process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729
  1. /*
  2. * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Licensed under the GPL
  4. */
  5. #include <stdlib.h>
  6. #include <unistd.h>
  7. #include <sched.h>
  8. #include <errno.h>
  9. #include <string.h>
  10. #include <sys/mman.h>
  11. #include <sys/ptrace.h>
  12. #include <sys/wait.h>
  13. #include <asm/unistd.h>
  14. #include "as-layout.h"
  15. #include "chan_user.h"
  16. #include "kern_constants.h"
  17. #include "kern_util.h"
  18. #include "mem.h"
  19. #include "os.h"
  20. #include "process.h"
  21. #include "proc_mm.h"
  22. #include "ptrace_user.h"
  23. #include "registers.h"
  24. #include "skas.h"
  25. #include "skas_ptrace.h"
  26. #include "user.h"
  27. #include "sysdep/stub.h"
  28. int is_skas_winch(int pid, int fd, void *data)
  29. {
  30. if (pid != getpgrp())
  31. return 0;
  32. register_winch_irq(-1, fd, -1, data, 0);
  33. return 1;
  34. }
  35. static int ptrace_dump_regs(int pid)
  36. {
  37. unsigned long regs[MAX_REG_NR];
  38. int i;
  39. if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
  40. return -errno;
  41. printk(UM_KERN_ERR "Stub registers -\n");
  42. for (i = 0; i < ARRAY_SIZE(regs); i++)
  43. printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]);
  44. return 0;
  45. }
  46. /*
  47. * Signals that are OK to receive in the stub - we'll just continue it.
  48. * SIGWINCH will happen when UML is inside a detached screen.
  49. */
  50. #define STUB_SIG_MASK ((1 << SIGVTALRM) | (1 << SIGWINCH))
  51. /* Signals that the stub will finish with - anything else is an error */
  52. #define STUB_DONE_MASK (1 << SIGTRAP)
  53. void wait_stub_done(int pid)
  54. {
  55. int n, status, err;
  56. while (1) {
  57. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  58. if ((n < 0) || !WIFSTOPPED(status))
  59. goto bad_wait;
  60. if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
  61. break;
  62. err = ptrace(PTRACE_CONT, pid, 0, 0);
  63. if (err) {
  64. printk(UM_KERN_ERR "wait_stub_done : continue failed, "
  65. "errno = %d\n", errno);
  66. fatal_sigsegv();
  67. }
  68. }
  69. if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
  70. return;
  71. bad_wait:
  72. err = ptrace_dump_regs(pid);
  73. if (err)
  74. printk(UM_KERN_ERR "Failed to get registers from stub, "
  75. "errno = %d\n", -err);
  76. printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
  77. "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
  78. status);
  79. fatal_sigsegv();
  80. }
  81. extern unsigned long current_stub_stack(void);
  82. static void get_skas_faultinfo(int pid, struct faultinfo *fi)
  83. {
  84. int err;
  85. if (ptrace_faultinfo) {
  86. err = ptrace(PTRACE_FAULTINFO, pid, 0, fi);
  87. if (err) {
  88. printk(UM_KERN_ERR "get_skas_faultinfo - "
  89. "PTRACE_FAULTINFO failed, errno = %d\n", errno);
  90. fatal_sigsegv();
  91. }
  92. /* Special handling for i386, which has different structs */
  93. if (sizeof(struct ptrace_faultinfo) < sizeof(struct faultinfo))
  94. memset((char *)fi + sizeof(struct ptrace_faultinfo), 0,
  95. sizeof(struct faultinfo) -
  96. sizeof(struct ptrace_faultinfo));
  97. }
  98. else {
  99. unsigned long fpregs[FP_SIZE];
  100. err = get_fp_registers(pid, fpregs);
  101. if (err < 0) {
  102. printk(UM_KERN_ERR "save_fp_registers returned %d\n",
  103. err);
  104. fatal_sigsegv();
  105. }
  106. err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
  107. if (err) {
  108. printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
  109. "errno = %d\n", pid, errno);
  110. fatal_sigsegv();
  111. }
  112. wait_stub_done(pid);
  113. /*
  114. * faultinfo is prepared by the stub-segv-handler at start of
  115. * the stub stack page. We just have to copy it.
  116. */
  117. memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
  118. err = put_fp_registers(pid, fpregs);
  119. if (err < 0) {
  120. printk(UM_KERN_ERR "put_fp_registers returned %d\n",
  121. err);
  122. fatal_sigsegv();
  123. }
  124. }
  125. }
  126. static void handle_segv(int pid, struct uml_pt_regs * regs)
  127. {
  128. get_skas_faultinfo(pid, &regs->faultinfo);
  129. segv(regs->faultinfo, 0, 1, NULL);
  130. }
  131. /*
  132. * To use the same value of using_sysemu as the caller, ask it that value
  133. * (in local_using_sysemu
  134. */
  135. static void handle_trap(int pid, struct uml_pt_regs *regs,
  136. int local_using_sysemu)
  137. {
  138. int err, status;
  139. if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
  140. fatal_sigsegv();
  141. /* Mark this as a syscall */
  142. UPT_SYSCALL_NR(regs) = PT_SYSCALL_NR(regs->gp);
  143. if (!local_using_sysemu)
  144. {
  145. err = ptrace(PTRACE_POKEUSR, pid, PT_SYSCALL_NR_OFFSET,
  146. __NR_getpid);
  147. if (err < 0) {
  148. printk(UM_KERN_ERR "handle_trap - nullifying syscall "
  149. "failed, errno = %d\n", errno);
  150. fatal_sigsegv();
  151. }
  152. err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
  153. if (err < 0) {
  154. printk(UM_KERN_ERR "handle_trap - continuing to end of "
  155. "syscall failed, errno = %d\n", errno);
  156. fatal_sigsegv();
  157. }
  158. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  159. if ((err < 0) || !WIFSTOPPED(status) ||
  160. (WSTOPSIG(status) != SIGTRAP + 0x80)) {
  161. err = ptrace_dump_regs(pid);
  162. if (err)
  163. printk(UM_KERN_ERR "Failed to get registers "
  164. "from process, errno = %d\n", -err);
  165. printk(UM_KERN_ERR "handle_trap - failed to wait at "
  166. "end of syscall, errno = %d, status = %d\n",
  167. errno, status);
  168. fatal_sigsegv();
  169. }
  170. }
  171. handle_syscall(regs);
  172. }
  173. extern int __syscall_stub_start;
  174. static int userspace_tramp(void *stack)
  175. {
  176. void *addr;
  177. int err;
  178. ptrace(PTRACE_TRACEME, 0, 0, 0);
  179. signal(SIGTERM, SIG_DFL);
  180. signal(SIGWINCH, SIG_IGN);
  181. err = set_interval();
  182. if (err) {
  183. printk(UM_KERN_ERR "userspace_tramp - setting timer failed, "
  184. "errno = %d\n", err);
  185. exit(1);
  186. }
  187. if (!proc_mm) {
  188. /*
  189. * This has a pte, but it can't be mapped in with the usual
  190. * tlb_flush mechanism because this is part of that mechanism
  191. */
  192. int fd;
  193. unsigned long long offset;
  194. fd = phys_mapping(to_phys(&__syscall_stub_start), &offset);
  195. addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
  196. PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
  197. if (addr == MAP_FAILED) {
  198. printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
  199. "errno = %d\n", STUB_CODE, errno);
  200. exit(1);
  201. }
  202. if (stack != NULL) {
  203. fd = phys_mapping(to_phys(stack), &offset);
  204. addr = mmap((void *) STUB_DATA,
  205. UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
  206. MAP_FIXED | MAP_SHARED, fd, offset);
  207. if (addr == MAP_FAILED) {
  208. printk(UM_KERN_ERR "mapping segfault stack "
  209. "at 0x%lx failed, errno = %d\n",
  210. STUB_DATA, errno);
  211. exit(1);
  212. }
  213. }
  214. }
  215. if (!ptrace_faultinfo && (stack != NULL)) {
  216. struct sigaction sa;
  217. unsigned long v = STUB_CODE +
  218. (unsigned long) stub_segv_handler -
  219. (unsigned long) &__syscall_stub_start;
  220. set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
  221. sigemptyset(&sa.sa_mask);
  222. sa.sa_flags = SA_ONSTACK | SA_NODEFER;
  223. sa.sa_handler = (void *) v;
  224. sa.sa_restorer = NULL;
  225. if (sigaction(SIGSEGV, &sa, NULL) < 0) {
  226. printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
  227. "handler failed - errno = %d\n", errno);
  228. exit(1);
  229. }
  230. }
  231. kill(os_getpid(), SIGSTOP);
  232. return 0;
  233. }
  234. /* Each element set once, and only accessed by a single processor anyway */
  235. #undef NR_CPUS
  236. #define NR_CPUS 1
  237. int userspace_pid[NR_CPUS];
  238. int start_userspace(unsigned long stub_stack)
  239. {
  240. void *stack;
  241. unsigned long sp;
  242. int pid, status, n, flags, err;
  243. stack = mmap(NULL, UM_KERN_PAGE_SIZE,
  244. PROT_READ | PROT_WRITE | PROT_EXEC,
  245. MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  246. if (stack == MAP_FAILED) {
  247. err = -errno;
  248. printk(UM_KERN_ERR "start_userspace : mmap failed, "
  249. "errno = %d\n", errno);
  250. return err;
  251. }
  252. sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
  253. flags = CLONE_FILES;
  254. if (proc_mm)
  255. flags |= CLONE_VM;
  256. else
  257. flags |= SIGCHLD;
  258. pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
  259. if (pid < 0) {
  260. err = -errno;
  261. printk(UM_KERN_ERR "start_userspace : clone failed, "
  262. "errno = %d\n", errno);
  263. return err;
  264. }
  265. do {
  266. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  267. if (n < 0) {
  268. err = -errno;
  269. printk(UM_KERN_ERR "start_userspace : wait failed, "
  270. "errno = %d\n", errno);
  271. goto out_kill;
  272. }
  273. } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGVTALRM));
  274. if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
  275. err = -EINVAL;
  276. printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
  277. "status = %d\n", status);
  278. goto out_kill;
  279. }
  280. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  281. (void *) PTRACE_O_TRACESYSGOOD) < 0) {
  282. err = -errno;
  283. printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
  284. "failed, errno = %d\n", errno);
  285. goto out_kill;
  286. }
  287. if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
  288. err = -errno;
  289. printk(UM_KERN_ERR "start_userspace : munmap failed, "
  290. "errno = %d\n", errno);
  291. goto out_kill;
  292. }
  293. return pid;
  294. out_kill:
  295. os_kill_ptraced_process(pid, 1);
  296. return err;
  297. }
  298. void userspace(struct uml_pt_regs *regs)
  299. {
  300. struct itimerval timer;
  301. unsigned long long nsecs, now;
  302. int err, status, op, pid = userspace_pid[0];
  303. /* To prevent races if using_sysemu changes under us.*/
  304. int local_using_sysemu;
  305. if (getitimer(ITIMER_VIRTUAL, &timer))
  306. printk(UM_KERN_ERR "Failed to get itimer, errno = %d\n", errno);
  307. nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC +
  308. timer.it_value.tv_usec * UM_NSEC_PER_USEC;
  309. nsecs += os_nsecs();
  310. while (1) {
  311. /*
  312. * This can legitimately fail if the process loads a
  313. * bogus value into a segment register. It will
  314. * segfault and PTRACE_GETREGS will read that value
  315. * out of the process. However, PTRACE_SETREGS will
  316. * fail. In this case, there is nothing to do but
  317. * just kill the process.
  318. */
  319. if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp))
  320. fatal_sigsegv();
  321. /* Now we set local_using_sysemu to be used for one loop */
  322. local_using_sysemu = get_using_sysemu();
  323. op = SELECT_PTRACE_OPERATION(local_using_sysemu,
  324. singlestepping(NULL));
  325. if (ptrace(op, pid, 0, 0)) {
  326. printk(UM_KERN_ERR "userspace - ptrace continue "
  327. "failed, op = %d, errno = %d\n", op, errno);
  328. fatal_sigsegv();
  329. }
  330. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  331. if (err < 0) {
  332. printk(UM_KERN_ERR "userspace - wait failed, "
  333. "errno = %d\n", errno);
  334. fatal_sigsegv();
  335. }
  336. regs->is_user = 1;
  337. if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
  338. printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
  339. "errno = %d\n", errno);
  340. fatal_sigsegv();
  341. }
  342. UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
  343. if (WIFSTOPPED(status)) {
  344. int sig = WSTOPSIG(status);
  345. switch (sig) {
  346. case SIGSEGV:
  347. if (PTRACE_FULL_FAULTINFO ||
  348. !ptrace_faultinfo) {
  349. get_skas_faultinfo(pid,
  350. &regs->faultinfo);
  351. (*sig_info[SIGSEGV])(SIGSEGV, regs);
  352. }
  353. else handle_segv(pid, regs);
  354. break;
  355. case SIGTRAP + 0x80:
  356. handle_trap(pid, regs, local_using_sysemu);
  357. break;
  358. case SIGTRAP:
  359. relay_signal(SIGTRAP, regs);
  360. break;
  361. case SIGVTALRM:
  362. now = os_nsecs();
  363. if (now < nsecs)
  364. break;
  365. block_signals();
  366. (*sig_info[sig])(sig, regs);
  367. unblock_signals();
  368. nsecs = timer.it_value.tv_sec *
  369. UM_NSEC_PER_SEC +
  370. timer.it_value.tv_usec *
  371. UM_NSEC_PER_USEC;
  372. nsecs += os_nsecs();
  373. break;
  374. case SIGIO:
  375. case SIGILL:
  376. case SIGBUS:
  377. case SIGFPE:
  378. case SIGWINCH:
  379. block_signals();
  380. (*sig_info[sig])(sig, regs);
  381. unblock_signals();
  382. break;
  383. default:
  384. printk(UM_KERN_ERR "userspace - child stopped "
  385. "with signal %d\n", sig);
  386. fatal_sigsegv();
  387. }
  388. pid = userspace_pid[0];
  389. interrupt_end();
  390. /* Avoid -ERESTARTSYS handling in host */
  391. if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
  392. PT_SYSCALL_NR(regs->gp) = -1;
  393. }
  394. }
  395. }
  396. static unsigned long thread_regs[MAX_REG_NR];
  397. static int __init init_thread_regs(void)
  398. {
  399. get_safe_registers(thread_regs);
  400. /* Set parent's instruction pointer to start of clone-stub */
  401. thread_regs[REGS_IP_INDEX] = STUB_CODE +
  402. (unsigned long) stub_clone_handler -
  403. (unsigned long) &__syscall_stub_start;
  404. thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
  405. sizeof(void *);
  406. #ifdef __SIGNAL_FRAMESIZE
  407. thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
  408. #endif
  409. return 0;
  410. }
  411. __initcall(init_thread_regs);
  412. int copy_context_skas0(unsigned long new_stack, int pid)
  413. {
  414. struct timeval tv = { .tv_sec = 0, .tv_usec = UM_USEC_PER_SEC / UM_HZ };
  415. int err;
  416. unsigned long current_stack = current_stub_stack();
  417. struct stub_data *data = (struct stub_data *) current_stack;
  418. struct stub_data *child_data = (struct stub_data *) new_stack;
  419. unsigned long long new_offset;
  420. int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
  421. /*
  422. * prepare offset and fd of child's stack as argument for parent's
  423. * and child's mmap2 calls
  424. */
  425. *data = ((struct stub_data) { .offset = MMAP_OFFSET(new_offset),
  426. .fd = new_fd,
  427. .timer = ((struct itimerval)
  428. { .it_value = tv,
  429. .it_interval = tv }) });
  430. err = ptrace_setregs(pid, thread_regs);
  431. if (err < 0) {
  432. err = -errno;
  433. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
  434. "failed, pid = %d, errno = %d\n", pid, -err);
  435. return err;
  436. }
  437. /* set a well known return code for detection of child write failure */
  438. child_data->err = 12345678;
  439. /*
  440. * Wait, until parent has finished its work: read child's pid from
  441. * parent's stack, and check, if bad result.
  442. */
  443. err = ptrace(PTRACE_CONT, pid, 0, 0);
  444. if (err) {
  445. err = -errno;
  446. printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
  447. "errno = %d\n", pid, errno);
  448. return err;
  449. }
  450. wait_stub_done(pid);
  451. pid = data->err;
  452. if (pid < 0) {
  453. printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
  454. "error %d\n", -pid);
  455. return pid;
  456. }
  457. /*
  458. * Wait, until child has finished too: read child's result from
  459. * child's stack and check it.
  460. */
  461. wait_stub_done(pid);
  462. if (child_data->err != STUB_DATA) {
  463. printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports "
  464. "error %ld\n", child_data->err);
  465. err = child_data->err;
  466. goto out_kill;
  467. }
  468. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  469. (void *)PTRACE_O_TRACESYSGOOD) < 0) {
  470. err = -errno;
  471. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
  472. "failed, errno = %d\n", errno);
  473. goto out_kill;
  474. }
  475. return pid;
  476. out_kill:
  477. os_kill_ptraced_process(pid, 1);
  478. return err;
  479. }
  480. /*
  481. * This is used only, if stub pages are needed, while proc_mm is
  482. * available. Opening /proc/mm creates a new mm_context, which lacks
  483. * the stub-pages. Thus, we map them using /proc/mm-fd
  484. */
  485. int map_stub_pages(int fd, unsigned long code, unsigned long data,
  486. unsigned long stack)
  487. {
  488. struct proc_mm_op mmop;
  489. int n;
  490. unsigned long long code_offset;
  491. int code_fd = phys_mapping(to_phys((void *) &__syscall_stub_start),
  492. &code_offset);
  493. mmop = ((struct proc_mm_op) { .op = MM_MMAP,
  494. .u =
  495. { .mmap =
  496. { .addr = code,
  497. .len = UM_KERN_PAGE_SIZE,
  498. .prot = PROT_EXEC,
  499. .flags = MAP_FIXED | MAP_PRIVATE,
  500. .fd = code_fd,
  501. .offset = code_offset
  502. } } });
  503. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  504. if (n != sizeof(mmop)) {
  505. n = errno;
  506. printk(UM_KERN_ERR "mmap args - addr = 0x%lx, fd = %d, "
  507. "offset = %llx\n", code, code_fd,
  508. (unsigned long long) code_offset);
  509. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for code "
  510. "failed, err = %d\n", n);
  511. return -n;
  512. }
  513. if (stack) {
  514. unsigned long long map_offset;
  515. int map_fd = phys_mapping(to_phys((void *)stack), &map_offset);
  516. mmop = ((struct proc_mm_op)
  517. { .op = MM_MMAP,
  518. .u =
  519. { .mmap =
  520. { .addr = data,
  521. .len = UM_KERN_PAGE_SIZE,
  522. .prot = PROT_READ | PROT_WRITE,
  523. .flags = MAP_FIXED | MAP_SHARED,
  524. .fd = map_fd,
  525. .offset = map_offset
  526. } } });
  527. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  528. if (n != sizeof(mmop)) {
  529. n = errno;
  530. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for "
  531. "data failed, err = %d\n", n);
  532. return -n;
  533. }
  534. }
  535. return 0;
  536. }
  537. void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
  538. {
  539. (*buf)[0].JB_IP = (unsigned long) handler;
  540. (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
  541. sizeof(void *);
  542. }
  543. #define INIT_JMP_NEW_THREAD 0
  544. #define INIT_JMP_CALLBACK 1
  545. #define INIT_JMP_HALT 2
  546. #define INIT_JMP_REBOOT 3
  547. void switch_threads(jmp_buf *me, jmp_buf *you)
  548. {
  549. if (UML_SETJMP(me) == 0)
  550. UML_LONGJMP(you, 1);
  551. }
  552. static jmp_buf initial_jmpbuf;
  553. /* XXX Make these percpu */
  554. static void (*cb_proc)(void *arg);
  555. static void *cb_arg;
  556. static jmp_buf *cb_back;
  557. int start_idle_thread(void *stack, jmp_buf *switch_buf)
  558. {
  559. int n;
  560. set_handler(SIGWINCH, (__sighandler_t) sig_handler,
  561. SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGVTALRM, -1);
  562. /*
  563. * Can't use UML_SETJMP or UML_LONGJMP here because they save
  564. * and restore signals, with the possible side-effect of
  565. * trying to handle any signals which came when they were
  566. * blocked, which can't be done on this stack.
  567. * Signals must be blocked when jumping back here and restored
  568. * after returning to the jumper.
  569. */
  570. n = setjmp(initial_jmpbuf);
  571. switch (n) {
  572. case INIT_JMP_NEW_THREAD:
  573. (*switch_buf)[0].JB_IP = (unsigned long) new_thread_handler;
  574. (*switch_buf)[0].JB_SP = (unsigned long) stack +
  575. UM_THREAD_SIZE - sizeof(void *);
  576. break;
  577. case INIT_JMP_CALLBACK:
  578. (*cb_proc)(cb_arg);
  579. longjmp(*cb_back, 1);
  580. break;
  581. case INIT_JMP_HALT:
  582. kmalloc_ok = 0;
  583. return 0;
  584. case INIT_JMP_REBOOT:
  585. kmalloc_ok = 0;
  586. return 1;
  587. default:
  588. printk(UM_KERN_ERR "Bad sigsetjmp return in "
  589. "start_idle_thread - %d\n", n);
  590. fatal_sigsegv();
  591. }
  592. longjmp(*switch_buf, 1);
  593. }
  594. void initial_thread_cb_skas(void (*proc)(void *), void *arg)
  595. {
  596. jmp_buf here;
  597. cb_proc = proc;
  598. cb_arg = arg;
  599. cb_back = &here;
  600. block_signals();
  601. if (UML_SETJMP(&here) == 0)
  602. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
  603. unblock_signals();
  604. cb_proc = NULL;
  605. cb_arg = NULL;
  606. cb_back = NULL;
  607. }
  608. void halt_skas(void)
  609. {
  610. block_signals();
  611. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
  612. }
  613. void reboot_skas(void)
  614. {
  615. block_signals();
  616. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
  617. }
  618. void __switch_mm(struct mm_id *mm_idp)
  619. {
  620. int err;
  621. /* FIXME: need cpu pid in __switch_mm */
  622. if (proc_mm) {
  623. err = ptrace(PTRACE_SWITCH_MM, userspace_pid[0], 0,
  624. mm_idp->u.mm_fd);
  625. if (err) {
  626. printk(UM_KERN_ERR "__switch_mm - PTRACE_SWITCH_MM "
  627. "failed, errno = %d\n", errno);
  628. fatal_sigsegv();
  629. }
  630. }
  631. else userspace_pid[0] = mm_idp->u.pid;
  632. }