time.c 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. #include <linux/kernel.h>
  2. #include <linux/init.h>
  3. #include <linux/interrupt.h>
  4. #include <linux/irq.h>
  5. #include <linux/io.h>
  6. #include <linux/mm.h>
  7. #include <linux/clockchips.h>
  8. #include <linux/clocksource.h>
  9. #include <asm/memory.h>
  10. #include <asm/mach/map.h>
  11. #include <asm/mach/time.h>
  12. #include <plat/regops.h>
  13. #include <mach/map.h>
  14. #include <mach/hardware.h>
  15. #include <mach/reg_addr.h>
  16. /***********************************************************************
  17. * System timer
  18. **********************************************************************/
  19. /********** Clock Source Device, Timer-A *********/
  20. static cycle_t cycle_read_timerE(struct clocksource *cs)
  21. {
  22. return (cycles_t) aml_read_reg32(P_ISA_TIMERE);
  23. }
  24. static struct clocksource clocksource_timer_e = {
  25. .name = "Timer-E",
  26. .rating = 300,
  27. .read = cycle_read_timerE,
  28. .mask = CLOCKSOURCE_MASK(32),
  29. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  30. };
  31. static void __init meson_clocksource_init(void)
  32. {
  33. aml_clr_reg32_mask(P_ISA_TIMER_MUX, TIMER_E_INPUT_MASK);
  34. aml_set_reg32_mask(P_ISA_TIMER_MUX, TIMERE_UNIT_1us << TIMER_E_INPUT_BIT);
  35. /// aml_write_reg32(P_ISA_TIMERE, 0);
  36. /**
  37. * (counter*mult)>>shift=xxx ns
  38. */
  39. clocksource_timer_e.shift = 0;
  40. clocksource_timer_e.mult = 1000;
  41. clocksource_register(&clocksource_timer_e);
  42. }
  43. /*
  44. * sched_clock()
  45. */
  46. unsigned long long sched_clock(void)
  47. {
  48. cycle_t cyc = cycle_read_timerE(NULL);
  49. struct clocksource *cs = &clocksource_timer_e;
  50. return clocksource_cyc2ns(cyc, cs->mult, cs->shift);
  51. }
  52. /********** Clock Event Device, Timer-AC *********/
  53. static void meson_clkevt_set_mode(enum clock_event_mode mode,
  54. struct clock_event_device *dev)
  55. {
  56. switch (mode) {
  57. case CLOCK_EVT_MODE_RESUME:
  58. /* FIXME:
  59. * CLOCK_EVT_MODE_RESUME is always followed by
  60. * CLOCK_EVT_MODE_PERIODIC or CLOCK_EVT_MODE_ONESHOT.
  61. * do nothing here.
  62. */
  63. break;
  64. case CLOCK_EVT_MODE_PERIODIC:
  65. /**
  66. * @todo Jerry Yu , compile break , I will enable it later
  67. *
  68. meson_mask_irq(INT_TIMER_C);
  69. meson_unmask_irq(INT_TIMER_A);
  70. */
  71. aml_clr_reg32_mask(P_ISA_TIMER_MUX, 0x5<<16);
  72. aml_set_reg32_mask(P_ISA_TIMER_MUX, 0x1<<16);
  73. break;
  74. case CLOCK_EVT_MODE_ONESHOT:
  75. aml_clr_reg32_mask(P_ISA_TIMER_MUX, 0x5<<16);
  76. aml_set_reg32_mask(P_ISA_TIMER_MUX, 0x4<<16);
  77. break;
  78. case CLOCK_EVT_MODE_SHUTDOWN:
  79. case CLOCK_EVT_MODE_UNUSED:
  80. /* there is no way to actually pause or stop TIMERA/C,
  81. * so just disable TIMER interrupt.
  82. */
  83. /**
  84. * @todo Jerry Yu , compile break , I will enable it later
  85. *
  86. meson_mask_irq(INT_TIMER_A);
  87. meson_mask_irq(INT_TIMER_C);
  88. */
  89. aml_clr_reg32_mask(P_ISA_TIMER_MUX, 0x5<<16);
  90. break;
  91. }
  92. }
  93. static int meson_set_next_event(unsigned long evt,
  94. struct clock_event_device *unused)
  95. {
  96. /* use a big number to clear previous trigger cleanly */
  97. aml_set_reg32_mask(P_ISA_TIMERC, evt & 0xffff);
  98. /* then set next event */
  99. aml_set_reg32_bits(P_ISA_TIMERC, evt, 0, 16);
  100. return 0;
  101. }
  102. static struct clock_event_device clockevent_meson_1mhz = {
  103. .name = "TIMER-AC",
  104. .rating = 300, /* Reasonably fast and accurate clock event */
  105. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  106. .shift = 20,
  107. .set_next_event = meson_set_next_event,
  108. .set_mode = meson_clkevt_set_mode,
  109. };
  110. /* Clock event timerA interrupt handler */
  111. static irqreturn_t meson_timer_interrupt(int irq, void *dev_id)
  112. {
  113. struct clock_event_device *evt = &clockevent_meson_1mhz;
  114. evt->event_handler(evt);
  115. return IRQ_HANDLED;
  116. }
  117. static struct irqaction meson_timer_irq = {
  118. .name = "Meson Timer Tick",
  119. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  120. .handler = meson_timer_interrupt,
  121. };
  122. static void __init meson_clockevent_init(void)
  123. {
  124. aml_clr_reg32_mask(P_ISA_TIMER_MUX, (0xff<<12) |TIMER_A_INPUT_MASK | TIMER_C_INPUT_MASK);
  125. aml_set_reg32_mask(P_ISA_TIMER_MUX, (0x51<<12) |
  126. (TIMER_UNIT_1us << TIMER_A_INPUT_BIT) |
  127. (TIMER_UNIT_1us << TIMER_C_INPUT_BIT));
  128. aml_write_reg32(P_ISA_TIMERA, 9999);
  129. clockevent_meson_1mhz.mult =
  130. div_sc(1000000, NSEC_PER_SEC, clockevent_meson_1mhz.shift);
  131. clockevent_meson_1mhz.max_delta_ns =
  132. clockevent_delta2ns(0xfffe, &clockevent_meson_1mhz);
  133. clockevent_meson_1mhz.min_delta_ns =
  134. clockevent_delta2ns(1, &clockevent_meson_1mhz);
  135. clockevent_meson_1mhz.cpumask = cpumask_of(0);
  136. clockevents_register_device(&clockevent_meson_1mhz);
  137. /* Set up the IRQ handler */
  138. setup_irq(INT_TIMER_A, &meson_timer_irq);
  139. setup_irq(INT_TIMER_C, &meson_timer_irq);
  140. }
  141. /*
  142. * This sets up the system timers, clock source and clock event.
  143. */
  144. static void __init meson_timer_init(void)
  145. {
  146. meson_clocksource_init();
  147. meson_clockevent_init();
  148. }
  149. struct sys_timer meson_sys_timer = {
  150. .init = meson_timer_init,
  151. };