smp_twd.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. /*
  2. * linux/arch/arm/kernel/smp_twd.c
  3. *
  4. * Copyright (C) 2002 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/clk.h>
  14. #include <linux/cpufreq.h>
  15. #include <linux/delay.h>
  16. #include <linux/device.h>
  17. #include <linux/err.h>
  18. #include <linux/smp.h>
  19. #include <linux/jiffies.h>
  20. #include <linux/clockchips.h>
  21. #include <linux/irq.h>
  22. #include <linux/io.h>
  23. #include <asm/smp_twd.h>
  24. #include <asm/localtimer.h>
  25. #include <asm/hardware/gic.h>
  26. /* set up by the platform code */
  27. void __iomem *twd_base;
  28. static struct clk *twd_clk;
  29. static unsigned long twd_timer_rate;
  30. static struct clock_event_device __percpu **twd_evt;
  31. static void twd_set_mode(enum clock_event_mode mode,
  32. struct clock_event_device *clk)
  33. {
  34. unsigned long ctrl;
  35. switch (mode) {
  36. case CLOCK_EVT_MODE_PERIODIC:
  37. /* timer load already set up */
  38. ctrl = TWD_TIMER_CONTROL_ENABLE | TWD_TIMER_CONTROL_IT_ENABLE
  39. | TWD_TIMER_CONTROL_PERIODIC;
  40. __raw_writel(twd_timer_rate / HZ, twd_base + TWD_TIMER_LOAD);
  41. break;
  42. case CLOCK_EVT_MODE_ONESHOT:
  43. /* period set, and timer enabled in 'next_event' hook */
  44. ctrl = TWD_TIMER_CONTROL_IT_ENABLE | TWD_TIMER_CONTROL_ONESHOT;
  45. break;
  46. case CLOCK_EVT_MODE_UNUSED:
  47. case CLOCK_EVT_MODE_SHUTDOWN:
  48. default:
  49. ctrl = 0;
  50. break;
  51. }
  52. __raw_writel(ctrl, twd_base + TWD_TIMER_CONTROL);
  53. }
  54. static int twd_set_next_event(unsigned long evt,
  55. struct clock_event_device *unused)
  56. {
  57. unsigned long ctrl = __raw_readl(twd_base + TWD_TIMER_CONTROL);
  58. ctrl |= TWD_TIMER_CONTROL_ENABLE;
  59. __raw_writel(evt, twd_base + TWD_TIMER_COUNTER);
  60. __raw_writel(ctrl, twd_base + TWD_TIMER_CONTROL);
  61. return 0;
  62. }
  63. /*
  64. * local_timer_ack: checks for a local timer interrupt.
  65. *
  66. * If a local timer interrupt has occurred, acknowledge and return 1.
  67. * Otherwise, return 0.
  68. */
  69. int twd_timer_ack(void)
  70. {
  71. if (__raw_readl(twd_base + TWD_TIMER_INTSTAT)) {
  72. __raw_writel(1, twd_base + TWD_TIMER_INTSTAT);
  73. return 1;
  74. }
  75. return 0;
  76. }
  77. static unsigned long twd_calibrate_rate(void)
  78. {
  79. unsigned long count,rate;
  80. u64 waitjiffies;
  81. /*
  82. * If this is the first time round, we need to work out how fast
  83. * the timer ticks
  84. */
  85. printk(KERN_INFO "Calibrating local timer... ");
  86. /* Wait for a tick to start */
  87. waitjiffies = get_jiffies_64() + 1;
  88. while (get_jiffies_64() < waitjiffies)
  89. udelay(10);
  90. /* OK, now the tick has started, let's get the timer going */
  91. waitjiffies += 5;
  92. /* enable, no interrupt or reload */
  93. __raw_writel(0x1, twd_base + TWD_TIMER_CONTROL);
  94. /* maximum value */
  95. __raw_writel(0xFFFFFFFFU, twd_base + TWD_TIMER_COUNTER);
  96. while (get_jiffies_64() < waitjiffies)
  97. udelay(10);
  98. count = __raw_readl(twd_base + TWD_TIMER_COUNTER);
  99. rate = (0xFFFFFFFFU - count) * (HZ / 5);
  100. printk("%lu.%02luMHz.\n", rate / 1000000, (rate / 10000) % 100);
  101. return rate;
  102. }
  103. /*
  104. * Setup the local clock events for a CPU.
  105. */
  106. static struct clk *twd_get_clock(void)
  107. {
  108. struct clk *clk;
  109. int err;
  110. clk = clk_get_sys("smp_twd", NULL);
  111. if (IS_ERR(clk)) {
  112. pr_err("smp_twd: clock not found: %d\n", (int)PTR_ERR(clk));
  113. return clk;
  114. }
  115. #if 0
  116. err = clk_prepare(clk);
  117. if (err) {
  118. pr_err("smp_twd: clock failed to prepare: %d\n", err);
  119. clk_put(clk);
  120. return ERR_PTR(err);
  121. }
  122. err = clk_enable(clk);
  123. if (err) {
  124. pr_err("smp_twd: clock failed to enable: %d\n", err);
  125. clk_unprepare(clk);
  126. clk_put(clk);
  127. return ERR_PTR(err);
  128. }
  129. #endif
  130. return clk;
  131. }
  132. #ifdef CONFIG_CPU_FREQ
  133. static unsigned long get_smp_twd_rate(void)
  134. {
  135. if(IS_ERR_OR_NULL(twd_clk))
  136. twd_clk=twd_get_clock();
  137. BUG_ON(IS_ERR_OR_NULL(twd_clk));
  138. return clk_get_rate(twd_clk);
  139. }
  140. /*
  141. * Updates clockevent frequency when the cpu frequency changes.
  142. * Called on the cpu that is changing frequency with interrupts disabled.
  143. */
  144. static void twd_update_frequency(void *data)
  145. {
  146. twd_timer_rate = get_smp_twd_rate();
  147. clockevents_update_freq(*__this_cpu_ptr(twd_evt), twd_timer_rate);
  148. }
  149. static int twd_cpufreq_transition(struct notifier_block *nb,
  150. unsigned long state, void *data)
  151. {
  152. struct cpufreq_freqs *freqs = data;
  153. /*
  154. * The twd clock events must be reprogrammed to account for the new
  155. * frequency. The timer is local to a cpu, so cross-call to the
  156. * changing cpu.
  157. */
  158. if (state == CPUFREQ_POSTCHANGE || state == CPUFREQ_RESUMECHANGE)
  159. {
  160. on_each_cpu( twd_update_frequency,NULL, 1);
  161. printk("new rate %u\n",twd_timer_rate);
  162. }
  163. printk("%s %d %u\n",__func__,state,twd_timer_rate);
  164. return NOTIFY_OK;
  165. }
  166. static struct notifier_block twd_cpufreq_nb = {
  167. .notifier_call = twd_cpufreq_transition,
  168. };
  169. static int twd_cpufreq_init(void)
  170. {
  171. if (twd_evt && *__this_cpu_ptr(twd_evt) )
  172. return cpufreq_register_notifier(&twd_cpufreq_nb,
  173. CPUFREQ_TRANSITION_NOTIFIER);
  174. return 0;
  175. }
  176. core_initcall(twd_cpufreq_init);
  177. #endif
  178. void __cpuinit twd_timer_setup(struct clock_event_device *clk)
  179. {
  180. struct clock_event_device **this_cpu_clk;
  181. if (!twd_evt) {
  182. int err;
  183. twd_evt = alloc_percpu(struct clock_event_device *);
  184. if (!twd_evt) {
  185. pr_err("twd: can't allocate memory\n");
  186. return;
  187. }
  188. }
  189. if (!twd_clk)
  190. twd_clk = twd_get_clock();
  191. if (!IS_ERR_OR_NULL(twd_clk))
  192. twd_timer_rate = clk_get_rate(twd_clk);
  193. else
  194. twd_timer_rate=twd_timer_rate?twd_timer_rate:twd_calibrate_rate();
  195. __raw_writel(0, twd_base + TWD_TIMER_CONTROL);
  196. clk->name = "local_timer";
  197. clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
  198. CLOCK_EVT_FEAT_C3STOP;
  199. clk->rating = 350;
  200. clk->set_mode = twd_set_mode;
  201. clk->set_next_event = twd_set_next_event;
  202. this_cpu_clk = __this_cpu_ptr(twd_evt);
  203. *this_cpu_clk = clk;
  204. /*
  205. clk->shift = 20;
  206. clk->mult = div_sc(twd_timer_rate, NSEC_PER_SEC, clk->shift);
  207. clk->max_delta_ns = clockevent_delta2ns(0xffffffff, clk);
  208. clk->min_delta_ns = clockevent_delta2ns(0xf, clk);
  209. */
  210. clockevents_config_and_register(clk, twd_timer_rate,
  211. 0xf, 0xffffffff);
  212. /* Make sure our local interrupt controller has this enabled */
  213. gic_enable_ppi(clk->irq);
  214. }