time-ts.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * Based on arm clockevents implementation and old bfin time tick.
  3. *
  4. * Copyright 2008-2009 Analog Devics Inc.
  5. * 2008 GeoTechnologies
  6. * Vitja Makarov
  7. *
  8. * Licensed under the GPL-2
  9. */
  10. #include <linux/module.h>
  11. #include <linux/profile.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/time.h>
  14. #include <linux/timex.h>
  15. #include <linux/irq.h>
  16. #include <linux/clocksource.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpufreq.h>
  19. #include <asm/blackfin.h>
  20. #include <asm/time.h>
  21. #include <asm/gptimers.h>
  22. #include <asm/nmi.h>
  23. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  24. static notrace cycle_t bfin_read_cycles(struct clocksource *cs)
  25. {
  26. #ifdef CONFIG_CPU_FREQ
  27. return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
  28. #else
  29. return get_cycles();
  30. #endif
  31. }
  32. static struct clocksource bfin_cs_cycles = {
  33. .name = "bfin_cs_cycles",
  34. .rating = 400,
  35. .read = bfin_read_cycles,
  36. .mask = CLOCKSOURCE_MASK(64),
  37. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  38. };
  39. static inline unsigned long long bfin_cs_cycles_sched_clock(void)
  40. {
  41. return clocksource_cyc2ns(bfin_read_cycles(&bfin_cs_cycles),
  42. bfin_cs_cycles.mult, bfin_cs_cycles.shift);
  43. }
  44. static int __init bfin_cs_cycles_init(void)
  45. {
  46. if (clocksource_register_hz(&bfin_cs_cycles, get_cclk()))
  47. panic("failed to register clocksource");
  48. return 0;
  49. }
  50. #else
  51. # define bfin_cs_cycles_init()
  52. #endif
  53. #ifdef CONFIG_GPTMR0_CLOCKSOURCE
  54. void __init setup_gptimer0(void)
  55. {
  56. disable_gptimers(TIMER0bit);
  57. set_gptimer_config(TIMER0_id, \
  58. TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  59. set_gptimer_period(TIMER0_id, -1);
  60. set_gptimer_pwidth(TIMER0_id, -2);
  61. SSYNC();
  62. enable_gptimers(TIMER0bit);
  63. }
  64. static cycle_t bfin_read_gptimer0(struct clocksource *cs)
  65. {
  66. return bfin_read_TIMER0_COUNTER();
  67. }
  68. static struct clocksource bfin_cs_gptimer0 = {
  69. .name = "bfin_cs_gptimer0",
  70. .rating = 350,
  71. .read = bfin_read_gptimer0,
  72. .mask = CLOCKSOURCE_MASK(32),
  73. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  74. };
  75. static inline unsigned long long bfin_cs_gptimer0_sched_clock(void)
  76. {
  77. return clocksource_cyc2ns(bfin_read_TIMER0_COUNTER(),
  78. bfin_cs_gptimer0.mult, bfin_cs_gptimer0.shift);
  79. }
  80. static int __init bfin_cs_gptimer0_init(void)
  81. {
  82. setup_gptimer0();
  83. if (clocksource_register_hz(&bfin_cs_gptimer0, get_sclk()))
  84. panic("failed to register clocksource");
  85. return 0;
  86. }
  87. #else
  88. # define bfin_cs_gptimer0_init()
  89. #endif
  90. #if defined(CONFIG_GPTMR0_CLOCKSOURCE) || defined(CONFIG_CYCLES_CLOCKSOURCE)
  91. /* prefer to use cycles since it has higher rating */
  92. notrace unsigned long long sched_clock(void)
  93. {
  94. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  95. return bfin_cs_cycles_sched_clock();
  96. #else
  97. return bfin_cs_gptimer0_sched_clock();
  98. #endif
  99. }
  100. #endif
  101. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  102. static int bfin_gptmr0_set_next_event(unsigned long cycles,
  103. struct clock_event_device *evt)
  104. {
  105. disable_gptimers(TIMER0bit);
  106. /* it starts counting three SCLK cycles after the TIMENx bit is set */
  107. set_gptimer_pwidth(TIMER0_id, cycles - 3);
  108. enable_gptimers(TIMER0bit);
  109. return 0;
  110. }
  111. static void bfin_gptmr0_set_mode(enum clock_event_mode mode,
  112. struct clock_event_device *evt)
  113. {
  114. switch (mode) {
  115. case CLOCK_EVT_MODE_PERIODIC: {
  116. set_gptimer_config(TIMER0_id, \
  117. TIMER_OUT_DIS | TIMER_IRQ_ENA | \
  118. TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  119. set_gptimer_period(TIMER0_id, get_sclk() / HZ);
  120. set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
  121. enable_gptimers(TIMER0bit);
  122. break;
  123. }
  124. case CLOCK_EVT_MODE_ONESHOT:
  125. disable_gptimers(TIMER0bit);
  126. set_gptimer_config(TIMER0_id, \
  127. TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
  128. set_gptimer_period(TIMER0_id, 0);
  129. break;
  130. case CLOCK_EVT_MODE_UNUSED:
  131. case CLOCK_EVT_MODE_SHUTDOWN:
  132. disable_gptimers(TIMER0bit);
  133. break;
  134. case CLOCK_EVT_MODE_RESUME:
  135. break;
  136. }
  137. }
  138. static void bfin_gptmr0_ack(void)
  139. {
  140. set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
  141. }
  142. static void __init bfin_gptmr0_init(void)
  143. {
  144. disable_gptimers(TIMER0bit);
  145. }
  146. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  147. __attribute__((l1_text))
  148. #endif
  149. irqreturn_t bfin_gptmr0_interrupt(int irq, void *dev_id)
  150. {
  151. struct clock_event_device *evt = dev_id;
  152. smp_mb();
  153. /*
  154. * We want to ACK before we handle so that we can handle smaller timer
  155. * intervals. This way if the timer expires again while we're handling
  156. * things, we're more likely to see that 2nd int rather than swallowing
  157. * it by ACKing the int at the end of this handler.
  158. */
  159. bfin_gptmr0_ack();
  160. evt->event_handler(evt);
  161. return IRQ_HANDLED;
  162. }
  163. static struct irqaction gptmr0_irq = {
  164. .name = "Blackfin GPTimer0",
  165. .flags = IRQF_DISABLED | IRQF_TIMER | \
  166. IRQF_IRQPOLL | IRQF_PERCPU,
  167. .handler = bfin_gptmr0_interrupt,
  168. };
  169. static struct clock_event_device clockevent_gptmr0 = {
  170. .name = "bfin_gptimer0",
  171. .rating = 300,
  172. .irq = IRQ_TIMER0,
  173. .shift = 32,
  174. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  175. .set_next_event = bfin_gptmr0_set_next_event,
  176. .set_mode = bfin_gptmr0_set_mode,
  177. };
  178. static void __init bfin_gptmr0_clockevent_init(struct clock_event_device *evt)
  179. {
  180. unsigned long clock_tick;
  181. clock_tick = get_sclk();
  182. evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
  183. evt->max_delta_ns = clockevent_delta2ns(-1, evt);
  184. evt->min_delta_ns = clockevent_delta2ns(100, evt);
  185. evt->cpumask = cpumask_of(0);
  186. clockevents_register_device(evt);
  187. }
  188. #endif /* CONFIG_TICKSOURCE_GPTMR0 */
  189. #if defined(CONFIG_TICKSOURCE_CORETMR)
  190. /* per-cpu local core timer */
  191. static DEFINE_PER_CPU(struct clock_event_device, coretmr_events);
  192. static int bfin_coretmr_set_next_event(unsigned long cycles,
  193. struct clock_event_device *evt)
  194. {
  195. bfin_write_TCNTL(TMPWR);
  196. CSYNC();
  197. bfin_write_TCOUNT(cycles);
  198. CSYNC();
  199. bfin_write_TCNTL(TMPWR | TMREN);
  200. return 0;
  201. }
  202. static void bfin_coretmr_set_mode(enum clock_event_mode mode,
  203. struct clock_event_device *evt)
  204. {
  205. switch (mode) {
  206. case CLOCK_EVT_MODE_PERIODIC: {
  207. unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
  208. bfin_write_TCNTL(TMPWR);
  209. CSYNC();
  210. bfin_write_TSCALE(TIME_SCALE - 1);
  211. bfin_write_TPERIOD(tcount);
  212. bfin_write_TCOUNT(tcount);
  213. CSYNC();
  214. bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
  215. break;
  216. }
  217. case CLOCK_EVT_MODE_ONESHOT:
  218. bfin_write_TCNTL(TMPWR);
  219. CSYNC();
  220. bfin_write_TSCALE(TIME_SCALE - 1);
  221. bfin_write_TPERIOD(0);
  222. bfin_write_TCOUNT(0);
  223. break;
  224. case CLOCK_EVT_MODE_UNUSED:
  225. case CLOCK_EVT_MODE_SHUTDOWN:
  226. bfin_write_TCNTL(0);
  227. CSYNC();
  228. break;
  229. case CLOCK_EVT_MODE_RESUME:
  230. break;
  231. }
  232. }
  233. void bfin_coretmr_init(void)
  234. {
  235. /* power up the timer, but don't enable it just yet */
  236. bfin_write_TCNTL(TMPWR);
  237. CSYNC();
  238. /* the TSCALE prescaler counter. */
  239. bfin_write_TSCALE(TIME_SCALE - 1);
  240. bfin_write_TPERIOD(0);
  241. bfin_write_TCOUNT(0);
  242. CSYNC();
  243. }
  244. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  245. __attribute__((l1_text))
  246. #endif
  247. irqreturn_t bfin_coretmr_interrupt(int irq, void *dev_id)
  248. {
  249. int cpu = smp_processor_id();
  250. struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
  251. smp_mb();
  252. evt->event_handler(evt);
  253. touch_nmi_watchdog();
  254. return IRQ_HANDLED;
  255. }
  256. static struct irqaction coretmr_irq = {
  257. .name = "Blackfin CoreTimer",
  258. .flags = IRQF_DISABLED | IRQF_TIMER | \
  259. IRQF_IRQPOLL | IRQF_PERCPU,
  260. .handler = bfin_coretmr_interrupt,
  261. };
  262. void bfin_coretmr_clockevent_init(void)
  263. {
  264. unsigned long clock_tick;
  265. unsigned int cpu = smp_processor_id();
  266. struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
  267. evt->name = "bfin_core_timer";
  268. evt->rating = 350;
  269. evt->irq = -1;
  270. evt->shift = 32;
  271. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  272. evt->set_next_event = bfin_coretmr_set_next_event;
  273. evt->set_mode = bfin_coretmr_set_mode;
  274. clock_tick = get_cclk() / TIME_SCALE;
  275. evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
  276. evt->max_delta_ns = clockevent_delta2ns(-1, evt);
  277. evt->min_delta_ns = clockevent_delta2ns(100, evt);
  278. evt->cpumask = cpumask_of(cpu);
  279. clockevents_register_device(evt);
  280. }
  281. #endif /* CONFIG_TICKSOURCE_CORETMR */
  282. void read_persistent_clock(struct timespec *ts)
  283. {
  284. time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
  285. ts->tv_sec = secs_since_1970;
  286. ts->tv_nsec = 0;
  287. }
  288. void __init time_init(void)
  289. {
  290. #ifdef CONFIG_RTC_DRV_BFIN
  291. /* [#2663] hack to filter junk RTC values that would cause
  292. * userspace to have to deal with time values greater than
  293. * 2^31 seconds (which uClibc cannot cope with yet)
  294. */
  295. if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
  296. printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
  297. bfin_write_RTC_STAT(0);
  298. }
  299. #endif
  300. bfin_cs_cycles_init();
  301. bfin_cs_gptimer0_init();
  302. #if defined(CONFIG_TICKSOURCE_CORETMR)
  303. bfin_coretmr_init();
  304. setup_irq(IRQ_CORETMR, &coretmr_irq);
  305. bfin_coretmr_clockevent_init();
  306. #endif
  307. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  308. bfin_gptmr0_init();
  309. setup_irq(IRQ_TIMER0, &gptmr0_irq);
  310. gptmr0_irq.dev_id = &clockevent_gptmr0;
  311. bfin_gptmr0_clockevent_init(&clockevent_gptmr0);
  312. #endif
  313. #if !defined(CONFIG_TICKSOURCE_CORETMR) && !defined(CONFIG_TICKSOURCE_GPTMR0)
  314. # error at least one clock event device is required
  315. #endif
  316. }