greth.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636
  1. /*
  2. * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
  3. *
  4. * 2005-2010 (c) Aeroflex Gaisler AB
  5. *
  6. * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
  7. * available in the GRLIB VHDL IP core library.
  8. *
  9. * Full documentation of both cores can be found here:
  10. * http://www.gaisler.com/products/grlib/grip.pdf
  11. *
  12. * The Gigabit version supports scatter/gather DMA, any alignment of
  13. * buffers and checksum offloading.
  14. *
  15. * This program is free software; you can redistribute it and/or modify it
  16. * under the terms of the GNU General Public License as published by the
  17. * Free Software Foundation; either version 2 of the License, or (at your
  18. * option) any later version.
  19. *
  20. * Contributors: Kristoffer Glembo
  21. * Daniel Hellstrom
  22. * Marko Isomaki
  23. */
  24. #include <linux/module.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/init.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/io.h>
  32. #include <linux/crc32.h>
  33. #include <linux/mii.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_platform.h>
  36. #include <linux/slab.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/byteorder.h>
  39. #ifdef CONFIG_SPARC
  40. #include <asm/idprom.h>
  41. #endif
  42. #include "greth.h"
  43. #define GRETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_DRV | \
  45. NETIF_MSG_PROBE | \
  46. NETIF_MSG_LINK | \
  47. NETIF_MSG_IFDOWN | \
  48. NETIF_MSG_IFUP | \
  49. NETIF_MSG_RX_ERR | \
  50. NETIF_MSG_TX_ERR)
  51. static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
  52. module_param(greth_debug, int, 0);
  53. MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
  54. /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  55. static int macaddr[6];
  56. module_param_array(macaddr, int, NULL, 0);
  57. MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
  58. static int greth_edcl = 1;
  59. module_param(greth_edcl, int, 0);
  60. MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
  61. static int greth_open(struct net_device *dev);
  62. static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
  63. struct net_device *dev);
  64. static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
  65. struct net_device *dev);
  66. static int greth_rx(struct net_device *dev, int limit);
  67. static int greth_rx_gbit(struct net_device *dev, int limit);
  68. static void greth_clean_tx(struct net_device *dev);
  69. static void greth_clean_tx_gbit(struct net_device *dev);
  70. static irqreturn_t greth_interrupt(int irq, void *dev_id);
  71. static int greth_close(struct net_device *dev);
  72. static int greth_set_mac_add(struct net_device *dev, void *p);
  73. static void greth_set_multicast_list(struct net_device *dev);
  74. #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
  75. #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
  76. #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
  77. #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
  78. #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
  79. #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
  80. #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
  81. static void greth_print_rx_packet(void *addr, int len)
  82. {
  83. print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
  84. addr, len, true);
  85. }
  86. static void greth_print_tx_packet(struct sk_buff *skb)
  87. {
  88. int i;
  89. int length;
  90. if (skb_shinfo(skb)->nr_frags == 0)
  91. length = skb->len;
  92. else
  93. length = skb_headlen(skb);
  94. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  95. skb->data, length, true);
  96. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  97. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  98. phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
  99. skb_shinfo(skb)->frags[i].page_offset,
  100. length, true);
  101. }
  102. }
  103. static inline void greth_enable_tx(struct greth_private *greth)
  104. {
  105. wmb();
  106. GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
  107. }
  108. static inline void greth_disable_tx(struct greth_private *greth)
  109. {
  110. GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
  111. }
  112. static inline void greth_enable_rx(struct greth_private *greth)
  113. {
  114. wmb();
  115. GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
  116. }
  117. static inline void greth_disable_rx(struct greth_private *greth)
  118. {
  119. GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
  120. }
  121. static inline void greth_enable_irqs(struct greth_private *greth)
  122. {
  123. GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
  124. }
  125. static inline void greth_disable_irqs(struct greth_private *greth)
  126. {
  127. GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
  128. }
  129. static inline void greth_write_bd(u32 *bd, u32 val)
  130. {
  131. __raw_writel(cpu_to_be32(val), bd);
  132. }
  133. static inline u32 greth_read_bd(u32 *bd)
  134. {
  135. return be32_to_cpu(__raw_readl(bd));
  136. }
  137. static void greth_clean_rings(struct greth_private *greth)
  138. {
  139. int i;
  140. struct greth_bd *rx_bdp = greth->rx_bd_base;
  141. struct greth_bd *tx_bdp = greth->tx_bd_base;
  142. if (greth->gbit_mac) {
  143. /* Free and unmap RX buffers */
  144. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  145. if (greth->rx_skbuff[i] != NULL) {
  146. dev_kfree_skb(greth->rx_skbuff[i]);
  147. dma_unmap_single(greth->dev,
  148. greth_read_bd(&rx_bdp->addr),
  149. MAX_FRAME_SIZE+NET_IP_ALIGN,
  150. DMA_FROM_DEVICE);
  151. }
  152. }
  153. /* TX buffers */
  154. while (greth->tx_free < GRETH_TXBD_NUM) {
  155. struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
  156. int nr_frags = skb_shinfo(skb)->nr_frags;
  157. tx_bdp = greth->tx_bd_base + greth->tx_last;
  158. greth->tx_last = NEXT_TX(greth->tx_last);
  159. dma_unmap_single(greth->dev,
  160. greth_read_bd(&tx_bdp->addr),
  161. skb_headlen(skb),
  162. DMA_TO_DEVICE);
  163. for (i = 0; i < nr_frags; i++) {
  164. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  165. tx_bdp = greth->tx_bd_base + greth->tx_last;
  166. dma_unmap_page(greth->dev,
  167. greth_read_bd(&tx_bdp->addr),
  168. frag->size,
  169. DMA_TO_DEVICE);
  170. greth->tx_last = NEXT_TX(greth->tx_last);
  171. }
  172. greth->tx_free += nr_frags+1;
  173. dev_kfree_skb(skb);
  174. }
  175. } else { /* 10/100 Mbps MAC */
  176. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  177. kfree(greth->rx_bufs[i]);
  178. dma_unmap_single(greth->dev,
  179. greth_read_bd(&rx_bdp->addr),
  180. MAX_FRAME_SIZE,
  181. DMA_FROM_DEVICE);
  182. }
  183. for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
  184. kfree(greth->tx_bufs[i]);
  185. dma_unmap_single(greth->dev,
  186. greth_read_bd(&tx_bdp->addr),
  187. MAX_FRAME_SIZE,
  188. DMA_TO_DEVICE);
  189. }
  190. }
  191. }
  192. static int greth_init_rings(struct greth_private *greth)
  193. {
  194. struct sk_buff *skb;
  195. struct greth_bd *rx_bd, *tx_bd;
  196. u32 dma_addr;
  197. int i;
  198. rx_bd = greth->rx_bd_base;
  199. tx_bd = greth->tx_bd_base;
  200. /* Initialize descriptor rings and buffers */
  201. if (greth->gbit_mac) {
  202. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  203. skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
  204. if (skb == NULL) {
  205. if (netif_msg_ifup(greth))
  206. dev_err(greth->dev, "Error allocating DMA ring.\n");
  207. goto cleanup;
  208. }
  209. skb_reserve(skb, NET_IP_ALIGN);
  210. dma_addr = dma_map_single(greth->dev,
  211. skb->data,
  212. MAX_FRAME_SIZE+NET_IP_ALIGN,
  213. DMA_FROM_DEVICE);
  214. if (dma_mapping_error(greth->dev, dma_addr)) {
  215. if (netif_msg_ifup(greth))
  216. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  217. goto cleanup;
  218. }
  219. greth->rx_skbuff[i] = skb;
  220. greth_write_bd(&rx_bd[i].addr, dma_addr);
  221. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  222. }
  223. } else {
  224. /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
  225. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  226. greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  227. if (greth->rx_bufs[i] == NULL) {
  228. if (netif_msg_ifup(greth))
  229. dev_err(greth->dev, "Error allocating DMA ring.\n");
  230. goto cleanup;
  231. }
  232. dma_addr = dma_map_single(greth->dev,
  233. greth->rx_bufs[i],
  234. MAX_FRAME_SIZE,
  235. DMA_FROM_DEVICE);
  236. if (dma_mapping_error(greth->dev, dma_addr)) {
  237. if (netif_msg_ifup(greth))
  238. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  239. goto cleanup;
  240. }
  241. greth_write_bd(&rx_bd[i].addr, dma_addr);
  242. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  243. }
  244. for (i = 0; i < GRETH_TXBD_NUM; i++) {
  245. greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  246. if (greth->tx_bufs[i] == NULL) {
  247. if (netif_msg_ifup(greth))
  248. dev_err(greth->dev, "Error allocating DMA ring.\n");
  249. goto cleanup;
  250. }
  251. dma_addr = dma_map_single(greth->dev,
  252. greth->tx_bufs[i],
  253. MAX_FRAME_SIZE,
  254. DMA_TO_DEVICE);
  255. if (dma_mapping_error(greth->dev, dma_addr)) {
  256. if (netif_msg_ifup(greth))
  257. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  258. goto cleanup;
  259. }
  260. greth_write_bd(&tx_bd[i].addr, dma_addr);
  261. greth_write_bd(&tx_bd[i].stat, 0);
  262. }
  263. }
  264. greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
  265. greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
  266. /* Initialize pointers. */
  267. greth->rx_cur = 0;
  268. greth->tx_next = 0;
  269. greth->tx_last = 0;
  270. greth->tx_free = GRETH_TXBD_NUM;
  271. /* Initialize descriptor base address */
  272. GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
  273. GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
  274. return 0;
  275. cleanup:
  276. greth_clean_rings(greth);
  277. return -ENOMEM;
  278. }
  279. static int greth_open(struct net_device *dev)
  280. {
  281. struct greth_private *greth = netdev_priv(dev);
  282. int err;
  283. err = greth_init_rings(greth);
  284. if (err) {
  285. if (netif_msg_ifup(greth))
  286. dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
  287. return err;
  288. }
  289. err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
  290. if (err) {
  291. if (netif_msg_ifup(greth))
  292. dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
  293. greth_clean_rings(greth);
  294. return err;
  295. }
  296. if (netif_msg_ifup(greth))
  297. dev_dbg(&dev->dev, " starting queue\n");
  298. netif_start_queue(dev);
  299. GRETH_REGSAVE(greth->regs->status, 0xFF);
  300. napi_enable(&greth->napi);
  301. greth_enable_irqs(greth);
  302. greth_enable_tx(greth);
  303. greth_enable_rx(greth);
  304. return 0;
  305. }
  306. static int greth_close(struct net_device *dev)
  307. {
  308. struct greth_private *greth = netdev_priv(dev);
  309. napi_disable(&greth->napi);
  310. greth_disable_irqs(greth);
  311. greth_disable_tx(greth);
  312. greth_disable_rx(greth);
  313. netif_stop_queue(dev);
  314. free_irq(greth->irq, (void *) dev);
  315. greth_clean_rings(greth);
  316. return 0;
  317. }
  318. static netdev_tx_t
  319. greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  320. {
  321. struct greth_private *greth = netdev_priv(dev);
  322. struct greth_bd *bdp;
  323. int err = NETDEV_TX_OK;
  324. u32 status, dma_addr, ctrl;
  325. unsigned long flags;
  326. /* Clean TX Ring */
  327. greth_clean_tx(greth->netdev);
  328. if (unlikely(greth->tx_free <= 0)) {
  329. spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
  330. ctrl = GRETH_REGLOAD(greth->regs->control);
  331. /* Enable TX IRQ only if not already in poll() routine */
  332. if (ctrl & GRETH_RXI)
  333. GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
  334. netif_stop_queue(dev);
  335. spin_unlock_irqrestore(&greth->devlock, flags);
  336. return NETDEV_TX_BUSY;
  337. }
  338. if (netif_msg_pktdata(greth))
  339. greth_print_tx_packet(skb);
  340. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  341. dev->stats.tx_errors++;
  342. goto out;
  343. }
  344. bdp = greth->tx_bd_base + greth->tx_next;
  345. dma_addr = greth_read_bd(&bdp->addr);
  346. memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
  347. dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
  348. status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
  349. /* Wrap around descriptor ring */
  350. if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
  351. status |= GRETH_BD_WR;
  352. }
  353. greth->tx_next = NEXT_TX(greth->tx_next);
  354. greth->tx_free--;
  355. /* Write descriptor control word and enable transmission */
  356. greth_write_bd(&bdp->stat, status);
  357. spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
  358. greth_enable_tx(greth);
  359. spin_unlock_irqrestore(&greth->devlock, flags);
  360. out:
  361. dev_kfree_skb(skb);
  362. return err;
  363. }
  364. static netdev_tx_t
  365. greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
  366. {
  367. struct greth_private *greth = netdev_priv(dev);
  368. struct greth_bd *bdp;
  369. u32 status = 0, dma_addr, ctrl;
  370. int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
  371. unsigned long flags;
  372. nr_frags = skb_shinfo(skb)->nr_frags;
  373. /* Clean TX Ring */
  374. greth_clean_tx_gbit(dev);
  375. if (greth->tx_free < nr_frags + 1) {
  376. spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
  377. ctrl = GRETH_REGLOAD(greth->regs->control);
  378. /* Enable TX IRQ only if not already in poll() routine */
  379. if (ctrl & GRETH_RXI)
  380. GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
  381. netif_stop_queue(dev);
  382. spin_unlock_irqrestore(&greth->devlock, flags);
  383. err = NETDEV_TX_BUSY;
  384. goto out;
  385. }
  386. if (netif_msg_pktdata(greth))
  387. greth_print_tx_packet(skb);
  388. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  389. dev->stats.tx_errors++;
  390. goto out;
  391. }
  392. /* Save skb pointer. */
  393. greth->tx_skbuff[greth->tx_next] = skb;
  394. /* Linear buf */
  395. if (nr_frags != 0)
  396. status = GRETH_TXBD_MORE;
  397. status |= GRETH_TXBD_CSALL;
  398. status |= skb_headlen(skb) & GRETH_BD_LEN;
  399. if (greth->tx_next == GRETH_TXBD_NUM_MASK)
  400. status |= GRETH_BD_WR;
  401. bdp = greth->tx_bd_base + greth->tx_next;
  402. greth_write_bd(&bdp->stat, status);
  403. dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  404. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  405. goto map_error;
  406. greth_write_bd(&bdp->addr, dma_addr);
  407. curr_tx = NEXT_TX(greth->tx_next);
  408. /* Frags */
  409. for (i = 0; i < nr_frags; i++) {
  410. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  411. greth->tx_skbuff[curr_tx] = NULL;
  412. bdp = greth->tx_bd_base + curr_tx;
  413. status = GRETH_TXBD_CSALL | GRETH_BD_EN;
  414. status |= frag->size & GRETH_BD_LEN;
  415. /* Wrap around descriptor ring */
  416. if (curr_tx == GRETH_TXBD_NUM_MASK)
  417. status |= GRETH_BD_WR;
  418. /* More fragments left */
  419. if (i < nr_frags - 1)
  420. status |= GRETH_TXBD_MORE;
  421. else
  422. status |= GRETH_BD_IE; /* enable IRQ on last fragment */
  423. greth_write_bd(&bdp->stat, status);
  424. dma_addr = dma_map_page(greth->dev,
  425. frag->page,
  426. frag->page_offset,
  427. frag->size,
  428. DMA_TO_DEVICE);
  429. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  430. goto frag_map_error;
  431. greth_write_bd(&bdp->addr, dma_addr);
  432. curr_tx = NEXT_TX(curr_tx);
  433. }
  434. wmb();
  435. /* Enable the descriptor chain by enabling the first descriptor */
  436. bdp = greth->tx_bd_base + greth->tx_next;
  437. greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
  438. greth->tx_next = curr_tx;
  439. greth->tx_free -= nr_frags + 1;
  440. wmb();
  441. spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
  442. greth_enable_tx(greth);
  443. spin_unlock_irqrestore(&greth->devlock, flags);
  444. return NETDEV_TX_OK;
  445. frag_map_error:
  446. /* Unmap SKB mappings that succeeded and disable descriptor */
  447. for (i = 0; greth->tx_next + i != curr_tx; i++) {
  448. bdp = greth->tx_bd_base + greth->tx_next + i;
  449. dma_unmap_single(greth->dev,
  450. greth_read_bd(&bdp->addr),
  451. greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
  452. DMA_TO_DEVICE);
  453. greth_write_bd(&bdp->stat, 0);
  454. }
  455. map_error:
  456. if (net_ratelimit())
  457. dev_warn(greth->dev, "Could not create TX DMA mapping\n");
  458. dev_kfree_skb(skb);
  459. out:
  460. return err;
  461. }
  462. static irqreturn_t greth_interrupt(int irq, void *dev_id)
  463. {
  464. struct net_device *dev = dev_id;
  465. struct greth_private *greth;
  466. u32 status, ctrl;
  467. irqreturn_t retval = IRQ_NONE;
  468. greth = netdev_priv(dev);
  469. spin_lock(&greth->devlock);
  470. /* Get the interrupt events that caused us to be here. */
  471. status = GRETH_REGLOAD(greth->regs->status);
  472. /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
  473. * set regardless of whether IRQ is enabled or not. Especially
  474. * important when shared IRQ.
  475. */
  476. ctrl = GRETH_REGLOAD(greth->regs->control);
  477. /* Handle rx and tx interrupts through poll */
  478. if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
  479. ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
  480. retval = IRQ_HANDLED;
  481. /* Disable interrupts and schedule poll() */
  482. greth_disable_irqs(greth);
  483. napi_schedule(&greth->napi);
  484. }
  485. mmiowb();
  486. spin_unlock(&greth->devlock);
  487. return retval;
  488. }
  489. static void greth_clean_tx(struct net_device *dev)
  490. {
  491. struct greth_private *greth;
  492. struct greth_bd *bdp;
  493. u32 stat;
  494. greth = netdev_priv(dev);
  495. while (1) {
  496. bdp = greth->tx_bd_base + greth->tx_last;
  497. GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
  498. mb();
  499. stat = greth_read_bd(&bdp->stat);
  500. if (unlikely(stat & GRETH_BD_EN))
  501. break;
  502. if (greth->tx_free == GRETH_TXBD_NUM)
  503. break;
  504. /* Check status for errors */
  505. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  506. dev->stats.tx_errors++;
  507. if (stat & GRETH_TXBD_ERR_AL)
  508. dev->stats.tx_aborted_errors++;
  509. if (stat & GRETH_TXBD_ERR_UE)
  510. dev->stats.tx_fifo_errors++;
  511. }
  512. dev->stats.tx_packets++;
  513. greth->tx_last = NEXT_TX(greth->tx_last);
  514. greth->tx_free++;
  515. }
  516. if (greth->tx_free > 0) {
  517. netif_wake_queue(dev);
  518. }
  519. }
  520. static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
  521. {
  522. /* Check status for errors */
  523. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  524. dev->stats.tx_errors++;
  525. if (stat & GRETH_TXBD_ERR_AL)
  526. dev->stats.tx_aborted_errors++;
  527. if (stat & GRETH_TXBD_ERR_UE)
  528. dev->stats.tx_fifo_errors++;
  529. if (stat & GRETH_TXBD_ERR_LC)
  530. dev->stats.tx_aborted_errors++;
  531. }
  532. dev->stats.tx_packets++;
  533. }
  534. static void greth_clean_tx_gbit(struct net_device *dev)
  535. {
  536. struct greth_private *greth;
  537. struct greth_bd *bdp, *bdp_last_frag;
  538. struct sk_buff *skb;
  539. u32 stat;
  540. int nr_frags, i;
  541. greth = netdev_priv(dev);
  542. while (greth->tx_free < GRETH_TXBD_NUM) {
  543. skb = greth->tx_skbuff[greth->tx_last];
  544. nr_frags = skb_shinfo(skb)->nr_frags;
  545. /* We only clean fully completed SKBs */
  546. bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
  547. GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
  548. mb();
  549. stat = greth_read_bd(&bdp_last_frag->stat);
  550. if (stat & GRETH_BD_EN)
  551. break;
  552. greth->tx_skbuff[greth->tx_last] = NULL;
  553. greth_update_tx_stats(dev, stat);
  554. bdp = greth->tx_bd_base + greth->tx_last;
  555. greth->tx_last = NEXT_TX(greth->tx_last);
  556. dma_unmap_single(greth->dev,
  557. greth_read_bd(&bdp->addr),
  558. skb_headlen(skb),
  559. DMA_TO_DEVICE);
  560. for (i = 0; i < nr_frags; i++) {
  561. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  562. bdp = greth->tx_bd_base + greth->tx_last;
  563. dma_unmap_page(greth->dev,
  564. greth_read_bd(&bdp->addr),
  565. frag->size,
  566. DMA_TO_DEVICE);
  567. greth->tx_last = NEXT_TX(greth->tx_last);
  568. }
  569. greth->tx_free += nr_frags+1;
  570. dev_kfree_skb(skb);
  571. }
  572. if (netif_queue_stopped(dev) && (greth->tx_free > (MAX_SKB_FRAGS+1)))
  573. netif_wake_queue(dev);
  574. }
  575. static int greth_rx(struct net_device *dev, int limit)
  576. {
  577. struct greth_private *greth;
  578. struct greth_bd *bdp;
  579. struct sk_buff *skb;
  580. int pkt_len;
  581. int bad, count;
  582. u32 status, dma_addr;
  583. unsigned long flags;
  584. greth = netdev_priv(dev);
  585. for (count = 0; count < limit; ++count) {
  586. bdp = greth->rx_bd_base + greth->rx_cur;
  587. GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
  588. mb();
  589. status = greth_read_bd(&bdp->stat);
  590. if (unlikely(status & GRETH_BD_EN)) {
  591. break;
  592. }
  593. dma_addr = greth_read_bd(&bdp->addr);
  594. bad = 0;
  595. /* Check status for errors. */
  596. if (unlikely(status & GRETH_RXBD_STATUS)) {
  597. if (status & GRETH_RXBD_ERR_FT) {
  598. dev->stats.rx_length_errors++;
  599. bad = 1;
  600. }
  601. if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
  602. dev->stats.rx_frame_errors++;
  603. bad = 1;
  604. }
  605. if (status & GRETH_RXBD_ERR_CRC) {
  606. dev->stats.rx_crc_errors++;
  607. bad = 1;
  608. }
  609. }
  610. if (unlikely(bad)) {
  611. dev->stats.rx_errors++;
  612. } else {
  613. pkt_len = status & GRETH_BD_LEN;
  614. skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
  615. if (unlikely(skb == NULL)) {
  616. if (net_ratelimit())
  617. dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
  618. dev->stats.rx_dropped++;
  619. } else {
  620. skb_reserve(skb, NET_IP_ALIGN);
  621. skb->dev = dev;
  622. dma_sync_single_for_cpu(greth->dev,
  623. dma_addr,
  624. pkt_len,
  625. DMA_FROM_DEVICE);
  626. if (netif_msg_pktdata(greth))
  627. greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
  628. memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
  629. skb->protocol = eth_type_trans(skb, dev);
  630. dev->stats.rx_packets++;
  631. netif_receive_skb(skb);
  632. }
  633. }
  634. status = GRETH_BD_EN | GRETH_BD_IE;
  635. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  636. status |= GRETH_BD_WR;
  637. }
  638. wmb();
  639. greth_write_bd(&bdp->stat, status);
  640. dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
  641. spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
  642. greth_enable_rx(greth);
  643. spin_unlock_irqrestore(&greth->devlock, flags);
  644. greth->rx_cur = NEXT_RX(greth->rx_cur);
  645. }
  646. return count;
  647. }
  648. static inline int hw_checksummed(u32 status)
  649. {
  650. if (status & GRETH_RXBD_IP_FRAG)
  651. return 0;
  652. if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
  653. return 0;
  654. if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
  655. return 0;
  656. if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
  657. return 0;
  658. return 1;
  659. }
  660. static int greth_rx_gbit(struct net_device *dev, int limit)
  661. {
  662. struct greth_private *greth;
  663. struct greth_bd *bdp;
  664. struct sk_buff *skb, *newskb;
  665. int pkt_len;
  666. int bad, count = 0;
  667. u32 status, dma_addr;
  668. unsigned long flags;
  669. greth = netdev_priv(dev);
  670. for (count = 0; count < limit; ++count) {
  671. bdp = greth->rx_bd_base + greth->rx_cur;
  672. skb = greth->rx_skbuff[greth->rx_cur];
  673. GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
  674. mb();
  675. status = greth_read_bd(&bdp->stat);
  676. bad = 0;
  677. if (status & GRETH_BD_EN)
  678. break;
  679. /* Check status for errors. */
  680. if (unlikely(status & GRETH_RXBD_STATUS)) {
  681. if (status & GRETH_RXBD_ERR_FT) {
  682. dev->stats.rx_length_errors++;
  683. bad = 1;
  684. } else if (status &
  685. (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
  686. dev->stats.rx_frame_errors++;
  687. bad = 1;
  688. } else if (status & GRETH_RXBD_ERR_CRC) {
  689. dev->stats.rx_crc_errors++;
  690. bad = 1;
  691. }
  692. }
  693. /* Allocate new skb to replace current, not needed if the
  694. * current skb can be reused */
  695. if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
  696. skb_reserve(newskb, NET_IP_ALIGN);
  697. dma_addr = dma_map_single(greth->dev,
  698. newskb->data,
  699. MAX_FRAME_SIZE + NET_IP_ALIGN,
  700. DMA_FROM_DEVICE);
  701. if (!dma_mapping_error(greth->dev, dma_addr)) {
  702. /* Process the incoming frame. */
  703. pkt_len = status & GRETH_BD_LEN;
  704. dma_unmap_single(greth->dev,
  705. greth_read_bd(&bdp->addr),
  706. MAX_FRAME_SIZE + NET_IP_ALIGN,
  707. DMA_FROM_DEVICE);
  708. if (netif_msg_pktdata(greth))
  709. greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
  710. skb_put(skb, pkt_len);
  711. if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
  712. skb->ip_summed = CHECKSUM_UNNECESSARY;
  713. else
  714. skb_checksum_none_assert(skb);
  715. skb->protocol = eth_type_trans(skb, dev);
  716. dev->stats.rx_packets++;
  717. netif_receive_skb(skb);
  718. greth->rx_skbuff[greth->rx_cur] = newskb;
  719. greth_write_bd(&bdp->addr, dma_addr);
  720. } else {
  721. if (net_ratelimit())
  722. dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
  723. dev_kfree_skb(newskb);
  724. /* reusing current skb, so it is a drop */
  725. dev->stats.rx_dropped++;
  726. }
  727. } else if (bad) {
  728. /* Bad Frame transfer, the skb is reused */
  729. dev->stats.rx_dropped++;
  730. } else {
  731. /* Failed Allocating a new skb. This is rather stupid
  732. * but the current "filled" skb is reused, as if
  733. * transfer failure. One could argue that RX descriptor
  734. * table handling should be divided into cleaning and
  735. * filling as the TX part of the driver
  736. */
  737. if (net_ratelimit())
  738. dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
  739. /* reusing current skb, so it is a drop */
  740. dev->stats.rx_dropped++;
  741. }
  742. status = GRETH_BD_EN | GRETH_BD_IE;
  743. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  744. status |= GRETH_BD_WR;
  745. }
  746. wmb();
  747. greth_write_bd(&bdp->stat, status);
  748. spin_lock_irqsave(&greth->devlock, flags);
  749. greth_enable_rx(greth);
  750. spin_unlock_irqrestore(&greth->devlock, flags);
  751. greth->rx_cur = NEXT_RX(greth->rx_cur);
  752. }
  753. return count;
  754. }
  755. static int greth_poll(struct napi_struct *napi, int budget)
  756. {
  757. struct greth_private *greth;
  758. int work_done = 0;
  759. unsigned long flags;
  760. u32 mask, ctrl;
  761. greth = container_of(napi, struct greth_private, napi);
  762. restart_txrx_poll:
  763. if (netif_queue_stopped(greth->netdev)) {
  764. if (greth->gbit_mac)
  765. greth_clean_tx_gbit(greth->netdev);
  766. else
  767. greth_clean_tx(greth->netdev);
  768. }
  769. if (greth->gbit_mac) {
  770. work_done += greth_rx_gbit(greth->netdev, budget - work_done);
  771. } else {
  772. work_done += greth_rx(greth->netdev, budget - work_done);
  773. }
  774. if (work_done < budget) {
  775. spin_lock_irqsave(&greth->devlock, flags);
  776. ctrl = GRETH_REGLOAD(greth->regs->control);
  777. if (netif_queue_stopped(greth->netdev)) {
  778. GRETH_REGSAVE(greth->regs->control,
  779. ctrl | GRETH_TXI | GRETH_RXI);
  780. mask = GRETH_INT_RX | GRETH_INT_RE |
  781. GRETH_INT_TX | GRETH_INT_TE;
  782. } else {
  783. GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
  784. mask = GRETH_INT_RX | GRETH_INT_RE;
  785. }
  786. if (GRETH_REGLOAD(greth->regs->status) & mask) {
  787. GRETH_REGSAVE(greth->regs->control, ctrl);
  788. spin_unlock_irqrestore(&greth->devlock, flags);
  789. goto restart_txrx_poll;
  790. } else {
  791. __napi_complete(napi);
  792. spin_unlock_irqrestore(&greth->devlock, flags);
  793. }
  794. }
  795. return work_done;
  796. }
  797. static int greth_set_mac_add(struct net_device *dev, void *p)
  798. {
  799. struct sockaddr *addr = p;
  800. struct greth_private *greth;
  801. struct greth_regs *regs;
  802. greth = netdev_priv(dev);
  803. regs = (struct greth_regs *) greth->regs;
  804. if (!is_valid_ether_addr(addr->sa_data))
  805. return -EINVAL;
  806. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  807. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  808. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  809. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  810. return 0;
  811. }
  812. static u32 greth_hash_get_index(__u8 *addr)
  813. {
  814. return (ether_crc(6, addr)) & 0x3F;
  815. }
  816. static void greth_set_hash_filter(struct net_device *dev)
  817. {
  818. struct netdev_hw_addr *ha;
  819. struct greth_private *greth = netdev_priv(dev);
  820. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  821. u32 mc_filter[2];
  822. unsigned int bitnr;
  823. mc_filter[0] = mc_filter[1] = 0;
  824. netdev_for_each_mc_addr(ha, dev) {
  825. bitnr = greth_hash_get_index(ha->addr);
  826. mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
  827. }
  828. GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
  829. GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
  830. }
  831. static void greth_set_multicast_list(struct net_device *dev)
  832. {
  833. int cfg;
  834. struct greth_private *greth = netdev_priv(dev);
  835. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  836. cfg = GRETH_REGLOAD(regs->control);
  837. if (dev->flags & IFF_PROMISC)
  838. cfg |= GRETH_CTRL_PR;
  839. else
  840. cfg &= ~GRETH_CTRL_PR;
  841. if (greth->multicast) {
  842. if (dev->flags & IFF_ALLMULTI) {
  843. GRETH_REGSAVE(regs->hash_msb, -1);
  844. GRETH_REGSAVE(regs->hash_lsb, -1);
  845. cfg |= GRETH_CTRL_MCEN;
  846. GRETH_REGSAVE(regs->control, cfg);
  847. return;
  848. }
  849. if (netdev_mc_empty(dev)) {
  850. cfg &= ~GRETH_CTRL_MCEN;
  851. GRETH_REGSAVE(regs->control, cfg);
  852. return;
  853. }
  854. /* Setup multicast filter */
  855. greth_set_hash_filter(dev);
  856. cfg |= GRETH_CTRL_MCEN;
  857. }
  858. GRETH_REGSAVE(regs->control, cfg);
  859. }
  860. static u32 greth_get_msglevel(struct net_device *dev)
  861. {
  862. struct greth_private *greth = netdev_priv(dev);
  863. return greth->msg_enable;
  864. }
  865. static void greth_set_msglevel(struct net_device *dev, u32 value)
  866. {
  867. struct greth_private *greth = netdev_priv(dev);
  868. greth->msg_enable = value;
  869. }
  870. static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  871. {
  872. struct greth_private *greth = netdev_priv(dev);
  873. struct phy_device *phy = greth->phy;
  874. if (!phy)
  875. return -ENODEV;
  876. return phy_ethtool_gset(phy, cmd);
  877. }
  878. static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  879. {
  880. struct greth_private *greth = netdev_priv(dev);
  881. struct phy_device *phy = greth->phy;
  882. if (!phy)
  883. return -ENODEV;
  884. return phy_ethtool_sset(phy, cmd);
  885. }
  886. static int greth_get_regs_len(struct net_device *dev)
  887. {
  888. return sizeof(struct greth_regs);
  889. }
  890. static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  891. {
  892. struct greth_private *greth = netdev_priv(dev);
  893. strncpy(info->driver, dev_driver_string(greth->dev), 32);
  894. strncpy(info->version, "revision: 1.0", 32);
  895. strncpy(info->bus_info, greth->dev->bus->name, 32);
  896. strncpy(info->fw_version, "N/A", 32);
  897. info->eedump_len = 0;
  898. info->regdump_len = sizeof(struct greth_regs);
  899. }
  900. static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
  901. {
  902. int i;
  903. struct greth_private *greth = netdev_priv(dev);
  904. u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
  905. u32 *buff = p;
  906. for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
  907. buff[i] = greth_read_bd(&greth_regs[i]);
  908. }
  909. static const struct ethtool_ops greth_ethtool_ops = {
  910. .get_msglevel = greth_get_msglevel,
  911. .set_msglevel = greth_set_msglevel,
  912. .get_settings = greth_get_settings,
  913. .set_settings = greth_set_settings,
  914. .get_drvinfo = greth_get_drvinfo,
  915. .get_regs_len = greth_get_regs_len,
  916. .get_regs = greth_get_regs,
  917. .get_link = ethtool_op_get_link,
  918. };
  919. static struct net_device_ops greth_netdev_ops = {
  920. .ndo_open = greth_open,
  921. .ndo_stop = greth_close,
  922. .ndo_start_xmit = greth_start_xmit,
  923. .ndo_set_mac_address = greth_set_mac_add,
  924. .ndo_validate_addr = eth_validate_addr,
  925. };
  926. static inline int wait_for_mdio(struct greth_private *greth)
  927. {
  928. unsigned long timeout = jiffies + 4*HZ/100;
  929. while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
  930. if (time_after(jiffies, timeout))
  931. return 0;
  932. }
  933. return 1;
  934. }
  935. static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
  936. {
  937. struct greth_private *greth = bus->priv;
  938. int data;
  939. if (!wait_for_mdio(greth))
  940. return -EBUSY;
  941. GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
  942. if (!wait_for_mdio(greth))
  943. return -EBUSY;
  944. if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
  945. data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
  946. return data;
  947. } else {
  948. return -1;
  949. }
  950. }
  951. static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
  952. {
  953. struct greth_private *greth = bus->priv;
  954. if (!wait_for_mdio(greth))
  955. return -EBUSY;
  956. GRETH_REGSAVE(greth->regs->mdio,
  957. ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
  958. if (!wait_for_mdio(greth))
  959. return -EBUSY;
  960. return 0;
  961. }
  962. static int greth_mdio_reset(struct mii_bus *bus)
  963. {
  964. return 0;
  965. }
  966. static void greth_link_change(struct net_device *dev)
  967. {
  968. struct greth_private *greth = netdev_priv(dev);
  969. struct phy_device *phydev = greth->phy;
  970. unsigned long flags;
  971. int status_change = 0;
  972. u32 ctrl;
  973. spin_lock_irqsave(&greth->devlock, flags);
  974. if (phydev->link) {
  975. if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
  976. ctrl = GRETH_REGLOAD(greth->regs->control) &
  977. ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
  978. if (phydev->duplex)
  979. ctrl |= GRETH_CTRL_FD;
  980. if (phydev->speed == SPEED_100)
  981. ctrl |= GRETH_CTRL_SP;
  982. else if (phydev->speed == SPEED_1000)
  983. ctrl |= GRETH_CTRL_GB;
  984. GRETH_REGSAVE(greth->regs->control, ctrl);
  985. greth->speed = phydev->speed;
  986. greth->duplex = phydev->duplex;
  987. status_change = 1;
  988. }
  989. }
  990. if (phydev->link != greth->link) {
  991. if (!phydev->link) {
  992. greth->speed = 0;
  993. greth->duplex = -1;
  994. }
  995. greth->link = phydev->link;
  996. status_change = 1;
  997. }
  998. spin_unlock_irqrestore(&greth->devlock, flags);
  999. if (status_change) {
  1000. if (phydev->link)
  1001. pr_debug("%s: link up (%d/%s)\n",
  1002. dev->name, phydev->speed,
  1003. DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
  1004. else
  1005. pr_debug("%s: link down\n", dev->name);
  1006. }
  1007. }
  1008. static int greth_mdio_probe(struct net_device *dev)
  1009. {
  1010. struct greth_private *greth = netdev_priv(dev);
  1011. struct phy_device *phy = NULL;
  1012. int ret;
  1013. /* Find the first PHY */
  1014. phy = phy_find_first(greth->mdio);
  1015. if (!phy) {
  1016. if (netif_msg_probe(greth))
  1017. dev_err(&dev->dev, "no PHY found\n");
  1018. return -ENXIO;
  1019. }
  1020. ret = phy_connect_direct(dev, phy, &greth_link_change,
  1021. 0, greth->gbit_mac ?
  1022. PHY_INTERFACE_MODE_GMII :
  1023. PHY_INTERFACE_MODE_MII);
  1024. if (ret) {
  1025. if (netif_msg_ifup(greth))
  1026. dev_err(&dev->dev, "could not attach to PHY\n");
  1027. return ret;
  1028. }
  1029. if (greth->gbit_mac)
  1030. phy->supported &= PHY_GBIT_FEATURES;
  1031. else
  1032. phy->supported &= PHY_BASIC_FEATURES;
  1033. phy->advertising = phy->supported;
  1034. greth->link = 0;
  1035. greth->speed = 0;
  1036. greth->duplex = -1;
  1037. greth->phy = phy;
  1038. return 0;
  1039. }
  1040. static inline int phy_aneg_done(struct phy_device *phydev)
  1041. {
  1042. int retval;
  1043. retval = phy_read(phydev, MII_BMSR);
  1044. return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
  1045. }
  1046. static int greth_mdio_init(struct greth_private *greth)
  1047. {
  1048. int ret, phy;
  1049. unsigned long timeout;
  1050. greth->mdio = mdiobus_alloc();
  1051. if (!greth->mdio) {
  1052. return -ENOMEM;
  1053. }
  1054. greth->mdio->name = "greth-mdio";
  1055. snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
  1056. greth->mdio->read = greth_mdio_read;
  1057. greth->mdio->write = greth_mdio_write;
  1058. greth->mdio->reset = greth_mdio_reset;
  1059. greth->mdio->priv = greth;
  1060. greth->mdio->irq = greth->mdio_irqs;
  1061. for (phy = 0; phy < PHY_MAX_ADDR; phy++)
  1062. greth->mdio->irq[phy] = PHY_POLL;
  1063. ret = mdiobus_register(greth->mdio);
  1064. if (ret) {
  1065. goto error;
  1066. }
  1067. ret = greth_mdio_probe(greth->netdev);
  1068. if (ret) {
  1069. if (netif_msg_probe(greth))
  1070. dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
  1071. goto unreg_mdio;
  1072. }
  1073. phy_start(greth->phy);
  1074. /* If Ethernet debug link is used make autoneg happen right away */
  1075. if (greth->edcl && greth_edcl == 1) {
  1076. phy_start_aneg(greth->phy);
  1077. timeout = jiffies + 6*HZ;
  1078. while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
  1079. }
  1080. genphy_read_status(greth->phy);
  1081. greth_link_change(greth->netdev);
  1082. }
  1083. return 0;
  1084. unreg_mdio:
  1085. mdiobus_unregister(greth->mdio);
  1086. error:
  1087. mdiobus_free(greth->mdio);
  1088. return ret;
  1089. }
  1090. /* Initialize the GRETH MAC */
  1091. static int __devinit greth_of_probe(struct platform_device *ofdev)
  1092. {
  1093. struct net_device *dev;
  1094. struct greth_private *greth;
  1095. struct greth_regs *regs;
  1096. int i;
  1097. int err;
  1098. int tmp;
  1099. unsigned long timeout;
  1100. dev = alloc_etherdev(sizeof(struct greth_private));
  1101. if (dev == NULL)
  1102. return -ENOMEM;
  1103. greth = netdev_priv(dev);
  1104. greth->netdev = dev;
  1105. greth->dev = &ofdev->dev;
  1106. if (greth_debug > 0)
  1107. greth->msg_enable = greth_debug;
  1108. else
  1109. greth->msg_enable = GRETH_DEF_MSG_ENABLE;
  1110. spin_lock_init(&greth->devlock);
  1111. greth->regs = of_ioremap(&ofdev->resource[0], 0,
  1112. resource_size(&ofdev->resource[0]),
  1113. "grlib-greth regs");
  1114. if (greth->regs == NULL) {
  1115. if (netif_msg_probe(greth))
  1116. dev_err(greth->dev, "ioremap failure.\n");
  1117. err = -EIO;
  1118. goto error1;
  1119. }
  1120. regs = (struct greth_regs *) greth->regs;
  1121. greth->irq = ofdev->archdata.irqs[0];
  1122. dev_set_drvdata(greth->dev, dev);
  1123. SET_NETDEV_DEV(dev, greth->dev);
  1124. if (netif_msg_probe(greth))
  1125. dev_dbg(greth->dev, "reseting controller.\n");
  1126. /* Reset the controller. */
  1127. GRETH_REGSAVE(regs->control, GRETH_RESET);
  1128. /* Wait for MAC to reset itself */
  1129. timeout = jiffies + HZ/100;
  1130. while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
  1131. if (time_after(jiffies, timeout)) {
  1132. err = -EIO;
  1133. if (netif_msg_probe(greth))
  1134. dev_err(greth->dev, "timeout when waiting for reset.\n");
  1135. goto error2;
  1136. }
  1137. }
  1138. /* Get default PHY address */
  1139. greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
  1140. /* Check if we have GBIT capable MAC */
  1141. tmp = GRETH_REGLOAD(regs->control);
  1142. greth->gbit_mac = (tmp >> 27) & 1;
  1143. /* Check for multicast capability */
  1144. greth->multicast = (tmp >> 25) & 1;
  1145. greth->edcl = (tmp >> 31) & 1;
  1146. /* If we have EDCL we disable the EDCL speed-duplex FSM so
  1147. * it doesn't interfere with the software */
  1148. if (greth->edcl != 0)
  1149. GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
  1150. /* Check if MAC can handle MDIO interrupts */
  1151. greth->mdio_int_en = (tmp >> 26) & 1;
  1152. err = greth_mdio_init(greth);
  1153. if (err) {
  1154. if (netif_msg_probe(greth))
  1155. dev_err(greth->dev, "failed to register MDIO bus\n");
  1156. goto error2;
  1157. }
  1158. /* Allocate TX descriptor ring in coherent memory */
  1159. greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1160. 1024,
  1161. &greth->tx_bd_base_phys,
  1162. GFP_KERNEL);
  1163. if (!greth->tx_bd_base) {
  1164. if (netif_msg_probe(greth))
  1165. dev_err(&dev->dev, "could not allocate descriptor memory.\n");
  1166. err = -ENOMEM;
  1167. goto error3;
  1168. }
  1169. memset(greth->tx_bd_base, 0, 1024);
  1170. /* Allocate RX descriptor ring in coherent memory */
  1171. greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1172. 1024,
  1173. &greth->rx_bd_base_phys,
  1174. GFP_KERNEL);
  1175. if (!greth->rx_bd_base) {
  1176. if (netif_msg_probe(greth))
  1177. dev_err(greth->dev, "could not allocate descriptor memory.\n");
  1178. err = -ENOMEM;
  1179. goto error4;
  1180. }
  1181. memset(greth->rx_bd_base, 0, 1024);
  1182. /* Get MAC address from: module param, OF property or ID prom */
  1183. for (i = 0; i < 6; i++) {
  1184. if (macaddr[i] != 0)
  1185. break;
  1186. }
  1187. if (i == 6) {
  1188. const unsigned char *addr;
  1189. int len;
  1190. addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
  1191. &len);
  1192. if (addr != NULL && len == 6) {
  1193. for (i = 0; i < 6; i++)
  1194. macaddr[i] = (unsigned int) addr[i];
  1195. } else {
  1196. #ifdef CONFIG_SPARC
  1197. for (i = 0; i < 6; i++)
  1198. macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
  1199. #endif
  1200. }
  1201. }
  1202. for (i = 0; i < 6; i++)
  1203. dev->dev_addr[i] = macaddr[i];
  1204. macaddr[5]++;
  1205. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  1206. if (netif_msg_probe(greth))
  1207. dev_err(greth->dev, "no valid ethernet address, aborting.\n");
  1208. err = -EINVAL;
  1209. goto error5;
  1210. }
  1211. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  1212. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  1213. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  1214. /* Clear all pending interrupts except PHY irq */
  1215. GRETH_REGSAVE(regs->status, 0xFF);
  1216. if (greth->gbit_mac) {
  1217. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  1218. NETIF_F_RXCSUM;
  1219. dev->features = dev->hw_features | NETIF_F_HIGHDMA;
  1220. greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
  1221. }
  1222. if (greth->multicast) {
  1223. greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
  1224. dev->flags |= IFF_MULTICAST;
  1225. } else {
  1226. dev->flags &= ~IFF_MULTICAST;
  1227. }
  1228. dev->netdev_ops = &greth_netdev_ops;
  1229. dev->ethtool_ops = &greth_ethtool_ops;
  1230. err = register_netdev(dev);
  1231. if (err) {
  1232. if (netif_msg_probe(greth))
  1233. dev_err(greth->dev, "netdevice registration failed.\n");
  1234. goto error5;
  1235. }
  1236. /* setup NAPI */
  1237. netif_napi_add(dev, &greth->napi, greth_poll, 64);
  1238. return 0;
  1239. error5:
  1240. dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1241. error4:
  1242. dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1243. error3:
  1244. mdiobus_unregister(greth->mdio);
  1245. error2:
  1246. of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
  1247. error1:
  1248. free_netdev(dev);
  1249. return err;
  1250. }
  1251. static int __devexit greth_of_remove(struct platform_device *of_dev)
  1252. {
  1253. struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
  1254. struct greth_private *greth = netdev_priv(ndev);
  1255. /* Free descriptor areas */
  1256. dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1257. dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1258. dev_set_drvdata(&of_dev->dev, NULL);
  1259. if (greth->phy)
  1260. phy_stop(greth->phy);
  1261. mdiobus_unregister(greth->mdio);
  1262. unregister_netdev(ndev);
  1263. free_netdev(ndev);
  1264. of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
  1265. return 0;
  1266. }
  1267. static struct of_device_id greth_of_match[] = {
  1268. {
  1269. .name = "GAISLER_ETHMAC",
  1270. },
  1271. {
  1272. .name = "01_01d",
  1273. },
  1274. {},
  1275. };
  1276. MODULE_DEVICE_TABLE(of, greth_of_match);
  1277. static struct platform_driver greth_of_driver = {
  1278. .driver = {
  1279. .name = "grlib-greth",
  1280. .owner = THIS_MODULE,
  1281. .of_match_table = greth_of_match,
  1282. },
  1283. .probe = greth_of_probe,
  1284. .remove = __devexit_p(greth_of_remove),
  1285. };
  1286. static int __init greth_init(void)
  1287. {
  1288. return platform_driver_register(&greth_of_driver);
  1289. }
  1290. static void __exit greth_cleanup(void)
  1291. {
  1292. platform_driver_unregister(&greth_of_driver);
  1293. }
  1294. module_init(greth_init);
  1295. module_exit(greth_cleanup);
  1296. MODULE_AUTHOR("Aeroflex Gaisler AB.");
  1297. MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
  1298. MODULE_LICENSE("GPL");