. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  763. e->desc = d;
  764. if (i == ring->count - 1) {
  765. e->next = ring->start;
  766. d->next_offset = base;
  767. } else {
  768. e->next = e + 1;
  769. d->next_offset = base + (i+1) * sizeof(*d);
  770. }
  771. }
  772. ring->to_use = ring->to_clean = ring->start;
  773. return 0;
  774. }
  775. /* Allocate and setup a new buffer for receiving */
  776. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  777. struct sk_buff *skb, unsigned int bufsize)
  778. {
  779. struct skge_rx_desc *rd = e->desc;
  780. u64 map;
  781. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  782. PCI_DMA_FROMDEVICE);
  783. rd->dma_lo = map;
  784. rd->dma_hi = map >> 32;
  785. e->skb = skb;
  786. rd->csum1_start = ETH_HLEN;
  787. rd->csum2_start = ETH_HLEN;
  788. rd->csum1 = 0;
  789. rd->csum2 = 0;
  790. wmb();
  791. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  792. dma_unmap_addr_set(e, mapaddr, map);
  793. dma_unmap_len_set(e, maplen, bufsize);
  794. }
  795. /* Resume receiving using existing skb,
  796. * Note: DMA address is not changed by chip.
  797. * MTU not changed while receiver active.
  798. */
  799. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  800. {
  801. struct skge_rx_desc *rd = e->desc;
  802. rd->csum2 = 0;
  803. rd->csum2_start = ETH_HLEN;
  804. wmb();
  805. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  806. }
  807. /* Free all buffers in receive ring, assumes receiver stopped */
  808. static void skge_rx_clean(struct skge_port *skge)
  809. {
  810. struct skge_hw *hw = skge->hw;
  811. struct skge_ring *ring = &skge->rx_ring;
  812. struct skge_element *e;
  813. e = ring->start;
  814. do {
  815. struct skge_rx_desc *rd = e->desc;
  816. rd->control = 0;
  817. if (e->skb) {
  818. pci_unmap_single(hw->pdev,
  819. dma_unmap_addr(e, mapaddr),
  820. dma_unmap_len(e, maplen),
  821. PCI_DMA_FROMDEVICE);
  822. dev_kfree_skb(e->skb);
  823. e->skb = NULL;
  824. }
  825. } while ((e = e->next) != ring->start);
  826. }
  827. /* Allocate buffers for receive ring
  828. * For receive: to_clean is next received frame.
  829. */
  830. static int skge_rx_fill(struct net_device *dev)
  831. {
  832. struct skge_port *skge = netdev_priv(dev);
  833. struct skge_ring *ring = &skge->rx_ring;
  834. struct skge_element *e;
  835. e = ring->start;
  836. do {
  837. struct sk_buff *skb;
  838. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  839. GFP_KERNEL);
  840. if (!skb)
  841. return -ENOMEM;
  842. skb_reserve(skb, NET_IP_ALIGN);
  843. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  844. } while ((e = e->next) != ring->start);
  845. ring->to_clean = ring->start;
  846. return 0;
  847. }
  848. static const char *skge_pause(enum pause_status status)
  849. {
  850. switch (status) {
  851. case FLOW_STAT_NONE:
  852. return "none";
  853. case FLOW_STAT_REM_SEND:
  854. return "rx only";
  855. case FLOW_STAT_LOC_SEND:
  856. return "tx_only";
  857. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  858. return "both";
  859. default:
  860. return "indeterminated";
  861. }
  862. }
  863. static void skge_link_up(struct skge_port *skge)
  864. {
  865. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  866. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  867. netif_carrier_on(skge->netdev);
  868. netif_wake_queue(skge->netdev);
  869. netif_info(skge, link, skge->netdev,
  870. "Link is up at %d Mbps, %s duplex, flow control %s\n",
  871. skge->speed,
  872. skge->duplex == DUPLEX_FULL ? "full" : "half",
  873. skge_pause(skge->flow_status));
  874. }
  875. static void skge_link_down(struct skge_port *skge)
  876. {
  877. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  878. netif_carrier_off(skge->netdev);
  879. netif_stop_queue(skge->netdev);
  880. netif_info(skge, link, skge->netdev, "Link is down\n");
  881. }
  882. static void xm_link_down(struct skge_hw *hw, int port)
  883. {
  884. struct net_device *dev = hw->dev[port];
  885. struct skge_port *skge = netdev_priv(dev);
  886. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  887. if (netif_carrier_ok(dev))
  888. skge_link_down(skge);
  889. }
  890. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  891. {
  892. int i;
  893. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  894. *val = xm_read16(hw, port, XM_PHY_DATA);
  895. if (hw->phy_type == SK_PHY_XMAC)
  896. goto ready;
  897. for (i = 0; i < PHY_RETRIES; i++) {
  898. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  899. goto ready;
  900. udelay(1);
  901. }
  902. return -ETIMEDOUT;
  903. ready:
  904. *val = xm_read16(hw, port, XM_PHY_DATA);
  905. return 0;
  906. }
  907. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  908. {
  909. u16 v = 0;
  910. if (__xm_phy_read(hw, port, reg, &v))
  911. pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
  912. return v;
  913. }
  914. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  915. {
  916. int i;
  917. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  918. for (i = 0; i < PHY_RETRIES; i++) {
  919. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  920. goto ready;
  921. udelay(1);
  922. }
  923. return -EIO;
  924. ready:
  925. xm_write16(hw, port, XM_PHY_DATA, val);
  926. for (i = 0; i < PHY_RETRIES; i++) {
  927. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  928. return 0;
  929. udelay(1);
  930. }
  931. return -ETIMEDOUT;
  932. }
  933. static void genesis_init(struct skge_hw *hw)
  934. {
  935. /* set blink source counter */
  936. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  937. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  938. /* configure mac arbiter */
  939. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  940. /* configure mac arbiter timeout values */
  941. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  942. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  943. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  944. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  945. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  946. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  947. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  948. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  949. /* configure packet arbiter timeout */
  950. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  951. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  952. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  953. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  954. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  955. }
  956. static void genesis_reset(struct skge_hw *hw, int port)
  957. {
  958. static const u8 zero[8] = { 0 };
  959. u32 reg;
  960. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  961. /* reset the statistics module */
  962. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  963. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  964. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  965. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  966. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  967. /* disable Broadcom PHY IRQ */
  968. if (hw->phy_type == SK_PHY_BCOM)
  969. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  970. xm_outhash(hw, port, XM_HSM, zero);
  971. /* Flush TX and RX fifo */
  972. reg = xm_read32(hw, port, XM_MODE);
  973. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  974. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  975. }
  976. /* Convert mode to MII values */
  977. static const u16 phy_pause_map[] = {
  978. [FLOW_MODE_NONE] = 0,
  979. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  980. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  981. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  982. };
  983. /* special defines for FIBER (88E1011S only) */
  984. static const u16 fiber_pause_map[] = {
  985. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  986. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  987. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  988. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  989. };
  990. /* Check status of Broadcom phy link */
  991. static void bcom_check_link(struct skge_hw *hw, int port)
  992. {
  993. struct net_device *dev = hw->dev[port];
  994. struct skge_port *skge = netdev_priv(dev);
  995. u16 status;
  996. /* read twice because of latch */
  997. xm_phy_read(hw, port, PHY_BCOM_STAT);
  998. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  999. if ((status & PHY_ST_LSYNC) == 0) {
  1000. xm_link_down(hw, port);
  1001. return;
  1002. }
  1003. if (skge->autoneg == AUTONEG_ENABLE) {
  1004. u16 lpa, aux;
  1005. if (!(status & PHY_ST_AN_OVER))
  1006. return;
  1007. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1008. if (lpa & PHY_B_AN_RF) {
  1009. netdev_notice(dev, "remote fault\n");
  1010. return;
  1011. }
  1012. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1013. /* Check Duplex mismatch */
  1014. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1015. case PHY_B_RES_1000FD:
  1016. skge->duplex = DUPLEX_FULL;
  1017. break;
  1018. case PHY_B_RES_1000HD:
  1019. skge->duplex = DUPLEX_HALF;
  1020. break;
  1021. default:
  1022. netdev_notice(dev, "duplex mismatch\n");
  1023. return;
  1024. }
  1025. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1026. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1027. case PHY_B_AS_PAUSE_MSK:
  1028. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1029. break;
  1030. case PHY_B_AS_PRR:
  1031. skge->flow_status = FLOW_STAT_REM_SEND;
  1032. break;
  1033. case PHY_B_AS_PRT:
  1034. skge->flow_status = FLOW_STAT_LOC_SEND;
  1035. break;
  1036. default:
  1037. skge->flow_status = FLOW_STAT_NONE;
  1038. }
  1039. skge->speed = SPEED_1000;
  1040. }
  1041. if (!netif_carrier_ok(dev))
  1042. genesis_link_up(skge);
  1043. }
  1044. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1045. * Phy on for 100 or 10Mbit operation
  1046. */
  1047. static void bcom_phy_init(struct skge_port *skge)
  1048. {
  1049. struct skge_hw *hw = skge->hw;
  1050. int port = skge->port;
  1051. int i;
  1052. u16 id1, r, ext, ctl;
  1053. /* magic workaround patterns for Broadcom */
  1054. static const struct {
  1055. u16 reg;
  1056. u16 val;
  1057. } A1hack[] = {
  1058. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1059. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1060. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1061. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1062. }, C0hack[] = {
  1063. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1064. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1065. };
  1066. /* read Id from external PHY (all have the same address) */
  1067. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1068. /* Optimize MDIO transfer by suppressing preamble. */
  1069. r = xm_read16(hw, port, XM_MMU_CMD);
  1070. r |= XM_MMU_NO_PRE;
  1071. xm_write16(hw, port, XM_MMU_CMD, r);
  1072. switch (id1) {
  1073. case PHY_BCOM_ID1_C0:
  1074. /*
  1075. * Workaround BCOM Errata for the C0 type.
  1076. * Write magic patterns to reserved registers.
  1077. */
  1078. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1079. xm_phy_write(hw, port,
  1080. C0hack[i].reg, C0hack[i].val);
  1081. break;
  1082. case PHY_BCOM_ID1_A1:
  1083. /*
  1084. * Workaround BCOM Errata for the A1 type.
  1085. * Write magic patterns to reserved registers.
  1086. */
  1087. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1088. xm_phy_write(hw, port,
  1089. A1hack[i].reg, A1hack[i].val);
  1090. break;
  1091. }
  1092. /*
  1093. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1094. * Disable Power Management after reset.
  1095. */
  1096. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1097. r |= PHY_B_AC_DIS_PM;
  1098. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1099. /* Dummy read */
  1100. xm_read16(hw, port, XM_ISRC);
  1101. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1102. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1103. if (skge->autoneg == AUTONEG_ENABLE) {
  1104. /*
  1105. * Workaround BCOM Errata #1 for the C5 type.
  1106. * 1000Base-T Link Acquisition Failure in Slave Mode
  1107. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1108. */
  1109. u16 adv = PHY_B_1000C_RD;
  1110. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1111. adv |= PHY_B_1000C_AHD;
  1112. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1113. adv |= PHY_B_1000C_AFD;
  1114. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1115. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1116. } else {
  1117. if (skge->duplex == DUPLEX_FULL)
  1118. ctl |= PHY_CT_DUP_MD;
  1119. /* Force to slave */
  1120. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1121. }
  1122. /* Set autonegotiation pause parameters */
  1123. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1124. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1125. /* Handle Jumbo frames */
  1126. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1127. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1128. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1129. ext |= PHY_B_PEC_HIGH_LA;
  1130. }
  1131. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1132. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1133. /* Use link status change interrupt */
  1134. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1135. }
  1136. static void xm_phy_init(struct skge_port *skge)
  1137. {
  1138. struct skge_hw *hw = skge->hw;
  1139. int port = skge->port;
  1140. u16 ctrl = 0;
  1141. if (skge->autoneg == AUTONEG_ENABLE) {
  1142. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1143. ctrl |= PHY_X_AN_HD;
  1144. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1145. ctrl |= PHY_X_AN_FD;
  1146. ctrl |= fiber_pause_map[skge->flow_control];
  1147. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1148. /* Restart Auto-negotiation */
  1149. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1150. } else {
  1151. /* Set DuplexMode in Config register */
  1152. if (skge->duplex == DUPLEX_FULL)
  1153. ctrl |= PHY_CT_DUP_MD;
  1154. /*
  1155. * Do NOT enable Auto-negotiation here. This would hold
  1156. * the link down because no IDLEs are transmitted
  1157. */
  1158. }
  1159. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1160. /* Poll PHY for status changes */
  1161. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1162. }
  1163. static int xm_check_link(struct net_device *dev)
  1164. {
  1165. struct skge_port *skge = netdev_priv(dev);
  1166. struct skge_hw *hw = skge->hw;
  1167. int port = skge->port;
  1168. u16 status;
  1169. /* read twice because of latch */
  1170. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1171. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1172. if ((status & PHY_ST_LSYNC) == 0) {
  1173. xm_link_down(hw, port);
  1174. return 0;
  1175. }
  1176. if (skge->autoneg == AUTONEG_ENABLE) {
  1177. u16 lpa, res;
  1178. if (!(status & PHY_ST_AN_OVER))
  1179. return 0;
  1180. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1181. if (lpa & PHY_B_AN_RF) {
  1182. netdev_notice(dev, "remote fault\n");
  1183. return 0;
  1184. }
  1185. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1186. /* Check Duplex mismatch */
  1187. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1188. case PHY_X_RS_FD:
  1189. skge->duplex = DUPLEX_FULL;
  1190. break;
  1191. case PHY_X_RS_HD:
  1192. skge->duplex = DUPLEX_HALF;
  1193. break;
  1194. default:
  1195. netdev_notice(dev, "duplex mismatch\n");
  1196. return 0;
  1197. }
  1198. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1199. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1200. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1201. (lpa & PHY_X_P_SYM_MD))
  1202. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1203. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1204. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1205. /* Enable PAUSE receive, disable PAUSE transmit */
  1206. skge->flow_status = FLOW_STAT_REM_SEND;
  1207. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1208. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1209. /* Disable PAUSE receive, enable PAUSE transmit */
  1210. skge->flow_status = FLOW_STAT_LOC_SEND;
  1211. else
  1212. skge->flow_status = FLOW_STAT_NONE;
  1213. skge->speed = SPEED_1000;
  1214. }
  1215. if (!netif_carrier_ok(dev))
  1216. genesis_link_up(skge);
  1217. return 1;
  1218. }
  1219. /* Poll to check for link coming up.
  1220. *
  1221. * Since internal PHY is wired to a level triggered pin, can't
  1222. * get an interrupt when carrier is detected, need to poll for
  1223. * link coming up.
  1224. */
  1225. static void xm_link_timer(unsigned long arg)
  1226. {
  1227. struct skge_port *skge = (struct skge_port *) arg;
  1228. struct net_device *dev = skge->netdev;
  1229. struct skge_hw *hw = skge->hw;
  1230. int port = skge->port;
  1231. int i;
  1232. unsigned long flags;
  1233. if (!netif_running(dev))
  1234. return;
  1235. spin_lock_irqsave(&hw->phy_lock, flags);
  1236. /*
  1237. * Verify that the link by checking GPIO register three times.
  1238. * This pin has the signal from the link_sync pin connected to it.
  1239. */
  1240. for (i = 0; i < 3; i++) {
  1241. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1242. goto link_down;
  1243. }
  1244. /* Re-enable interrupt to detect link down */
  1245. if (xm_check_link(dev)) {
  1246. u16 msk = xm_read16(hw, port, XM_IMSK);
  1247. msk &= ~XM_IS_INP_ASS;
  1248. xm_write16(hw, port, XM_IMSK, msk);
  1249. xm_read16(hw, port, XM_ISRC);
  1250. } else {
  1251. link_down:
  1252. mod_timer(&skge->link_timer,
  1253. round_jiffies(jiffies + LINK_HZ));
  1254. }
  1255. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1256. }
  1257. static void genesis_mac_init(struct skge_hw *hw, int port)
  1258. {
  1259. struct net_device *dev = hw->dev[port];
  1260. struct skge_port *skge = netdev_priv(dev);
  1261. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1262. int i;
  1263. u32 r;
  1264. static const u8 zero[6] = { 0 };
  1265. for (i = 0; i < 10; i++) {
  1266. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1267. MFF_SET_MAC_RST);
  1268. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1269. goto reset_ok;
  1270. udelay(1);
  1271. }
  1272. netdev_warn(dev, "genesis reset failed\n");
  1273. reset_ok:
  1274. /* Unreset the XMAC. */
  1275. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1276. /*
  1277. * Perform additional initialization for external PHYs,
  1278. * namely for the 1000baseTX cards that use the XMAC's
  1279. * GMII mode.
  1280. */
  1281. if (hw->phy_type != SK_PHY_XMAC) {
  1282. /* Take external Phy out of reset */
  1283. r = skge_read32(hw, B2_GP_IO);
  1284. if (port == 0)
  1285. r |= GP_DIR_0|GP_IO_0;
  1286. else
  1287. r |= GP_DIR_2|GP_IO_2;
  1288. skge_write32(hw, B2_GP_IO, r);
  1289. /* Enable GMII interface */
  1290. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1291. }
  1292. switch (hw->phy_type) {
  1293. case SK_PHY_XMAC:
  1294. xm_phy_init(skge);
  1295. break;
  1296. case SK_PHY_BCOM:
  1297. bcom_phy_init(skge);
  1298. bcom_check_link(hw, port);
  1299. }
  1300. /* Set Station Address */
  1301. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1302. /* We don't use match addresses so clear */
  1303. for (i = 1; i < 16; i++)
  1304. xm_outaddr(hw, port, XM_EXM(i), zero);
  1305. /* Clear MIB counters */
  1306. xm_write16(hw, port, XM_STAT_CMD,
  1307. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1308. /* Clear two times according to Errata #3 */
  1309. xm_write16(hw, port, XM_STAT_CMD,
  1310. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1311. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1312. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1313. /* We don't need the FCS appended to the packet. */
  1314. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1315. if (jumbo)
  1316. r |= XM_RX_BIG_PK_OK;
  1317. if (skge->duplex == DUPLEX_HALF) {
  1318. /*
  1319. * If in manual half duplex mode the other side might be in
  1320. * full duplex mode, so ignore if a carrier extension is not seen
  1321. * on frames received
  1322. */
  1323. r |= XM_RX_DIS_CEXT;
  1324. }
  1325. xm_write16(hw, port, XM_RX_CMD, r);
  1326. /* We want short frames padded to 60 bytes. */
  1327. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1328. /* Increase threshold for jumbo frames on dual port */
  1329. if (hw->ports > 1 && jumbo)
  1330. xm_write16(hw, port, XM_TX_THR, 1020);
  1331. else
  1332. xm_write16(hw, port, XM_TX_THR, 512);
  1333. /*
  1334. * Enable the reception of all error frames. This is is
  1335. * a necessary evil due to the design of the XMAC. The
  1336. * XMAC's receive FIFO is only 8K in size, however jumbo
  1337. * frames can be up to 9000 bytes in length. When bad
  1338. * frame filtering is enabled, the XMAC's RX FIFO operates
  1339. * in 'store and forward' mode. For this to work, the
  1340. * entire frame has to fit into the FIFO, but that means
  1341. * that jumbo frames larger than 8192 bytes will be
  1342. * truncated. Disabling all bad frame filtering causes
  1343. * the RX FIFO to operate in streaming mode, in which
  1344. * case the XMAC will start transferring frames out of the
  1345. * RX FIFO as soon as the FIFO threshold is reached.
  1346. */
  1347. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1348. /*
  1349. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1350. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1351. * and 'Octets Rx OK Hi Cnt Ov'.
  1352. */
  1353. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1354. /*
  1355. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1356. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1357. * and 'Octets Tx OK Hi Cnt Ov'.
  1358. */
  1359. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1360. /* Configure MAC arbiter */
  1361. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1362. /* configure timeout values */
  1363. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1364. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1365. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1366. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1367. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1368. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1369. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1370. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1371. /* Configure Rx MAC FIFO */
  1372. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1373. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1374. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1375. /* Configure Tx MAC FIFO */
  1376. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1377. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1378. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1379. if (jumbo) {
  1380. /* Enable frame flushing if jumbo frames used */
  1381. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1382. } else {
  1383. /* enable timeout timers if normal frames */
  1384. skge_write16(hw, B3_PA_CTRL,
  1385. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1386. }
  1387. }
  1388. static void genesis_stop(struct skge_port *skge)
  1389. {
  1390. struct skge_hw *hw = skge->hw;
  1391. int port = skge->port;
  1392. unsigned retries = 1000;
  1393. u16 cmd;
  1394. /* Disable Tx and Rx */
  1395. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1396. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1397. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1398. genesis_reset(hw, port);
  1399. /* Clear Tx packet arbiter timeout IRQ */
  1400. skge_write16(hw, B3_PA_CTRL,
  1401. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1402. /* Reset the MAC */
  1403. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1404. do {
  1405. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1406. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1407. break;
  1408. } while (--retries > 0);
  1409. /* For external PHYs there must be special handling */
  1410. if (hw->phy_type != SK_PHY_XMAC) {
  1411. u32 reg = skge_read32(hw, B2_GP_IO);
  1412. if (port == 0) {
  1413. reg |= GP_DIR_0;
  1414. reg &= ~GP_IO_0;
  1415. } else {
  1416. reg |= GP_DIR_2;
  1417. reg &= ~GP_IO_2;
  1418. }
  1419. skge_write32(hw, B2_GP_IO, reg);
  1420. skge_read32(hw, B2_GP_IO);
  1421. }
  1422. xm_write16(hw, port, XM_MMU_CMD,
  1423. xm_read16(hw, port, XM_MMU_CMD)
  1424. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1425. xm_read16(hw, port, XM_MMU_CMD);
  1426. }
  1427. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1428. {
  1429. struct skge_hw *hw = skge->hw;
  1430. int port = skge->port;
  1431. int i;
  1432. unsigned long timeout = jiffies + HZ;
  1433. xm_write16(hw, port,
  1434. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1435. /* wait for update to complete */
  1436. while (xm_read16(hw, port, XM_STAT_CMD)
  1437. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1438. if (time_after(jiffies, timeout))
  1439. break;
  1440. udelay(10);
  1441. }
  1442. /* special case for 64 bit octet counter */
  1443. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1444. | xm_read32(hw, port, XM_TXO_OK_LO);
  1445. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1446. | xm_read32(hw, port, XM_RXO_OK_LO);
  1447. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1448. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1449. }
  1450. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1451. {
  1452. struct net_device *dev = hw->dev[port];
  1453. struct skge_port *skge = netdev_priv(dev);
  1454. u16 status = xm_read16(hw, port, XM_ISRC);
  1455. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1456. "mac interrupt status 0x%x\n", status);
  1457. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1458. xm_link_down(hw, port);
  1459. mod_timer(&skge->link_timer, jiffies + 1);
  1460. }
  1461. if (status & XM_IS_TXF_UR) {
  1462. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1463. ++dev->stats.tx_fifo_errors;
  1464. }
  1465. }
  1466. static void genesis_link_up(struct skge_port *skge)
  1467. {
  1468. struct skge_hw *hw = skge->hw;
  1469. int port = skge->port;
  1470. u16 cmd, msk;
  1471. u32 mode;
  1472. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1473. /*
  1474. * enabling pause frame reception is required for 1000BT
  1475. * because the XMAC is not reset if the link is going down
  1476. */
  1477. if (skge->flow_status == FLOW_STAT_NONE ||
  1478. skge->flow_status == FLOW_STAT_LOC_SEND)
  1479. /* Disable Pause Frame Reception */
  1480. cmd |= XM_MMU_IGN_PF;
  1481. else
  1482. /* Enable Pause Frame Reception */
  1483. cmd &= ~XM_MMU_IGN_PF;
  1484. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1485. mode = xm_read32(hw, port, XM_MODE);
  1486. if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
  1487. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1488. /*
  1489. * Configure Pause Frame Generation
  1490. * Use internal and external Pause Frame Generation.
  1491. * Sending pause frames is edge triggered.
  1492. * Send a Pause frame with the maximum pause time if
  1493. * internal oder external FIFO full condition occurs.
  1494. * Send a zero pause time frame to re-start transmission.
  1495. */
  1496. /* XM_PAUSE_DA = '010000C28001' (default) */
  1497. /* XM_MAC_PTIME = 0xffff (maximum) */
  1498. /* remember this value is defined in big endian (!) */
  1499. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1500. mode |= XM_PAUSE_MODE;
  1501. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1502. } else {
  1503. /*
  1504. * disable pause frame generation is required for 1000BT
  1505. * because the XMAC is not reset if the link is going down
  1506. */
  1507. /* Disable Pause Mode in Mode Register */
  1508. mode &= ~XM_PAUSE_MODE;
  1509. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1510. }
  1511. xm_write32(hw, port, XM_MODE, mode);
  1512. /* Turn on detection of Tx underrun */
  1513. msk = xm_read16(hw, port, XM_IMSK);
  1514. msk &= ~XM_IS_TXF_UR;
  1515. xm_write16(hw, port, XM_IMSK, msk);
  1516. xm_read16(hw, port, XM_ISRC);
  1517. /* get MMU Command Reg. */
  1518. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1519. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1520. cmd |= XM_MMU_GMII_FD;
  1521. /*
  1522. * Workaround BCOM Errata (#10523) for all BCom Phys
  1523. * Enable Power Management after link up
  1524. */
  1525. if (hw->phy_type == SK_PHY_BCOM) {
  1526. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1527. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1528. & ~PHY_B_AC_DIS_PM);
  1529. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1530. }
  1531. /* enable Rx/Tx */
  1532. xm_write16(hw, port, XM_MMU_CMD,
  1533. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1534. skge_link_up(skge);
  1535. }
  1536. static inline void bcom_phy_intr(struct skge_port *skge)
  1537. {
  1538. struct skge_hw *hw = skge->hw;
  1539. int port = skge->port;
  1540. u16 isrc;
  1541. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1542. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1543. "phy interrupt status 0x%x\n", isrc);
  1544. if (isrc & PHY_B_IS_PSE)
  1545. pr_err("%s: uncorrectable pair swap error\n",
  1546. hw->dev[port]->name);
  1547. /* Workaround BCom Errata:
  1548. * enable and disable loopback mode if "NO HCD" occurs.
  1549. */
  1550. if (isrc & PHY_B_IS_NO_HDCL) {
  1551. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1552. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1553. ctrl | PHY_CT_LOOP);
  1554. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1555. ctrl & ~PHY_CT_LOOP);
  1556. }
  1557. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1558. bcom_check_link(hw, port);
  1559. }
  1560. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1561. {
  1562. int i;
  1563. gma_write16(hw, port, GM_SMI_DATA, val);
  1564. gma_write16(hw, port, GM_SMI_CTRL,
  1565. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1566. for (i = 0; i < PHY_RETRIES; i++) {
  1567. udelay(1);
  1568. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1569. return 0;
  1570. }
  1571. pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
  1572. return -EIO;
  1573. }
  1574. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1575. {
  1576. int i;
  1577. gma_write16(hw, port, GM_SMI_CTRL,
  1578. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1579. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1580. for (i = 0; i < PHY_RETRIES; i++) {
  1581. udelay(1);
  1582. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1583. goto ready;
  1584. }
  1585. return -ETIMEDOUT;
  1586. ready:
  1587. *val = gma_read16(hw, port, GM_SMI_DATA);
  1588. return 0;
  1589. }
  1590. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1591. {
  1592. u16 v = 0;
  1593. if (__gm_phy_read(hw, port, reg, &v))
  1594. pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
  1595. return v;
  1596. }
  1597. /* Marvell Phy Initialization */
  1598. static void yukon_init(struct skge_hw *hw, int port)
  1599. {
  1600. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1601. u16 ctrl, ct1000, adv;
  1602. if (skge->autoneg == AUTONEG_ENABLE) {
  1603. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1604. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1605. PHY_M_EC_MAC_S_MSK);
  1606. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1607. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1608. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1609. }
  1610. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1611. if (skge->autoneg == AUTONEG_DISABLE)
  1612. ctrl &= ~PHY_CT_ANE;
  1613. ctrl |= PHY_CT_RESET;
  1614. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1615. ctrl = 0;
  1616. ct1000 = 0;
  1617. adv = PHY_AN_CSMA;
  1618. if (skge->autoneg == AUTONEG_ENABLE) {
  1619. if (hw->copper) {
  1620. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1621. ct1000 |= PHY_M_1000C_AFD;
  1622. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1623. ct1000 |= PHY_M_1000C_AHD;
  1624. if (skge->advertising & ADVERTISED_100baseT_Full)
  1625. adv |= PHY_M_AN_100_FD;
  1626. if (skge->advertising & ADVERTISED_100baseT_Half)
  1627. adv |= PHY_M_AN_100_HD;
  1628. if (skge->advertising & ADVERTISED_10baseT_Full)
  1629. adv |= PHY_M_AN_10_FD;
  1630. if (skge->advertising & ADVERTISED_10baseT_Half)
  1631. adv |= PHY_M_AN_10_HD;
  1632. /* Set Flow-control capabilities */
  1633. adv |= phy_pause_map[skge->flow_control];
  1634. } else {
  1635. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1636. adv |= PHY_M_AN_1000X_AFD;
  1637. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1638. adv |= PHY_M_AN_1000X_AHD;
  1639. adv |= fiber_pause_map[skge->flow_control];
  1640. }
  1641. /* Restart Auto-negotiation */
  1642. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1643. } else {
  1644. /* forced speed/duplex settings */
  1645. ct1000 = PHY_M_1000C_MSE;
  1646. if (skge->duplex == DUPLEX_FULL)
  1647. ctrl |= PHY_CT_DUP_MD;
  1648. switch (skge->speed) {
  1649. case SPEED_1000:
  1650. ctrl |= PHY_CT_SP1000;
  1651. break;
  1652. case SPEED_100:
  1653. ctrl |= PHY_CT_SP100;
  1654. break;
  1655. }
  1656. ctrl |= PHY_CT_RESET;
  1657. }
  1658. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1659. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1660. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1661. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1662. if (skge->autoneg == AUTONEG_ENABLE)
  1663. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1664. else
  1665. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1666. }
  1667. static void yukon_reset(struct skge_hw *hw, int port)
  1668. {
  1669. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1670. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1671. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1672. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1673. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1674. gma_write16(hw, port, GM_RX_CTRL,
  1675. gma_read16(hw, port, GM_RX_CTRL)
  1676. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1677. }
  1678. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1679. static int is_yukon_lite_a0(struct skge_hw *hw)
  1680. {
  1681. u32 reg;
  1682. int ret;
  1683. if (hw->chip_id != CHIP_ID_YUKON)
  1684. return 0;
  1685. reg = skge_read32(hw, B2_FAR);
  1686. skge_write8(hw, B2_FAR + 3, 0xff);
  1687. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1688. skge_write32(hw, B2_FAR, reg);
  1689. return ret;
  1690. }
  1691. static void yukon_mac_init(struct skge_hw *hw, int port)
  1692. {
  1693. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1694. int i;
  1695. u32 reg;
  1696. const u8 *addr = hw->dev[port]->dev_addr;
  1697. /* WA code for COMA mode -- set PHY reset */
  1698. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1699. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1700. reg = skge_read32(hw, B2_GP_IO);
  1701. reg |= GP_DIR_9 | GP_IO_9;
  1702. skge_write32(hw, B2_GP_IO, reg);
  1703. }
  1704. /* hard reset */
  1705. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1706. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1707. /* WA code for COMA mode -- clear PHY reset */
  1708. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1709. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1710. reg = skge_read32(hw, B2_GP_IO);
  1711. reg |= GP_DIR_9;
  1712. reg &= ~GP_IO_9;
  1713. skge_write32(hw, B2_GP_IO, reg);
  1714. }
  1715. /* Set hardware config mode */
  1716. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1717. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1718. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1719. /* Clear GMC reset */
  1720. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1721. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1722. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1723. if (skge->autoneg == AUTONEG_DISABLE) {
  1724. reg = GM_GPCR_AU_ALL_DIS;
  1725. gma_write16(hw, port, GM_GP_CTRL,
  1726. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1727. switch (skge->speed) {
  1728. case SPEED_1000:
  1729. reg &= ~GM_GPCR_SPEED_100;
  1730. reg |= GM_GPCR_SPEED_1000;
  1731. break;
  1732. case SPEED_100:
  1733. reg &= ~GM_GPCR_SPEED_1000;
  1734. reg |= GM_GPCR_SPEED_100;
  1735. break;
  1736. case SPEED_10:
  1737. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1738. break;
  1739. }
  1740. if (skge->duplex == DUPLEX_FULL)
  1741. reg |= GM_GPCR_DUP_FULL;
  1742. } else
  1743. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1744. switch (skge->flow_control) {
  1745. case FLOW_MODE_NONE:
  1746. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1747. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1748. break;
  1749. case FLOW_MODE_LOC_SEND:
  1750. /* disable Rx flow-control */
  1751. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1752. break;
  1753. case FLOW_MODE_SYMMETRIC:
  1754. case FLOW_MODE_SYM_OR_REM:
  1755. /* enable Tx & Rx flow-control */
  1756. break;
  1757. }
  1758. gma_write16(hw, port, GM_GP_CTRL, reg);
  1759. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1760. yukon_init(hw, port);
  1761. /* MIB clear */
  1762. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1763. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1764. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1765. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1766. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1767. /* transmit control */
  1768. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1769. /* receive control reg: unicast + multicast + no FCS */
  1770. gma_write16(hw, port, GM_RX_CTRL,
  1771. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1772. /* transmit flow control */
  1773. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1774. /* transmit parameter */
  1775. gma_write16(hw, port, GM_TX_PARAM,
  1776. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1777. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1778. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1779. /* configure the Serial Mode Register */
  1780. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1781. | GM_SMOD_VLAN_ENA
  1782. | IPG_DATA_VAL(IPG_DATA_DEF);
  1783. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1784. reg |= GM_SMOD_JUMBO_ENA;
  1785. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1786. /* physical address: used for pause frames */
  1787. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1788. /* virtual address for data */
  1789. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1790. /* enable interrupt mask for counter overflows */
  1791. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1792. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1793. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1794. /* Initialize Mac Fifo */
  1795. /* Configure Rx MAC FIFO */
  1796. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1797. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1798. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1799. if (is_yukon_lite_a0(hw))
  1800. reg &= ~GMF_RX_F_FL_ON;
  1801. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1802. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1803. /*
  1804. * because Pause Packet Truncation in GMAC is not working
  1805. * we have to increase the Flush Threshold to 64 bytes
  1806. * in order to flush pause packets in Rx FIFO on Yukon-1
  1807. */
  1808. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1809. /* Configure Tx MAC FIFO */
  1810. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1811. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1812. }
  1813. /* Go into power down mode */
  1814. static void yukon_suspend(struct skge_hw *hw, int port)
  1815. {
  1816. u16 ctrl;
  1817. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1818. ctrl |= PHY_M_PC_POL_R_DIS;
  1819. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1820. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1821. ctrl |= PHY_CT_RESET;
  1822. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1823. /* switch IEEE compatible power down mode on */
  1824. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1825. ctrl |= PHY_CT_PDOWN;
  1826. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1827. }
  1828. static void yukon_stop(struct skge_port *skge)
  1829. {
  1830. struct skge_hw *hw = skge->hw;
  1831. int port = skge->port;
  1832. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1833. yukon_reset(hw, port);
  1834. gma_write16(hw, port, GM_GP_CTRL,
  1835. gma_read16(hw, port, GM_GP_CTRL)
  1836. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1837. gma_read16(hw, port, GM_GP_CTRL);
  1838. yukon_suspend(hw, port);
  1839. /* set GPHY Control reset */
  1840. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1841. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1842. }
  1843. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1844. {
  1845. struct skge_hw *hw = skge->hw;
  1846. int port = skge->port;
  1847. int i;
  1848. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1849. | gma_read32(hw, port, GM_TXO_OK_LO);
  1850. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1851. | gma_read32(hw, port, GM_RXO_OK_LO);
  1852. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1853. data[i] = gma_read32(hw, port,
  1854. skge_stats[i].gma_offset);
  1855. }
  1856. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1857. {
  1858. struct net_device *dev = hw->dev[port];
  1859. struct skge_port *skge = netdev_priv(dev);
  1860. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1861. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1862. "mac interrupt status 0x%x\n", status);
  1863. if (status & GM_IS_RX_FF_OR) {
  1864. ++dev->stats.rx_fifo_errors;
  1865. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1866. }
  1867. if (status & GM_IS_TX_FF_UR) {
  1868. ++dev->stats.tx_fifo_errors;
  1869. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1870. }
  1871. }
  1872. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1873. {
  1874. switch (aux & PHY_M_PS_SPEED_MSK) {
  1875. case PHY_M_PS_SPEED_1000:
  1876. return SPEED_1000;
  1877. case PHY_M_PS_SPEED_100:
  1878. return SPEED_100;
  1879. default:
  1880. return SPEED_10;
  1881. }
  1882. }
  1883. static void yukon_link_up(struct skge_port *skge)
  1884. {
  1885. struct skge_hw *hw = skge->hw;
  1886. int port = skge->port;
  1887. u16 reg;
  1888. /* Enable Transmit FIFO Underrun */
  1889. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1890. reg = gma_read16(hw, port, GM_GP_CTRL);
  1891. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1892. reg |= GM_GPCR_DUP_FULL;
  1893. /* enable Rx/Tx */
  1894. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1895. gma_write16(hw, port, GM_GP_CTRL, reg);
  1896. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1897. skge_link_up(skge);
  1898. }
  1899. static void yukon_link_down(struct skge_port *skge)
  1900. {
  1901. struct skge_hw *hw = skge->hw;
  1902. int port = skge->port;
  1903. u16 ctrl;
  1904. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1905. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1906. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1907. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1908. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1909. ctrl |= PHY_M_AN_ASP;
  1910. /* restore Asymmetric Pause bit */
  1911. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1912. }
  1913. skge_link_down(skge);
  1914. yukon_init(hw, port);
  1915. }
  1916. static void yukon_phy_intr(struct skge_port *skge)
  1917. {
  1918. struct skge_hw *hw = skge->hw;
  1919. int port = skge->port;
  1920. const char *reason = NULL;
  1921. u16 istatus, phystat;
  1922. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1923. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1924. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1925. "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
  1926. if (istatus & PHY_M_IS_AN_COMPL) {
  1927. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1928. & PHY_M_AN_RF) {
  1929. reason = "remote fault";
  1930. goto failed;
  1931. }
  1932. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1933. reason = "master/slave fault";
  1934. goto failed;
  1935. }
  1936. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1937. reason = "speed/duplex";
  1938. goto failed;
  1939. }
  1940. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1941. ? DUPLEX_FULL : DUPLEX_HALF;
  1942. skge->speed = yukon_speed(hw, phystat);
  1943. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1944. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1945. case PHY_M_PS_PAUSE_MSK:
  1946. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1947. break;
  1948. case PHY_M_PS_RX_P_EN:
  1949. skge->flow_status = FLOW_STAT_REM_SEND;
  1950. break;
  1951. case PHY_M_PS_TX_P_EN:
  1952. skge->flow_status = FLOW_STAT_LOC_SEND;
  1953. break;
  1954. default:
  1955. skge->flow_status = FLOW_STAT_NONE;
  1956. }
  1957. if (skge->flow_status == FLOW_STAT_NONE ||
  1958. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1959. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1960. else
  1961. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1962. yukon_link_up(skge);
  1963. return;
  1964. }
  1965. if (istatus & PHY_M_IS_LSP_CHANGE)
  1966. skge->speed = yukon_speed(hw, phystat);
  1967. if (istatus & PHY_M_IS_DUP_CHANGE)
  1968. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1969. if (istatus & PHY_M_IS_LST_CHANGE) {
  1970. if (phystat & PHY_M_PS_LINK_UP)
  1971. yukon_link_up(skge);
  1972. else
  1973. yukon_link_down(skge);
  1974. }
  1975. return;
  1976. failed:
  1977. pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
  1978. /* XXX restart autonegotiation? */
  1979. }
  1980. static void skge_phy_reset(struct skge_port *skge)
  1981. {
  1982. struct skge_hw *hw = skge->hw;
  1983. int port = skge->port;
  1984. struct net_device *dev = hw->dev[port];
  1985. netif_stop_queue(skge->netdev);
  1986. netif_carrier_off(skge->netdev);
  1987. spin_lock_bh(&hw->phy_lock);
  1988. if (hw->chip_id == CHIP_ID_GENESIS) {
  1989. genesis_reset(hw, port);
  1990. genesis_mac_init(hw, port);
  1991. } else {
  1992. yukon_reset(hw, port);
  1993. yukon_init(hw, port);
  1994. }
  1995. spin_unlock_bh(&hw->phy_lock);
  1996. skge_set_multicast(dev);
  1997. }
  1998. /* Basic MII support */
  1999. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2000. {
  2001. struct mii_ioctl_data *data = if_mii(ifr);
  2002. struct skge_port *skge = netdev_priv(dev);
  2003. struct skge_hw *hw = skge->hw;
  2004. int err = -EOPNOTSUPP;
  2005. if (!netif_running(dev))
  2006. return -ENODEV; /* Phy still in reset */
  2007. switch (cmd) {
  2008. case SIOCGMIIPHY:
  2009. data->phy_id = hw->phy_addr;
  2010. /* fallthru */
  2011. case SIOCGMIIREG: {
  2012. u16 val = 0;
  2013. spin_lock_bh(&hw->phy_lock);
  2014. if (hw->chip_id == CHIP_ID_GENESIS)
  2015. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2016. else
  2017. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2018. spin_unlock_bh(&hw->phy_lock);
  2019. data->val_out = val;
  2020. break;
  2021. }
  2022. case SIOCSMIIREG:
  2023. spin_lock_bh(&hw->phy_lock);
  2024. if (hw->chip_id == CHIP_ID_GENESIS)
  2025. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2026. data->val_in);
  2027. else
  2028. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2029. data->val_in);
  2030. spin_unlock_bh(&hw->phy_lock);
  2031. break;
  2032. }
  2033. return err;
  2034. }
  2035. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2036. {
  2037. u32 end;
  2038. start /= 8;
  2039. len /= 8;
  2040. end = start + len - 1;
  2041. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2042. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2043. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2044. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2045. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2046. if (q == Q_R1 || q == Q_R2) {
  2047. /* Set thresholds on receive queue's */
  2048. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2049. start + (2*len)/3);
  2050. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2051. start + (len/3));
  2052. } else {
  2053. /* Enable store & forward on Tx queue's because
  2054. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2055. */
  2056. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2057. }
  2058. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2059. }
  2060. /* Setup Bus Memory Interface */
  2061. static void skge_qset(struct skge_port *skge, u16 q,
  2062. const struct skge_element *e)
  2063. {
  2064. struct skge_hw *hw = skge->hw;
  2065. u32 watermark = 0x600;
  2066. u64 base = skge->dma + (e->desc - skge->mem);
  2067. /* optimization to reduce window on 32bit/33mhz */
  2068. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2069. watermark /= 2;
  2070. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2071. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2072. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2073. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2074. }
  2075. static int skge_up(struct net_device *dev)
  2076. {
  2077. struct skge_port *skge = netdev_priv(dev);
  2078. struct skge_hw *hw = skge->hw;
  2079. int port = skge->port;
  2080. u32 chunk, ram_addr;
  2081. size_t rx_size, tx_size;
  2082. int err;
  2083. if (!is_valid_ether_addr(dev->dev_addr))
  2084. return -EINVAL;
  2085. netif_info(skge, ifup, skge->netdev, "enabling interface\n");
  2086. if (dev->mtu > RX_BUF_SIZE)
  2087. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2088. else
  2089. skge->rx_buf_size = RX_BUF_SIZE;
  2090. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2091. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2092. skge->mem_size = tx_size + rx_size;
  2093. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2094. if (!skge->mem)
  2095. return -ENOMEM;
  2096. BUG_ON(skge->dma & 7);
  2097. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2098. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2099. err = -EINVAL;
  2100. goto free_pci_mem;
  2101. }
  2102. memset(skge->mem, 0, skge->mem_size);
  2103. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2104. if (err)
  2105. goto free_pci_mem;
  2106. err = skge_rx_fill(dev);
  2107. if (err)
  2108. goto free_rx_ring;
  2109. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2110. skge->dma + rx_size);
  2111. if (err)
  2112. goto free_rx_ring;
  2113. /* Initialize MAC */
  2114. spin_lock_bh(&hw->phy_lock);
  2115. if (hw->chip_id == CHIP_ID_GENESIS)
  2116. genesis_mac_init(hw, port);
  2117. else
  2118. yukon_mac_init(hw, port);
  2119. spin_unlock_bh(&hw->phy_lock);
  2120. /* Configure RAMbuffers - equally between ports and tx/rx */
  2121. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2122. ram_addr = hw->ram_offset + 2 * chunk * port;
  2123. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2124. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2125. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2126. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2127. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2128. /* Start receiver BMU */
  2129. wmb();
  2130. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2131. skge_led(skge, LED_MODE_ON);
  2132. spin_lock_irq(&hw->hw_lock);
  2133. hw->intr_mask |= portmask[port];
  2134. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2135. spin_unlock_irq(&hw->hw_lock);
  2136. napi_enable(&skge->napi);
  2137. return 0;
  2138. free_rx_ring:
  2139. skge_rx_clean(skge);
  2140. kfree(skge->rx_ring.start);
  2141. free_pci_mem:
  2142. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2143. skge->mem = NULL;
  2144. return err;
  2145. }
  2146. /* stop receiver */
  2147. static void skge_rx_stop(struct skge_hw *hw, int port)
  2148. {
  2149. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2150. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2151. RB_RST_SET|RB_DIS_OP_MD);
  2152. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2153. }
  2154. static int skge_down(struct net_device *dev)
  2155. {
  2156. struct skge_port *skge = netdev_priv(dev);
  2157. struct skge_hw *hw = skge->hw;
  2158. int port = skge->port;
  2159. if (skge->mem == NULL)
  2160. return 0;
  2161. netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
  2162. netif_tx_disable(dev);
  2163. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2164. del_timer_sync(&skge->link_timer);
  2165. napi_disable(&skge->napi);
  2166. netif_carrier_off(dev);
  2167. spin_lock_irq(&hw->hw_lock);
  2168. hw->intr_mask &= ~portmask[port];
  2169. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2170. spin_unlock_irq(&hw->hw_lock);
  2171. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2172. if (hw->chip_id == CHIP_ID_GENESIS)
  2173. genesis_stop(skge);
  2174. else
  2175. yukon_stop(skge);
  2176. /* Stop transmitter */
  2177. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2178. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2179. RB_RST_SET|RB_DIS_OP_MD);
  2180. /* Disable Force Sync bit and Enable Alloc bit */
  2181. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2182. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2183. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2184. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2185. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2186. /* Reset PCI FIFO */
  2187. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2188. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2189. /* Reset the RAM Buffer async Tx queue */
  2190. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2191. skge_rx_stop(hw, port);
  2192. if (hw->chip_id == CHIP_ID_GENESIS) {
  2193. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2194. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2195. } else {
  2196. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2197. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2198. }
  2199. skge_led(skge, LED_MODE_OFF);
  2200. netif_tx_lock_bh(dev);
  2201. skge_tx_clean(dev);
  2202. netif_tx_unlock_bh(dev);
  2203. skge_rx_clean(skge);
  2204. kfree(skge->rx_ring.start);
  2205. kfree(skge->tx_ring.start);
  2206. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2207. skge->mem = NULL;
  2208. return 0;
  2209. }
  2210. static inline int skge_avail(const struct skge_ring *ring)
  2211. {
  2212. smp_mb();
  2213. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2214. + (ring->to_clean - ring->to_use) - 1;
  2215. }
  2216. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2217. struct net_device *dev)
  2218. {
  2219. struct skge_port *skge = netdev_priv(dev);
  2220. struct skge_hw *hw = skge->hw;
  2221. struct skge_element *e;
  2222. struct skge_tx_desc *td;
  2223. int i;
  2224. u32 control, len;
  2225. u64 map;
  2226. if (skb_padto(skb, ETH_ZLEN))
  2227. return NETDEV_TX_OK;
  2228. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2229. return NETDEV_TX_BUSY;
  2230. e = skge->tx_ring.to_use;
  2231. td = e->desc;
  2232. BUG_ON(td->control & BMU_OWN);
  2233. e->skb = skb;
  2234. len = skb_headlen(skb);
  2235. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2236. dma_unmap_addr_set(e, mapaddr, map);
  2237. dma_unmap_len_set(e, maplen, len);
  2238. td->dma_lo = map;
  2239. td->dma_hi = map >> 32;
  2240. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2241. const int offset = skb_checksum_start_offset(skb);
  2242. /* This seems backwards, but it is what the sk98lin
  2243. * does. Looks like hardware is wrong?
  2244. */
  2245. if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
  2246. hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2247. control = BMU_TCP_CHECK;
  2248. else
  2249. control = BMU_UDP_CHECK;
  2250. td->csum_offs = 0;
  2251. td->csum_start = offset;
  2252. td->csum_write = offset + skb->csum_offset;
  2253. } else
  2254. control = BMU_CHECK;
  2255. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2256. control |= BMU_EOF | BMU_IRQ_EOF;
  2257. else {
  2258. struct skge_tx_desc *tf = td;
  2259. control |= BMU_STFWD;
  2260. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2261. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2262. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2263. frag->size, PCI_DMA_TODEVICE);
  2264. e = e->next;
  2265. e->skb = skb;
  2266. tf = e->desc;
  2267. BUG_ON(tf->control & BMU_OWN);
  2268. tf->dma_lo = map;
  2269. tf->dma_hi = (u64) map >> 32;
  2270. dma_unmap_addr_set(e, mapaddr, map);
  2271. dma_unmap_len_set(e, maplen, frag->size);
  2272. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2273. }
  2274. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2275. }
  2276. /* Make sure all the descriptors written */
  2277. wmb();
  2278. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2279. wmb();
  2280. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2281. netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
  2282. "tx queued, slot %td, len %d\n",
  2283. e - skge->tx_ring.start, skb->len);
  2284. skge->tx_ring.to_use = e->next;
  2285. smp_wmb();
  2286. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2287. netdev_dbg(dev, "transmit queue full\n");
  2288. netif_stop_queue(dev);
  2289. }
  2290. return NETDEV_TX_OK;
  2291. }
  2292. /* Free resources associated with this reing element */
  2293. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2294. u32 control)
  2295. {
  2296. struct pci_dev *pdev = skge->hw->pdev;
  2297. /* skb header vs. fragment */
  2298. if (control & BMU_STF)
  2299. pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
  2300. dma_unmap_len(e, maplen),
  2301. PCI_DMA_TODEVICE);
  2302. else
  2303. pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
  2304. dma_unmap_len(e, maplen),
  2305. PCI_DMA_TODEVICE);
  2306. if (control & BMU_EOF) {
  2307. netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
  2308. "tx done slot %td\n", e - skge->tx_ring.start);
  2309. dev_kfree_skb(e->skb);
  2310. }
  2311. }
  2312. /* Free all buffers in transmit ring */
  2313. static void skge_tx_clean(struct net_device *dev)
  2314. {
  2315. struct skge_port *skge = netdev_priv(dev);
  2316. struct skge_element *e;
  2317. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2318. struct skge_tx_desc *td = e->desc;
  2319. skge_tx_free(skge, e, td->control);
  2320. td->control = 0;
  2321. }
  2322. skge->tx_ring.to_clean = e;
  2323. }
  2324. static void skge_tx_timeout(struct net_device *dev)
  2325. {
  2326. struct skge_port *skge = netdev_priv(dev);
  2327. netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
  2328. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2329. skge_tx_clean(dev);
  2330. netif_wake_queue(dev);
  2331. }
  2332. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2333. {
  2334. int err;
  2335. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2336. return -EINVAL;
  2337. if (!netif_running(dev)) {
  2338. dev->mtu = new_mtu;
  2339. return 0;
  2340. }
  2341. skge_down(dev);
  2342. dev->mtu = new_mtu;
  2343. err = skge_up(dev);
  2344. if (err)
  2345. dev_close(dev);
  2346. return err;
  2347. }
  2348. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2349. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2350. {
  2351. u32 crc, bit;
  2352. crc = ether_crc_le(ETH_ALEN, addr);
  2353. bit = ~crc & 0x3f;
  2354. filter[bit/8] |= 1 << (bit%8);
  2355. }
  2356. static void genesis_set_multicast(struct net_device *dev)
  2357. {
  2358. struct skge_port *skge = netdev_priv(dev);
  2359. struct skge_hw *hw = skge->hw;
  2360. int port = skge->port;
  2361. struct netdev_hw_addr *ha;
  2362. u32 mode;
  2363. u8 filter[8];
  2364. mode = xm_read32(hw, port, XM_MODE);
  2365. mode |= XM_MD_ENA_HASH;
  2366. if (dev->flags & IFF_PROMISC)
  2367. mode |= XM_MD_ENA_PROM;
  2368. else
  2369. mode &= ~XM_MD_ENA_PROM;
  2370. if (dev->flags & IFF_ALLMULTI)
  2371. memset(filter, 0xff, sizeof(filter));
  2372. else {
  2373. memset(filter, 0, sizeof(filter));
  2374. if (skge->flow_status == FLOW_STAT_REM_SEND ||
  2375. skge->flow_status == FLOW_STAT_SYMMETRIC)
  2376. genesis_add_filter(filter, pause_mc_addr);
  2377. netdev_for_each_mc_addr(ha, dev)
  2378. genesis_add_filter(filter, ha->addr);
  2379. }
  2380. xm_write32(hw, port, XM_MODE, mode);
  2381. xm_outhash(hw, port, XM_HSM, filter);
  2382. }
  2383. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2384. {
  2385. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2386. filter[bit/8] |= 1 << (bit%8);
  2387. }
  2388. static void yukon_set_multicast(struct net_device *dev)
  2389. {
  2390. struct skge_port *skge = netdev_priv(dev);
  2391. struct skge_hw *hw = skge->hw;
  2392. int port = skge->port;
  2393. struct netdev_hw_addr *ha;
  2394. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
  2395. skge->flow_status == FLOW_STAT_SYMMETRIC);
  2396. u16 reg;
  2397. u8 filter[8];
  2398. memset(filter, 0, sizeof(filter));
  2399. reg = gma_read16(hw, port, GM_RX_CTRL);
  2400. reg |= GM_RXCR_UCF_ENA;
  2401. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2402. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2403. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2404. memset(filter, 0xff, sizeof(filter));
  2405. else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
  2406. reg &= ~GM_RXCR_MCF_ENA;
  2407. else {
  2408. reg |= GM_RXCR_MCF_ENA;
  2409. if (rx_pause)
  2410. yukon_add_filter(filter, pause_mc_addr);
  2411. netdev_for_each_mc_addr(ha, dev)
  2412. yukon_add_filter(filter, ha->addr);
  2413. }
  2414. gma_write16(hw, port, GM_MC_ADDR_H1,
  2415. (u16)filter[0] | ((u16)filter[1] << 8));
  2416. gma_write16(hw, port, GM_MC_ADDR_H2,
  2417. (u16)filter[2] | ((u16)filter[3] << 8));
  2418. gma_write16(hw, port, GM_MC_ADDR_H3,
  2419. (u16)filter[4] | ((u16)filter[5] << 8));
  2420. gma_write16(hw, port, GM_MC_ADDR_H4,
  2421. (u16)filter[6] | ((u16)filter[7] << 8));
  2422. gma_write16(hw, port, GM_RX_CTRL, reg);
  2423. }
  2424. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2425. {
  2426. if (hw->chip_id == CHIP_ID_GENESIS)
  2427. return status >> XMR_FS_LEN_SHIFT;
  2428. else
  2429. return status >> GMR_FS_LEN_SHIFT;
  2430. }
  2431. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2432. {
  2433. if (hw->chip_id == CHIP_ID_GENESIS)
  2434. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2435. else
  2436. return (status & GMR_FS_ANY_ERR) ||
  2437. (status & GMR_FS_RX_OK) == 0;
  2438. }
  2439. static void skge_set_multicast(struct net_device *dev)
  2440. {
  2441. struct skge_port *skge = netdev_priv(dev);
  2442. struct skge_hw *hw = skge->hw;
  2443. if (hw->chip_id == CHIP_ID_GENESIS)
  2444. genesis_set_multicast(dev);
  2445. else
  2446. yukon_set_multicast(dev);
  2447. }
  2448. /* Get receive buffer from descriptor.
  2449. * Handles copy of small buffers and reallocation failures
  2450. */
  2451. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2452. struct skge_element *e,
  2453. u32 control, u32 status, u16 csum)
  2454. {
  2455. struct skge_port *skge = netdev_priv(dev);
  2456. struct sk_buff *skb;
  2457. u16 len = control & BMU_BBC;
  2458. netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
  2459. "rx slot %td status 0x%x len %d\n",
  2460. e - skge->rx_ring.start, status, len);
  2461. if (len > skge->rx_buf_size)
  2462. goto error;
  2463. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2464. goto error;
  2465. if (bad_phy_status(skge->hw, status))
  2466. goto error;
  2467. if (phy_length(skge->hw, status) != len)
  2468. goto error;
  2469. if (len < RX_COPY_THRESHOLD) {
  2470. skb = netdev_alloc_skb_ip_align(dev, len);
  2471. if (!skb)
  2472. goto resubmit;
  2473. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2474. dma_unmap_addr(e, mapaddr),
  2475. len, PCI_DMA_FROMDEVICE);
  2476. skb_copy_from_linear_data(e->skb, skb->data, len);
  2477. pci_dma_sync_single_for_device(skge->hw->pdev,
  2478. dma_unmap_addr(e, mapaddr),
  2479. len, PCI_DMA_FROMDEVICE);
  2480. skge_rx_reuse(e, skge->rx_buf_size);
  2481. } else {
  2482. struct sk_buff *nskb;
  2483. nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
  2484. if (!nskb)
  2485. goto resubmit;
  2486. pci_unmap_single(skge->hw->pdev,
  2487. dma_unmap_addr(e, mapaddr),
  2488. dma_unmap_len(e, maplen),
  2489. PCI_DMA_FROMDEVICE);
  2490. skb = e->skb;
  2491. prefetch(skb->data);
  2492. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2493. }
  2494. skb_put(skb, len);
  2495. if (dev->features & NETIF_F_RXCSUM) {
  2496. skb->csum = csum;
  2497. skb->ip_summed = CHECKSUM_COMPLETE;
  2498. }
  2499. skb->protocol = eth_type_trans(skb, dev);
  2500. return skb;
  2501. error:
  2502. netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
  2503. "rx err, slot %td control 0x%x status 0x%x\n",
  2504. e - skge->rx_ring.start, control, status);
  2505. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2506. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2507. dev->stats.rx_length_errors++;
  2508. if (status & XMR_FS_FRA_ERR)
  2509. dev->stats.rx_frame_errors++;
  2510. if (status & XMR_FS_FCS_ERR)
  2511. dev->stats.rx_crc_errors++;
  2512. } else {
  2513. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2514. dev->stats.rx_length_errors++;
  2515. if (status & GMR_FS_FRAGMENT)
  2516. dev->stats.rx_frame_errors++;
  2517. if (status & GMR_FS_CRC_ERR)
  2518. dev->stats.rx_crc_errors++;
  2519. }
  2520. resubmit:
  2521. skge_rx_reuse(e, skge->rx_buf_size);
  2522. return NULL;
  2523. }
  2524. /* Free all buffers in Tx ring which are no longer owned by device */
  2525. static void skge_tx_done(struct net_device *dev)
  2526. {
  2527. struct skge_port *skge = netdev_priv(dev);
  2528. struct skge_ring *ring = &skge->tx_ring;
  2529. struct skge_element *e;
  2530. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2531. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2532. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2533. if (control & BMU_OWN)
  2534. break;
  2535. skge_tx_free(skge, e, control);
  2536. }
  2537. skge->tx_ring.to_clean = e;
  2538. /* Can run lockless until we need to synchronize to restart queue. */
  2539. smp_mb();
  2540. if (unlikely(netif_queue_stopped(dev) &&
  2541. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2542. netif_tx_lock(dev);
  2543. if (unlikely(netif_queue_stopped(dev) &&
  2544. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2545. netif_wake_queue(dev);
  2546. }
  2547. netif_tx_unlock(dev);
  2548. }
  2549. }
  2550. static int skge_poll(struct napi_struct *napi, int to_do)
  2551. {
  2552. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2553. struct net_device *dev = skge->netdev;
  2554. struct skge_hw *hw = skge->hw;
  2555. struct skge_ring *ring = &skge->rx_ring;
  2556. struct skge_element *e;
  2557. int work_done = 0;
  2558. skge_tx_done(dev);
  2559. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2560. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2561. struct skge_rx_desc *rd = e->desc;
  2562. struct sk_buff *skb;
  2563. u32 control;
  2564. rmb();
  2565. control = rd->control;
  2566. if (control & BMU_OWN)
  2567. break;
  2568. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2569. if (likely(skb)) {
  2570. napi_gro_receive(napi, skb);
  2571. ++work_done;
  2572. }
  2573. }
  2574. ring->to_clean = e;
  2575. /* restart receiver */
  2576. wmb();
  2577. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2578. if (work_done < to_do) {
  2579. unsigned long flags;
  2580. napi_gro_flush(napi);
  2581. spin_lock_irqsave(&hw->hw_lock, flags);
  2582. __napi_complete(napi);
  2583. hw->intr_mask |= napimask[skge->port];
  2584. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2585. skge_read32(hw, B0_IMSK);
  2586. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2587. }
  2588. return work_done;
  2589. }
  2590. /* Parity errors seem to happen when Genesis is connected to a switch
  2591. * with no other ports present. Heartbeat error??
  2592. */
  2593. static void skge_mac_parity(struct skge_hw *hw, int port)
  2594. {
  2595. struct net_device *dev = hw->dev[port];
  2596. ++dev->stats.tx_heartbeat_errors;
  2597. if (hw->chip_id == CHIP_ID_GENESIS)
  2598. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2599. MFF_CLR_PERR);
  2600. else
  2601. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2602. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2603. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2604. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2605. }
  2606. static void skge_mac_intr(struct skge_hw *hw, int port)
  2607. {
  2608. if (hw->chip_id == CHIP_ID_GENESIS)
  2609. genesis_mac_intr(hw, port);
  2610. else
  2611. yukon_mac_intr(hw, port);
  2612. }
  2613. /* Handle device specific framing and timeout interrupts */
  2614. static void skge_error_irq(struct skge_hw *hw)
  2615. {
  2616. struct pci_dev *pdev = hw->pdev;
  2617. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2618. if (hw->chip_id == CHIP_ID_GENESIS) {
  2619. /* clear xmac errors */
  2620. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2621. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2622. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2623. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2624. } else {
  2625. /* Timestamp (unused) overflow */
  2626. if (hwstatus & IS_IRQ_TIST_OV)
  2627. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2628. }
  2629. if (hwstatus & IS_RAM_RD_PAR) {
  2630. dev_err(&pdev->dev, "Ram read data parity error\n");
  2631. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2632. }
  2633. if (hwstatus & IS_RAM_WR_PAR) {
  2634. dev_err(&pdev->dev, "Ram write data parity error\n");
  2635. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2636. }
  2637. if (hwstatus & IS_M1_PAR_ERR)
  2638. skge_mac_parity(hw, 0);
  2639. if (hwstatus & IS_M2_PAR_ERR)
  2640. skge_mac_parity(hw, 1);
  2641. if (hwstatus & IS_R1_PAR_ERR) {
  2642. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2643. hw->dev[0]->name);
  2644. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2645. }
  2646. if (hwstatus & IS_R2_PAR_ERR) {
  2647. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2648. hw->dev[1]->name);
  2649. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2650. }
  2651. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2652. u16 pci_status, pci_cmd;
  2653. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2654. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2655. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2656. pci_cmd, pci_status);
  2657. /* Write the error bits back to clear them. */
  2658. pci_status &= PCI_STATUS_ERROR_BITS;
  2659. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2660. pci_write_config_word(pdev, PCI_COMMAND,
  2661. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2662. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2663. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2664. /* if error still set then just ignore it */
  2665. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2666. if (hwstatus & IS_IRQ_STAT) {
  2667. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2668. hw->intr_mask &= ~IS_HW_ERR;
  2669. }
  2670. }
  2671. }
  2672. /*
  2673. * Interrupt from PHY are handled in tasklet (softirq)
  2674. * because accessing phy registers requires spin wait which might
  2675. * cause excess interrupt latency.
  2676. */
  2677. static void skge_extirq(unsigned long arg)
  2678. {
  2679. struct skge_hw *hw = (struct skge_hw *) arg;
  2680. int port;
  2681. for (port = 0; port < hw->ports; port++) {
  2682. struct net_device *dev = hw->dev[port];
  2683. if (netif_running(dev)) {
  2684. struct skge_port *skge = netdev_priv(dev);
  2685. spin_lock(&hw->phy_lock);
  2686. if (hw->chip_id != CHIP_ID_GENESIS)
  2687. yukon_phy_intr(skge);
  2688. else if (hw->phy_type == SK_PHY_BCOM)
  2689. bcom_phy_intr(skge);
  2690. spin_unlock(&hw->phy_lock);
  2691. }
  2692. }
  2693. spin_lock_irq(&hw->hw_lock);
  2694. hw->intr_mask |= IS_EXT_REG;
  2695. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2696. skge_read32(hw, B0_IMSK);
  2697. spin_unlock_irq(&hw->hw_lock);
  2698. }
  2699. static irqreturn_t skge_intr(int irq, void *dev_id)
  2700. {
  2701. struct skge_hw *hw = dev_id;
  2702. u32 status;
  2703. int handled = 0;
  2704. spin_lock(&hw->hw_lock);
  2705. /* Reading this register masks IRQ */
  2706. status = skge_read32(hw, B0_SP_ISRC);
  2707. if (status == 0 || status == ~0)
  2708. goto out;
  2709. handled = 1;
  2710. status &= hw->intr_mask;
  2711. if (status & IS_EXT_REG) {
  2712. hw->intr_mask &= ~IS_EXT_REG;
  2713. tasklet_schedule(&hw->phy_task);
  2714. }
  2715. if (status & (IS_XA1_F|IS_R1_F)) {
  2716. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2717. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2718. napi_schedule(&skge->napi);
  2719. }
  2720. if (status & IS_PA_TO_TX1)
  2721. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2722. if (status & IS_PA_TO_RX1) {
  2723. ++hw->dev[0]->stats.rx_over_errors;
  2724. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2725. }
  2726. if (status & IS_MAC1)
  2727. skge_mac_intr(hw, 0);
  2728. if (hw->dev[1]) {
  2729. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2730. if (status & (IS_XA2_F|IS_R2_F)) {
  2731. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2732. napi_schedule(&skge->napi);
  2733. }
  2734. if (status & IS_PA_TO_RX2) {
  2735. ++hw->dev[1]->stats.rx_over_errors;
  2736. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2737. }
  2738. if (status & IS_PA_TO_TX2)
  2739. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2740. if (status & IS_MAC2)
  2741. skge_mac_intr(hw, 1);
  2742. }
  2743. if (status & IS_HW_ERR)
  2744. skge_error_irq(hw);
  2745. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2746. skge_read32(hw, B0_IMSK);
  2747. out:
  2748. spin_unlock(&hw->hw_lock);
  2749. return IRQ_RETVAL(handled);
  2750. }
  2751. #ifdef CONFIG_NET_POLL_CONTROLLER
  2752. static void skge_netpoll(struct net_device *dev)
  2753. {
  2754. struct skge_port *skge = netdev_priv(dev);
  2755. disable_irq(dev->irq);
  2756. skge_intr(dev->irq, skge->hw);
  2757. enable_irq(dev->irq);
  2758. }
  2759. #endif
  2760. static int skge_set_mac_address(struct net_device *dev, void *p)
  2761. {
  2762. struct skge_port *skge = netdev_priv(dev);
  2763. struct skge_hw *hw = skge->hw;
  2764. unsigned port = skge->port;
  2765. const struct sockaddr *addr = p;
  2766. u16 ctrl;
  2767. if (!is_valid_ether_addr(addr->sa_data))
  2768. return -EADDRNOTAVAIL;
  2769. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2770. if (!netif_running(dev)) {
  2771. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2772. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2773. } else {
  2774. /* disable Rx */
  2775. spin_lock_bh(&hw->phy_lock);
  2776. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2777. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2778. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2779. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2780. if (hw->chip_id == CHIP_ID_GENESIS)
  2781. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2782. else {
  2783. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2784. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2785. }
  2786. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2787. spin_unlock_bh(&hw->phy_lock);
  2788. }
  2789. return 0;
  2790. }
  2791. static const struct {
  2792. u8 id;
  2793. const char *name;
  2794. } skge_chips[] = {
  2795. { CHIP_ID_GENESIS, "Genesis" },
  2796. { CHIP_ID_YUKON, "Yukon" },
  2797. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2798. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2799. };
  2800. static const char *skge_board_name(const struct skge_hw *hw)
  2801. {
  2802. int i;
  2803. static char buf[16];
  2804. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2805. if (skge_chips[i].id == hw->chip_id)
  2806. return skge_chips[i].name;
  2807. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2808. return buf;
  2809. }
  2810. /*
  2811. * Setup the board data structure, but don't bring up
  2812. * the port(s)
  2813. */
  2814. static int skge_reset(struct skge_hw *hw)
  2815. {
  2816. u32 reg;
  2817. u16 ctst, pci_status;
  2818. u8 t8, mac_cfg, pmd_type;
  2819. int i;
  2820. ctst = skge_read16(hw, B0_CTST);
  2821. /* do a SW reset */
  2822. skge_write8(hw, B0_CTST, CS_RST_SET);
  2823. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2824. /* clear PCI errors, if any */
  2825. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2826. skge_write8(hw, B2_TST_CTRL2, 0);
  2827. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2828. pci_write_config_word(hw->pdev, PCI_STATUS,
  2829. pci_status | PCI_STATUS_ERROR_BITS);
  2830. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2831. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2832. /* restore CLK_RUN bits (for Yukon-Lite) */
  2833. skge_write16(hw, B0_CTST,
  2834. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2835. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2836. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2837. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2838. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2839. switch (hw->chip_id) {
  2840. case CHIP_ID_GENESIS:
  2841. switch (hw->phy_type) {
  2842. case SK_PHY_XMAC:
  2843. hw->phy_addr = PHY_ADDR_XMAC;
  2844. break;
  2845. case SK_PHY_BCOM:
  2846. hw->phy_addr = PHY_ADDR_BCOM;
  2847. break;
  2848. default:
  2849. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2850. hw->phy_type);
  2851. return -EOPNOTSUPP;
  2852. }
  2853. break;
  2854. case CHIP_ID_YUKON:
  2855. case CHIP_ID_YUKON_LITE:
  2856. case CHIP_ID_YUKON_LP:
  2857. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2858. hw->copper = 1;
  2859. hw->phy_addr = PHY_ADDR_MARV;
  2860. break;
  2861. default:
  2862. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2863. hw->chip_id);
  2864. return -EOPNOTSUPP;
  2865. }
  2866. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2867. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2868. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2869. /* read the adapters RAM size */
  2870. t8 = skge_read8(hw, B2_E_0);
  2871. if (hw->chip_id == CHIP_ID_GENESIS) {
  2872. if (t8 == 3) {
  2873. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2874. hw->ram_size = 0x100000;
  2875. hw->ram_offset = 0x80000;
  2876. } else
  2877. hw->ram_size = t8 * 512;
  2878. } else if (t8 == 0)
  2879. hw->ram_size = 0x20000;
  2880. else
  2881. hw->ram_size = t8 * 4096;
  2882. hw->intr_mask = IS_HW_ERR;
  2883. /* Use PHY IRQ for all but fiber based Genesis board */
  2884. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2885. hw->intr_mask |= IS_EXT_REG;
  2886. if (hw->chip_id == CHIP_ID_GENESIS)
  2887. genesis_init(hw);
  2888. else {
  2889. /* switch power to VCC (WA for VAUX problem) */
  2890. skge_write8(hw, B0_POWER_CTRL,
  2891. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2892. /* avoid boards with stuck Hardware error bits */
  2893. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2894. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2895. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2896. hw->intr_mask &= ~IS_HW_ERR;
  2897. }
  2898. /* Clear PHY COMA */
  2899. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2900. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2901. reg &= ~PCI_PHY_COMA;
  2902. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2903. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2904. for (i = 0; i < hw->ports; i++) {
  2905. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2906. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2907. }
  2908. }
  2909. /* turn off hardware timer (unused) */
  2910. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2911. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2912. skge_write8(hw, B0_LED, LED_STAT_ON);
  2913. /* enable the Tx Arbiters */
  2914. for (i = 0; i < hw->ports; i++)
  2915. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2916. /* Initialize ram interface */
  2917. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2918. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2919. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2920. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2921. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2922. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2923. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2924. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2925. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2926. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2927. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2928. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2929. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2930. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2931. /* Set interrupt moderation for Transmit only
  2932. * Receive interrupts avoided by NAPI
  2933. */
  2934. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2935. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2936. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2937. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2938. for (i = 0; i < hw->ports; i++) {
  2939. if (hw->chip_id == CHIP_ID_GENESIS)
  2940. genesis_reset(hw, i);
  2941. else
  2942. yukon_reset(hw, i);
  2943. }
  2944. return 0;
  2945. }
  2946. #ifdef CONFIG_SKGE_DEBUG
  2947. static struct dentry *skge_debug;
  2948. static int skge_debug_show(struct seq_file *seq, void *v)
  2949. {
  2950. struct net_device *dev = seq->private;
  2951. const struct skge_port *skge = netdev_priv(dev);
  2952. const struct skge_hw *hw = skge->hw;
  2953. const struct skge_element *e;
  2954. if (!netif_running(dev))
  2955. return -ENETDOWN;
  2956. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  2957. skge_read32(hw, B0_IMSK));
  2958. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  2959. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2960. const struct skge_tx_desc *t = e->desc;
  2961. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  2962. t->control, t->dma_hi, t->dma_lo, t->status,
  2963. t->csum_offs, t->csum_write, t->csum_start);
  2964. }
  2965. seq_printf(seq, "\nRx Ring:\n");
  2966. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  2967. const struct skge_rx_desc *r = e->desc;
  2968. if (r->control & BMU_OWN)
  2969. break;
  2970. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  2971. r->control, r->dma_hi, r->dma_lo, r->status,
  2972. r->timestamp, r->csum1, r->csum1_start);
  2973. }
  2974. return 0;
  2975. }
  2976. static int skge_debug_open(struct inode *inode, struct file *file)
  2977. {
  2978. return single_open(file, skge_debug_show, inode->i_private);
  2979. }
  2980. static const struct file_operations skge_debug_fops = {
  2981. .owner = THIS_MODULE,
  2982. .open = skge_debug_open,
  2983. .read = seq_read,
  2984. .llseek = seq_lseek,
  2985. .release = single_release,
  2986. };
  2987. /*
  2988. * Use network device events to create/remove/rename
  2989. * debugfs file entries
  2990. */
  2991. static int skge_device_event(struct notifier_block *unused,
  2992. unsigned long event, void *ptr)
  2993. {
  2994. struct net_device *dev = ptr;
  2995. struct skge_port *skge;
  2996. struct dentry *d;
  2997. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  2998. goto done;
  2999. skge = netdev_priv(dev);
  3000. switch (event) {
  3001. case NETDEV_CHANGENAME:
  3002. if (skge->debugfs) {
  3003. d = debugfs_rename(skge_debug, skge->debugfs,
  3004. skge_debug, dev->name);
  3005. if (d)
  3006. skge->debugfs = d;
  3007. else {
  3008. netdev_info(dev, "rename failed\n");
  3009. debugfs_remove(skge->debugfs);
  3010. }
  3011. }
  3012. break;
  3013. case NETDEV_GOING_DOWN:
  3014. if (skge->debugfs) {
  3015. debugfs_remove(skge->debugfs);
  3016. skge->debugfs = NULL;
  3017. }
  3018. break;
  3019. case NETDEV_UP:
  3020. d = debugfs_create_file(dev->name, S_IRUGO,
  3021. skge_debug, dev,
  3022. &skge_debug_fops);
  3023. if (!d || IS_ERR(d))
  3024. netdev_info(dev, "debugfs create failed\n");
  3025. else
  3026. skge->debugfs = d;
  3027. break;
  3028. }
  3029. done:
  3030. return NOTIFY_DONE;
  3031. }
  3032. static struct notifier_block skge_notifier = {
  3033. .notifier_call = skge_device_event,
  3034. };
  3035. static __init void skge_debug_init(void)
  3036. {
  3037. struct dentry *ent;
  3038. ent = debugfs_create_dir("skge", NULL);
  3039. if (!ent || IS_ERR(ent)) {
  3040. pr_info("debugfs create directory failed\n");
  3041. return;
  3042. }
  3043. skge_debug = ent;
  3044. register_netdevice_notifier(&skge_notifier);
  3045. }
  3046. static __exit void skge_debug_cleanup(void)
  3047. {
  3048. if (skge_debug) {
  3049. unregister_netdevice_notifier(&skge_notifier);
  3050. debugfs_remove(skge_debug);
  3051. skge_debug = NULL;
  3052. }
  3053. }
  3054. #else
  3055. #define skge_debug_init()
  3056. #define skge_debug_cleanup()
  3057. #endif
  3058. static const struct net_device_ops skge_netdev_ops = {
  3059. .ndo_open = skge_up,
  3060. .ndo_stop = skge_down,
  3061. .ndo_start_xmit = skge_xmit_frame,
  3062. .ndo_do_ioctl = skge_ioctl,
  3063. .ndo_get_stats = skge_get_stats,
  3064. .ndo_tx_timeout = skge_tx_timeout,
  3065. .ndo_change_mtu = skge_change_mtu,
  3066. .ndo_validate_addr = eth_validate_addr,
  3067. .ndo_set_multicast_list = skge_set_multicast,
  3068. .ndo_set_mac_address = skge_set_mac_address,
  3069. #ifdef CONFIG_NET_POLL_CONTROLLER
  3070. .ndo_poll_controller = skge_netpoll,
  3071. #endif
  3072. };
  3073. /* Initialize network device */
  3074. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3075. int highmem)
  3076. {
  3077. struct skge_port *skge;
  3078. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3079. if (!dev) {
  3080. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3081. return NULL;
  3082. }
  3083. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3084. dev->netdev_ops = &skge_netdev_ops;
  3085. dev->ethtool_ops = &skge_ethtool_ops;
  3086. dev->watchdog_timeo = TX_WATCHDOG;
  3087. dev->irq = hw->pdev->irq;
  3088. if (highmem)
  3089. dev->features |= NETIF_F_HIGHDMA;
  3090. skge = netdev_priv(dev);
  3091. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3092. skge->netdev = dev;
  3093. skge->hw = hw;
  3094. skge->msg_enable = netif_msg_init(debug, default_msg);
  3095. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3096. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3097. /* Auto speed and flow control */
  3098. skge->autoneg = AUTONEG_ENABLE;
  3099. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3100. skge->duplex = -1;
  3101. skge->speed = -1;
  3102. skge->advertising = skge_supported_modes(hw);
  3103. if (device_can_wakeup(&hw->pdev->dev)) {
  3104. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3105. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3106. }
  3107. hw->dev[port] = dev;
  3108. skge->port = port;
  3109. /* Only used for Genesis XMAC */
  3110. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3111. if (hw->chip_id != CHIP_ID_GENESIS) {
  3112. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  3113. NETIF_F_RXCSUM;
  3114. dev->features |= dev->hw_features;
  3115. }
  3116. /* read the mac address */
  3117. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3118. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3119. return dev;
  3120. }
  3121. static void __devinit skge_show_addr(struct net_device *dev)
  3122. {
  3123. const struct skge_port *skge = netdev_priv(dev);
  3124. netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
  3125. }
  3126. static int only_32bit_dma;
  3127. static int __devinit skge_probe(struct pci_dev *pdev,
  3128. const struct pci_device_id *ent)
  3129. {
  3130. struct net_device *dev, *dev1;
  3131. struct skge_hw *hw;
  3132. int err, using_dac = 0;
  3133. err = pci_enable_device(pdev);
  3134. if (err) {
  3135. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3136. goto err_out;
  3137. }
  3138. err = pci_request_regions(pdev, DRV_NAME);
  3139. if (err) {
  3140. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3141. goto err_out_disable_pdev;
  3142. }
  3143. pci_set_master(pdev);
  3144. if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3145. using_dac = 1;
  3146. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3147. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3148. using_dac = 0;
  3149. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3150. }
  3151. if (err) {
  3152. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3153. goto err_out_free_regions;
  3154. }
  3155. #ifdef __BIG_ENDIAN
  3156. /* byte swap descriptors in hardware */
  3157. {
  3158. u32 reg;
  3159. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3160. reg |= PCI_REV_DESC;
  3161. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3162. }
  3163. #endif
  3164. err = -ENOMEM;
  3165. /* space for skge@pci:0000:04:00.0 */
  3166. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
  3167. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3168. if (!hw) {
  3169. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3170. goto err_out_free_regions;
  3171. }
  3172. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3173. hw->pdev = pdev;
  3174. spin_lock_init(&hw->hw_lock);
  3175. spin_lock_init(&hw->phy_lock);
  3176. tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
  3177. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3178. if (!hw->regs) {
  3179. dev_err(&pdev->dev, "cannot map device registers\n");
  3180. goto err_out_free_hw;
  3181. }
  3182. err = skge_reset(hw);
  3183. if (err)
  3184. goto err_out_iounmap;
  3185. pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
  3186. DRV_VERSION,
  3187. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3188. skge_board_name(hw), hw->chip_rev);
  3189. dev = skge_devinit(hw, 0, using_dac);
  3190. if (!dev)
  3191. goto err_out_led_off;
  3192. /* Some motherboards are broken and has zero in ROM. */
  3193. if (!is_valid_ether_addr(dev->dev_addr))
  3194. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3195. err = register_netdev(dev);
  3196. if (err) {
  3197. dev_err(&pdev->dev, "cannot register net device\n");
  3198. goto err_out_free_netdev;
  3199. }
  3200. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
  3201. if (err) {
  3202. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3203. dev->name, pdev->irq);
  3204. goto err_out_unregister;
  3205. }
  3206. skge_show_addr(dev);
  3207. if (hw->ports > 1) {
  3208. dev1 = skge_devinit(hw, 1, using_dac);
  3209. if (dev1 && register_netdev(dev1) == 0)
  3210. skge_show_addr(dev1);
  3211. else {
  3212. /* Failure to register second port need not be fatal */
  3213. dev_warn(&pdev->dev, "register of second port failed\n");
  3214. hw->dev[1] = NULL;
  3215. hw->ports = 1;
  3216. if (dev1)
  3217. free_netdev(dev1);
  3218. }
  3219. }
  3220. pci_set_drvdata(pdev, hw);
  3221. return 0;
  3222. err_out_unregister:
  3223. unregister_netdev(dev);
  3224. err_out_free_netdev:
  3225. free_netdev(dev);
  3226. err_out_led_off:
  3227. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3228. err_out_iounmap:
  3229. iounmap(hw->regs);
  3230. err_out_free_hw:
  3231. kfree(hw);
  3232. err_out_free_regions:
  3233. pci_release_regions(pdev);
  3234. err_out_disable_pdev:
  3235. pci_disable_device(pdev);
  3236. pci_set_drvdata(pdev, NULL);
  3237. err_out:
  3238. return err;
  3239. }
  3240. static void __devexit skge_remove(struct pci_dev *pdev)
  3241. {
  3242. struct skge_hw *hw = pci_get_drvdata(pdev);
  3243. struct net_device *dev0, *dev1;
  3244. if (!hw)
  3245. return;
  3246. dev1 = hw->dev[1];
  3247. if (dev1)
  3248. unregister_netdev(dev1);
  3249. dev0 = hw->dev[0];
  3250. unregister_netdev(dev0);
  3251. tasklet_disable(&hw->phy_task);
  3252. spin_lock_irq(&hw->hw_lock);
  3253. hw->intr_mask = 0;
  3254. skge_write32(hw, B0_IMSK, 0);
  3255. skge_read32(hw, B0_IMSK);
  3256. spin_unlock_irq(&hw->hw_lock);
  3257. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3258. skge_write8(hw, B0_CTST, CS_RST_SET);
  3259. free_irq(pdev->irq, hw);
  3260. pci_release_regions(pdev);
  3261. pci_disable_device(pdev);
  3262. if (dev1)
  3263. free_netdev(dev1);
  3264. free_netdev(dev0);
  3265. iounmap(hw->regs);
  3266. kfree(hw);
  3267. pci_set_drvdata(pdev, NULL);
  3268. }
  3269. #ifdef CONFIG_PM
  3270. static int skge_suspend(struct device *dev)
  3271. {
  3272. struct pci_dev *pdev = to_pci_dev(dev);
  3273. struct skge_hw *hw = pci_get_drvdata(pdev);
  3274. int i;
  3275. if (!hw)
  3276. return 0;
  3277. for (i = 0; i < hw->ports; i++) {
  3278. struct net_device *dev = hw->dev[i];
  3279. struct skge_port *skge = netdev_priv(dev);
  3280. if (netif_running(dev))
  3281. skge_down(dev);
  3282. if (skge->wol)
  3283. skge_wol_init(skge);
  3284. }
  3285. skge_write32(hw, B0_IMSK, 0);
  3286. return 0;
  3287. }
  3288. static int skge_resume(struct device *dev)
  3289. {
  3290. struct pci_dev *pdev = to_pci_dev(dev);
  3291. struct skge_hw *hw = pci_get_drvdata(pdev);
  3292. int i, err;
  3293. if (!hw)
  3294. return 0;
  3295. err = skge_reset(hw);
  3296. if (err)
  3297. goto out;
  3298. for (i = 0; i < hw->ports; i++) {
  3299. struct net_device *dev = hw->dev[i];
  3300. if (netif_running(dev)) {
  3301. err = skge_up(dev);
  3302. if (err) {
  3303. netdev_err(dev, "could not up: %d\n", err);
  3304. dev_close(dev);
  3305. goto out;
  3306. }
  3307. }
  3308. }
  3309. out:
  3310. return err;
  3311. }
  3312. static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
  3313. #define SKGE_PM_OPS (&skge_pm_ops)
  3314. #else
  3315. #define SKGE_PM_OPS NULL
  3316. #endif
  3317. static void skge_shutdown(struct pci_dev *pdev)
  3318. {
  3319. struct skge_hw *hw = pci_get_drvdata(pdev);
  3320. int i;
  3321. if (!hw)
  3322. return;
  3323. for (i = 0; i < hw->ports; i++) {
  3324. struct net_device *dev = hw->dev[i];
  3325. struct skge_port *skge = netdev_priv(dev);
  3326. if (skge->wol)
  3327. skge_wol_init(skge);
  3328. }
  3329. pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
  3330. pci_set_power_state(pdev, PCI_D3hot);
  3331. }
  3332. static struct pci_driver skge_driver = {
  3333. .name = DRV_NAME,
  3334. .id_table = skge_id_table,
  3335. .probe = skge_probe,
  3336. .remove = __devexit_p(skge_remove),
  3337. .shutdown = skge_shutdown,
  3338. .driver.pm = SKGE_PM_OPS,
  3339. };
  3340. static struct dmi_system_id skge_32bit_dma_boards[] = {
  3341. {
  3342. .ident = "Gigabyte nForce boards",
  3343. .matches = {
  3344. DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
  3345. DMI_MATCH(DMI_BOARD_NAME, "nForce"),
  3346. },
  3347. },
  3348. {}
  3349. };
  3350. static int __init skge_init_module(void)
  3351. {
  3352. if (dmi_check_system(skge_32bit_dma_boards))
  3353. only_32bit_dma = 1;
  3354. skge_debug_init();
  3355. return pci_register_driver(&skge_driver);
  3356. }
  3357. static void __exit skge_cleanup_module(void)
  3358. {
  3359. pci_unregister_driver(&skge_driver);
  3360. skge_debug_cleanup();
  3361. }
  3362. module_init(skge_init_module);
  3363. module_exit(skge_cleanup_module);