vtime.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /*
  2. * arch/s390/kernel/vtime.c
  3. * Virtual cpu timer based timer functions.
  4. *
  5. * S390 version
  6. * Copyright (C) 2004 IBM Deutschland Entwicklung GmbH, IBM Corporation
  7. * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/kernel.h>
  11. #include <linux/time.h>
  12. #include <linux/delay.h>
  13. #include <linux/init.h>
  14. #include <linux/smp.h>
  15. #include <linux/types.h>
  16. #include <linux/timex.h>
  17. #include <linux/notifier.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/rcupdate.h>
  20. #include <linux/posix-timers.h>
  21. #include <linux/cpu.h>
  22. #include <linux/kprobes.h>
  23. #include <asm/timer.h>
  24. #include <asm/irq_regs.h>
  25. #include <asm/cputime.h>
  26. #include <asm/irq.h>
  27. static DEFINE_PER_CPU(struct vtimer_queue, virt_cpu_timer);
  28. DEFINE_PER_CPU(struct s390_idle_data, s390_idle);
  29. static inline __u64 get_vtimer(void)
  30. {
  31. __u64 timer;
  32. asm volatile("STPT %0" : "=m" (timer));
  33. return timer;
  34. }
  35. static inline void set_vtimer(__u64 expires)
  36. {
  37. __u64 timer;
  38. asm volatile (" STPT %0\n" /* Store current cpu timer value */
  39. " SPT %1" /* Set new value immediately afterwards */
  40. : "=m" (timer) : "m" (expires) );
  41. S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
  42. S390_lowcore.last_update_timer = expires;
  43. }
  44. /*
  45. * Update process times based on virtual cpu times stored by entry.S
  46. * to the lowcore fields user_timer, system_timer & steal_clock.
  47. */
  48. static void do_account_vtime(struct task_struct *tsk, int hardirq_offset)
  49. {
  50. struct thread_info *ti = task_thread_info(tsk);
  51. __u64 timer, clock, user, system, steal;
  52. timer = S390_lowcore.last_update_timer;
  53. clock = S390_lowcore.last_update_clock;
  54. asm volatile (" STPT %0\n" /* Store current cpu timer value */
  55. " STCK %1" /* Store current tod clock value */
  56. : "=m" (S390_lowcore.last_update_timer),
  57. "=m" (S390_lowcore.last_update_clock) );
  58. S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
  59. S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
  60. user = S390_lowcore.user_timer - ti->user_timer;
  61. S390_lowcore.steal_timer -= user;
  62. ti->user_timer = S390_lowcore.user_timer;
  63. account_user_time(tsk, user, user);
  64. system = S390_lowcore.system_timer - ti->system_timer;
  65. S390_lowcore.steal_timer -= system;
  66. ti->system_timer = S390_lowcore.system_timer;
  67. account_system_time(tsk, hardirq_offset, system, system);
  68. steal = S390_lowcore.steal_timer;
  69. if ((s64) steal > 0) {
  70. S390_lowcore.steal_timer = 0;
  71. account_steal_time(steal);
  72. }
  73. }
  74. void account_vtime(struct task_struct *prev, struct task_struct *next)
  75. {
  76. struct thread_info *ti;
  77. do_account_vtime(prev, 0);
  78. ti = task_thread_info(prev);
  79. ti->user_timer = S390_lowcore.user_timer;
  80. ti->system_timer = S390_lowcore.system_timer;
  81. ti = task_thread_info(next);
  82. S390_lowcore.user_timer = ti->user_timer;
  83. S390_lowcore.system_timer = ti->system_timer;
  84. }
  85. void account_process_tick(struct task_struct *tsk, int user_tick)
  86. {
  87. do_account_vtime(tsk, HARDIRQ_OFFSET);
  88. }
  89. /*
  90. * Update process times based on virtual cpu times stored by entry.S
  91. * to the lowcore fields user_timer, system_timer & steal_clock.
  92. */
  93. void account_system_vtime(struct task_struct *tsk)
  94. {
  95. struct thread_info *ti = task_thread_info(tsk);
  96. __u64 timer, system;
  97. timer = S390_lowcore.last_update_timer;
  98. S390_lowcore.last_update_timer = get_vtimer();
  99. S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
  100. system = S390_lowcore.system_timer - ti->system_timer;
  101. S390_lowcore.steal_timer -= system;
  102. ti->system_timer = S390_lowcore.system_timer;
  103. account_system_time(tsk, 0, system, system);
  104. }
  105. EXPORT_SYMBOL_GPL(account_system_vtime);
  106. void __kprobes vtime_start_cpu(__u64 int_clock, __u64 enter_timer)
  107. {
  108. struct s390_idle_data *idle = &__get_cpu_var(s390_idle);
  109. struct vtimer_queue *vq = &__get_cpu_var(virt_cpu_timer);
  110. __u64 idle_time, expires;
  111. if (idle->idle_enter == 0ULL)
  112. return;
  113. /* Account time spent with enabled wait psw loaded as idle time. */
  114. idle_time = int_clock - idle->idle_enter;
  115. account_idle_time(idle_time);
  116. S390_lowcore.steal_timer +=
  117. idle->idle_enter - S390_lowcore.last_update_clock;
  118. S390_lowcore.last_update_clock = int_clock;
  119. /* Account system time spent going idle. */
  120. S390_lowcore.system_timer += S390_lowcore.last_update_timer - vq->idle;
  121. S390_lowcore.last_update_timer = enter_timer;
  122. /* Restart vtime CPU timer */
  123. if (vq->do_spt) {
  124. /* Program old expire value but first save progress. */
  125. expires = vq->idle - enter_timer;
  126. expires += get_vtimer();
  127. set_vtimer(expires);
  128. } else {
  129. /* Don't account the CPU timer delta while the cpu was idle. */
  130. vq->elapsed -= vq->idle - enter_timer;
  131. }
  132. idle->sequence++;
  133. smp_wmb();
  134. idle->idle_time += idle_time;
  135. idle->idle_enter = 0ULL;
  136. idle->idle_count++;
  137. smp_wmb();
  138. idle->sequence++;
  139. }
  140. void __kprobes vtime_stop_cpu(void)
  141. {
  142. struct s390_idle_data *idle = &__get_cpu_var(s390_idle);
  143. struct vtimer_queue *vq = &__get_cpu_var(virt_cpu_timer);
  144. psw_t psw;
  145. /* Wait for external, I/O or machine check interrupt. */
  146. psw.mask = psw_kernel_bits | PSW_MASK_WAIT | PSW_MASK_IO | PSW_MASK_EXT;
  147. idle->nohz_delay = 0;
  148. /* Check if the CPU timer needs to be reprogrammed. */
  149. if (vq->do_spt) {
  150. __u64 vmax = VTIMER_MAX_SLICE;
  151. /*
  152. * The inline assembly is equivalent to
  153. * vq->idle = get_cpu_timer();
  154. * set_cpu_timer(VTIMER_MAX_SLICE);
  155. * idle->idle_enter = get_clock();
  156. * __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
  157. * PSW_MASK_IO | PSW_MASK_EXT);
  158. * The difference is that the inline assembly makes sure that
  159. * the last three instruction are stpt, stck and lpsw in that
  160. * order. This is done to increase the precision.
  161. */
  162. asm volatile(
  163. #ifndef CONFIG_64BIT
  164. " basr 1,0\n"
  165. "0: ahi 1,1f-0b\n"
  166. " st 1,4(%2)\n"
  167. #else /* CONFIG_64BIT */
  168. " larl 1,1f\n"
  169. " stg 1,8(%2)\n"
  170. #endif /* CONFIG_64BIT */
  171. " stpt 0(%4)\n"
  172. " spt 0(%5)\n"
  173. " stck 0(%3)\n"
  174. #ifndef CONFIG_64BIT
  175. " lpsw 0(%2)\n"
  176. #else /* CONFIG_64BIT */
  177. " lpswe 0(%2)\n"
  178. #endif /* CONFIG_64BIT */
  179. "1:"
  180. : "=m" (idle->idle_enter), "=m" (vq->idle)
  181. : "a" (&psw), "a" (&idle->idle_enter),
  182. "a" (&vq->idle), "a" (&vmax), "m" (vmax), "m" (psw)
  183. : "memory", "cc", "1");
  184. } else {
  185. /*
  186. * The inline assembly is equivalent to
  187. * vq->idle = get_cpu_timer();
  188. * idle->idle_enter = get_clock();
  189. * __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
  190. * PSW_MASK_IO | PSW_MASK_EXT);
  191. * The difference is that the inline assembly makes sure that
  192. * the last three instruction are stpt, stck and lpsw in that
  193. * order. This is done to increase the precision.
  194. */
  195. asm volatile(
  196. #ifndef CONFIG_64BIT
  197. " basr 1,0\n"
  198. "0: ahi 1,1f-0b\n"
  199. " st 1,4(%2)\n"
  200. #else /* CONFIG_64BIT */
  201. " larl 1,1f\n"
  202. " stg 1,8(%2)\n"
  203. #endif /* CONFIG_64BIT */
  204. " stpt 0(%4)\n"
  205. " stck 0(%3)\n"
  206. #ifndef CONFIG_64BIT
  207. " lpsw 0(%2)\n"
  208. #else /* CONFIG_64BIT */
  209. " lpswe 0(%2)\n"
  210. #endif /* CONFIG_64BIT */
  211. "1:"
  212. : "=m" (idle->idle_enter), "=m" (vq->idle)
  213. : "a" (&psw), "a" (&idle->idle_enter),
  214. "a" (&vq->idle), "m" (psw)
  215. : "memory", "cc", "1");
  216. }
  217. }
  218. cputime64_t s390_get_idle_time(int cpu)
  219. {
  220. struct s390_idle_data *idle;
  221. unsigned long long now, idle_time, idle_enter;
  222. unsigned int sequence;
  223. idle = &per_cpu(s390_idle, cpu);
  224. now = get_clock();
  225. repeat:
  226. sequence = idle->sequence;
  227. smp_rmb();
  228. if (sequence & 1)
  229. goto repeat;
  230. idle_time = 0;
  231. idle_enter = idle->idle_enter;
  232. if (idle_enter != 0ULL && idle_enter < now)
  233. idle_time = now - idle_enter;
  234. smp_rmb();
  235. if (idle->sequence != sequence)
  236. goto repeat;
  237. return idle_time;
  238. }
  239. /*
  240. * Sorted add to a list. List is linear searched until first bigger
  241. * element is found.
  242. */
  243. static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
  244. {
  245. struct vtimer_list *event;
  246. list_for_each_entry(event, head, entry) {
  247. if (event->expires > timer->expires) {
  248. list_add_tail(&timer->entry, &event->entry);
  249. return;
  250. }
  251. }
  252. list_add_tail(&timer->entry, head);
  253. }
  254. /*
  255. * Do the callback functions of expired vtimer events.
  256. * Called from within the interrupt handler.
  257. */
  258. static void do_callbacks(struct list_head *cb_list)
  259. {
  260. struct vtimer_queue *vq;
  261. struct vtimer_list *event, *tmp;
  262. if (list_empty(cb_list))
  263. return;
  264. vq = &__get_cpu_var(virt_cpu_timer);
  265. list_for_each_entry_safe(event, tmp, cb_list, entry) {
  266. list_del_init(&event->entry);
  267. (event->function)(event->data);
  268. if (event->interval) {
  269. /* Recharge interval timer */
  270. event->expires = event->interval + vq->elapsed;
  271. spin_lock(&vq->lock);
  272. list_add_sorted(event, &vq->list);
  273. spin_unlock(&vq->lock);
  274. }
  275. }
  276. }
  277. /*
  278. * Handler for the virtual CPU timer.
  279. */
  280. static void do_cpu_timer_interrupt(unsigned int ext_int_code,
  281. unsigned int param32, unsigned long param64)
  282. {
  283. struct vtimer_queue *vq;
  284. struct vtimer_list *event, *tmp;
  285. struct list_head cb_list; /* the callback queue */
  286. __u64 elapsed, next;
  287. kstat_cpu(smp_processor_id()).irqs[EXTINT_TMR]++;
  288. INIT_LIST_HEAD(&cb_list);
  289. vq = &__get_cpu_var(virt_cpu_timer);
  290. /* walk timer list, fire all expired events */
  291. spin_lock(&vq->lock);
  292. elapsed = vq->elapsed + (vq->timer - S390_lowcore.async_enter_timer);
  293. BUG_ON((s64) elapsed < 0);
  294. vq->elapsed = 0;
  295. list_for_each_entry_safe(event, tmp, &vq->list, entry) {
  296. if (event->expires < elapsed)
  297. /* move expired timer to the callback queue */
  298. list_move_tail(&event->entry, &cb_list);
  299. else
  300. event->expires -= elapsed;
  301. }
  302. spin_unlock(&vq->lock);
  303. vq->do_spt = list_empty(&cb_list);
  304. do_callbacks(&cb_list);
  305. /* next event is first in list */
  306. next = VTIMER_MAX_SLICE;
  307. spin_lock(&vq->lock);
  308. if (!list_empty(&vq->list)) {
  309. event = list_first_entry(&vq->list, struct vtimer_list, entry);
  310. next = event->expires;
  311. } else
  312. vq->do_spt = 0;
  313. spin_unlock(&vq->lock);
  314. /*
  315. * To improve precision add the time spent by the
  316. * interrupt handler to the elapsed time.
  317. * Note: CPU timer counts down and we got an interrupt,
  318. * the current content is negative
  319. */
  320. elapsed = S390_lowcore.async_enter_timer - get_vtimer();
  321. set_vtimer(next - elapsed);
  322. vq->timer = next - elapsed;
  323. vq->elapsed = elapsed;
  324. }
  325. void init_virt_timer(struct vtimer_list *timer)
  326. {
  327. timer->function = NULL;
  328. INIT_LIST_HEAD(&timer->entry);
  329. }
  330. EXPORT_SYMBOL(init_virt_timer);
  331. static inline int vtimer_pending(struct vtimer_list *timer)
  332. {
  333. return (!list_empty(&timer->entry));
  334. }
  335. /*
  336. * this function should only run on the specified CPU
  337. */
  338. static void internal_add_vtimer(struct vtimer_list *timer)
  339. {
  340. struct vtimer_queue *vq;
  341. unsigned long flags;
  342. __u64 left, expires;
  343. vq = &per_cpu(virt_cpu_timer, timer->cpu);
  344. spin_lock_irqsave(&vq->lock, flags);
  345. BUG_ON(timer->cpu != smp_processor_id());
  346. if (list_empty(&vq->list)) {
  347. /* First timer on this cpu, just program it. */
  348. list_add(&timer->entry, &vq->list);
  349. set_vtimer(timer->expires);
  350. vq->timer = timer->expires;
  351. vq->elapsed = 0;
  352. } else {
  353. /* Check progress of old timers. */
  354. expires = timer->expires;
  355. left = get_vtimer();
  356. if (likely((s64) expires < (s64) left)) {
  357. /* The new timer expires before the current timer. */
  358. set_vtimer(expires);
  359. vq->elapsed += vq->timer - left;
  360. vq->timer = expires;
  361. } else {
  362. vq->elapsed += vq->timer - left;
  363. vq->timer = left;
  364. }
  365. /* Insert new timer into per cpu list. */
  366. timer->expires += vq->elapsed;
  367. list_add_sorted(timer, &vq->list);
  368. }
  369. spin_unlock_irqrestore(&vq->lock, flags);
  370. /* release CPU acquired in prepare_vtimer or mod_virt_timer() */
  371. put_cpu();
  372. }
  373. static inline void prepare_vtimer(struct vtimer_list *timer)
  374. {
  375. BUG_ON(!timer->function);
  376. BUG_ON(!timer->expires || timer->expires > VTIMER_MAX_SLICE);
  377. BUG_ON(vtimer_pending(timer));
  378. timer->cpu = get_cpu();
  379. }
  380. /*
  381. * add_virt_timer - add an oneshot virtual CPU timer
  382. */
  383. void add_virt_timer(void *new)
  384. {
  385. struct vtimer_list *timer;
  386. timer = (struct vtimer_list *)new;
  387. prepare_vtimer(timer);
  388. timer->interval = 0;
  389. internal_add_vtimer(timer);
  390. }
  391. EXPORT_SYMBOL(add_virt_timer);
  392. /*
  393. * add_virt_timer_int - add an interval virtual CPU timer
  394. */
  395. void add_virt_timer_periodic(void *new)
  396. {
  397. struct vtimer_list *timer;
  398. timer = (struct vtimer_list *)new;
  399. prepare_vtimer(timer);
  400. timer->interval = timer->expires;
  401. internal_add_vtimer(timer);
  402. }
  403. EXPORT_SYMBOL(add_virt_timer_periodic);
  404. int __mod_vtimer(struct vtimer_list *timer, __u64 expires, int periodic)
  405. {
  406. struct vtimer_queue *vq;
  407. unsigned long flags;
  408. int cpu;
  409. BUG_ON(!timer->function);
  410. BUG_ON(!expires || expires > VTIMER_MAX_SLICE);
  411. if (timer->expires == expires && vtimer_pending(timer))
  412. return 1;
  413. cpu = get_cpu();
  414. vq = &per_cpu(virt_cpu_timer, cpu);
  415. /* disable interrupts before test if timer is pending */
  416. spin_lock_irqsave(&vq->lock, flags);
  417. /* if timer isn't pending add it on the current CPU */
  418. if (!vtimer_pending(timer)) {
  419. spin_unlock_irqrestore(&vq->lock, flags);
  420. if (periodic)
  421. timer->interval = expires;
  422. else
  423. timer->interval = 0;
  424. timer->expires = expires;
  425. timer->cpu = cpu;
  426. internal_add_vtimer(timer);
  427. return 0;
  428. }
  429. /* check if we run on the right CPU */
  430. BUG_ON(timer->cpu != cpu);
  431. list_del_init(&timer->entry);
  432. timer->expires = expires;
  433. if (periodic)
  434. timer->interval = expires;
  435. /* the timer can't expire anymore so we can release the lock */
  436. spin_unlock_irqrestore(&vq->lock, flags);
  437. internal_add_vtimer(timer);
  438. return 1;
  439. }
  440. /*
  441. * If we change a pending timer the function must be called on the CPU
  442. * where the timer is running on.
  443. *
  444. * returns whether it has modified a pending timer (1) or not (0)
  445. */
  446. int mod_virt_timer(struct vtimer_list *timer, __u64 expires)
  447. {
  448. return __mod_vtimer(timer, expires, 0);
  449. }
  450. EXPORT_SYMBOL(mod_virt_timer);
  451. /*
  452. * If we change a pending timer the function must be called on the CPU
  453. * where the timer is running on.
  454. *
  455. * returns whether it has modified a pending timer (1) or not (0)
  456. */
  457. int mod_virt_timer_periodic(struct vtimer_list *timer, __u64 expires)
  458. {
  459. return __mod_vtimer(timer, expires, 1);
  460. }
  461. EXPORT_SYMBOL(mod_virt_timer_periodic);
  462. /*
  463. * delete a virtual timer
  464. *
  465. * returns whether the deleted timer was pending (1) or not (0)
  466. */
  467. int del_virt_timer(struct vtimer_list *timer)
  468. {
  469. unsigned long flags;
  470. struct vtimer_queue *vq;
  471. /* check if timer is pending */
  472. if (!vtimer_pending(timer))
  473. return 0;
  474. vq = &per_cpu(virt_cpu_timer, timer->cpu);
  475. spin_lock_irqsave(&vq->lock, flags);
  476. /* we don't interrupt a running timer, just let it expire! */
  477. list_del_init(&timer->entry);
  478. spin_unlock_irqrestore(&vq->lock, flags);
  479. return 1;
  480. }
  481. EXPORT_SYMBOL(del_virt_timer);
  482. /*
  483. * Start the virtual CPU timer on the current CPU.
  484. */
  485. void init_cpu_vtimer(void)
  486. {
  487. struct vtimer_queue *vq;
  488. /* initialize per cpu vtimer structure */
  489. vq = &__get_cpu_var(virt_cpu_timer);
  490. INIT_LIST_HEAD(&vq->list);
  491. spin_lock_init(&vq->lock);
  492. /* enable cpu timer interrupts */
  493. __ctl_set_bit(0,10);
  494. }
  495. static int __cpuinit s390_nohz_notify(struct notifier_block *self,
  496. unsigned long action, void *hcpu)
  497. {
  498. struct s390_idle_data *idle;
  499. long cpu = (long) hcpu;
  500. idle = &per_cpu(s390_idle, cpu);
  501. switch (action) {
  502. case CPU_DYING:
  503. case CPU_DYING_FROZEN:
  504. idle->nohz_delay = 0;
  505. default:
  506. break;
  507. }
  508. return NOTIFY_OK;
  509. }
  510. void __init vtime_init(void)
  511. {
  512. /* request the cpu timer external interrupt */
  513. if (register_external_interrupt(0x1005, do_cpu_timer_interrupt))
  514. panic("Couldn't request external interrupt 0x1005");
  515. /* Enable cpu timer interrupts on the boot cpu. */
  516. init_cpu_vtimer();
  517. cpu_notifier(s390_nohz_notify, 0);
  518. }