lguest.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081
  1. /*P:100
  2. * This is the Launcher code, a simple program which lays out the "physical"
  3. * memory for the new Guest by mapping the kernel image and the virtual
  4. * devices, then opens /dev/lguest to tell the kernel about the Guest and
  5. * control it.
  6. :*/
  7. #define _LARGEFILE64_SOURCE
  8. #define _GNU_SOURCE
  9. #include <stdio.h>
  10. #include <string.h>
  11. #include <unistd.h>
  12. #include <err.h>
  13. #include <stdint.h>
  14. #include <stdlib.h>
  15. #include <elf.h>
  16. #include <sys/mman.h>
  17. #include <sys/param.h>
  18. #include <sys/types.h>
  19. #include <sys/stat.h>
  20. #include <sys/wait.h>
  21. #include <sys/eventfd.h>
  22. #include <fcntl.h>
  23. #include <stdbool.h>
  24. #include <errno.h>
  25. #include <ctype.h>
  26. #include <sys/socket.h>
  27. #include <sys/ioctl.h>
  28. #include <sys/time.h>
  29. #include <time.h>
  30. #include <netinet/in.h>
  31. #include <net/if.h>
  32. #include <linux/sockios.h>
  33. #include <linux/if_tun.h>
  34. #include <sys/uio.h>
  35. #include <termios.h>
  36. #include <getopt.h>
  37. #include <assert.h>
  38. #include <sched.h>
  39. #include <limits.h>
  40. #include <stddef.h>
  41. #include <signal.h>
  42. #include <pwd.h>
  43. #include <grp.h>
  44. #include <linux/virtio_config.h>
  45. #include <linux/virtio_net.h>
  46. #include <linux/virtio_blk.h>
  47. #include <linux/virtio_console.h>
  48. #include <linux/virtio_rng.h>
  49. #include <linux/virtio_ring.h>
  50. #include <asm/bootparam.h>
  51. #include "../../../include/linux/lguest_launcher.h"
  52. /*L:110
  53. * We can ignore the 42 include files we need for this program, but I do want
  54. * to draw attention to the use of kernel-style types.
  55. *
  56. * As Linus said, "C is a Spartan language, and so should your naming be." I
  57. * like these abbreviations, so we define them here. Note that u64 is always
  58. * unsigned long long, which works on all Linux systems: this means that we can
  59. * use %llu in printf for any u64.
  60. */
  61. typedef unsigned long long u64;
  62. typedef uint32_t u32;
  63. typedef uint16_t u16;
  64. typedef uint8_t u8;
  65. /*:*/
  66. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  67. #define BRIDGE_PFX "bridge:"
  68. #ifndef SIOCBRADDIF
  69. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  70. #endif
  71. /* We can have up to 256 pages for devices. */
  72. #define DEVICE_PAGES 256
  73. /* This will occupy 3 pages: it must be a power of 2. */
  74. #define VIRTQUEUE_NUM 256
  75. /*L:120
  76. * verbose is both a global flag and a macro. The C preprocessor allows
  77. * this, and although I wouldn't recommend it, it works quite nicely here.
  78. */
  79. static bool verbose;
  80. #define verbose(args...) \
  81. do { if (verbose) printf(args); } while(0)
  82. /*:*/
  83. /* The pointer to the start of guest memory. */
  84. static void *guest_base;
  85. /* The maximum guest physical address allowed, and maximum possible. */
  86. static unsigned long guest_limit, guest_max;
  87. /* The /dev/lguest file descriptor. */
  88. static int lguest_fd;
  89. /* a per-cpu variable indicating whose vcpu is currently running */
  90. static unsigned int __thread cpu_id;
  91. /* This is our list of devices. */
  92. struct device_list {
  93. /* Counter to assign interrupt numbers. */
  94. unsigned int next_irq;
  95. /* Counter to print out convenient device numbers. */
  96. unsigned int device_num;
  97. /* The descriptor page for the devices. */
  98. u8 *descpage;
  99. /* A single linked list of devices. */
  100. struct device *dev;
  101. /* And a pointer to the last device for easy append. */
  102. struct device *lastdev;
  103. };
  104. /* The list of Guest devices, based on command line arguments. */
  105. static struct device_list devices;
  106. /* The device structure describes a single device. */
  107. struct device {
  108. /* The linked-list pointer. */
  109. struct device *next;
  110. /* The device's descriptor, as mapped into the Guest. */
  111. struct lguest_device_desc *desc;
  112. /* We can't trust desc values once Guest has booted: we use these. */
  113. unsigned int feature_len;
  114. unsigned int num_vq;
  115. /* The name of this device, for --verbose. */
  116. const char *name;
  117. /* Any queues attached to this device */
  118. struct virtqueue *vq;
  119. /* Is it operational */
  120. bool running;
  121. /* Device-specific data. */
  122. void *priv;
  123. };
  124. /* The virtqueue structure describes a queue attached to a device. */
  125. struct virtqueue {
  126. struct virtqueue *next;
  127. /* Which device owns me. */
  128. struct device *dev;
  129. /* The configuration for this queue. */
  130. struct lguest_vqconfig config;
  131. /* The actual ring of buffers. */
  132. struct vring vring;
  133. /* Last available index we saw. */
  134. u16 last_avail_idx;
  135. /* How many are used since we sent last irq? */
  136. unsigned int pending_used;
  137. /* Eventfd where Guest notifications arrive. */
  138. int eventfd;
  139. /* Function for the thread which is servicing this virtqueue. */
  140. void (*service)(struct virtqueue *vq);
  141. pid_t thread;
  142. };
  143. /* Remember the arguments to the program so we can "reboot" */
  144. static char **main_args;
  145. /* The original tty settings to restore on exit. */
  146. static struct termios orig_term;
  147. /*
  148. * We have to be careful with barriers: our devices are all run in separate
  149. * threads and so we need to make sure that changes visible to the Guest happen
  150. * in precise order.
  151. */
  152. #define wmb() __asm__ __volatile__("" : : : "memory")
  153. #define mb() __asm__ __volatile__("" : : : "memory")
  154. /*
  155. * Convert an iovec element to the given type.
  156. *
  157. * This is a fairly ugly trick: we need to know the size of the type and
  158. * alignment requirement to check the pointer is kosher. It's also nice to
  159. * have the name of the type in case we report failure.
  160. *
  161. * Typing those three things all the time is cumbersome and error prone, so we
  162. * have a macro which sets them all up and passes to the real function.
  163. */
  164. #define convert(iov, type) \
  165. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  166. static void *_convert(struct iovec *iov, size_t size, size_t align,
  167. const char *name)
  168. {
  169. if (iov->iov_len != size)
  170. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  171. if ((unsigned long)iov->iov_base % align != 0)
  172. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  173. return iov->iov_base;
  174. }
  175. /* Wrapper for the last available index. Makes it easier to change. */
  176. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  177. /*
  178. * The virtio configuration space is defined to be little-endian. x86 is
  179. * little-endian too, but it's nice to be explicit so we have these helpers.
  180. */
  181. #define cpu_to_le16(v16) (v16)
  182. #define cpu_to_le32(v32) (v32)
  183. #define cpu_to_le64(v64) (v64)
  184. #define le16_to_cpu(v16) (v16)
  185. #define le32_to_cpu(v32) (v32)
  186. #define le64_to_cpu(v64) (v64)
  187. /* Is this iovec empty? */
  188. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  189. {
  190. unsigned int i;
  191. for (i = 0; i < num_iov; i++)
  192. if (iov[i].iov_len)
  193. return false;
  194. return true;
  195. }
  196. /* Take len bytes from the front of this iovec. */
  197. static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
  198. {
  199. unsigned int i;
  200. for (i = 0; i < num_iov; i++) {
  201. unsigned int used;
  202. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  203. iov[i].iov_base += used;
  204. iov[i].iov_len -= used;
  205. len -= used;
  206. }
  207. assert(len == 0);
  208. }
  209. /* The device virtqueue descriptors are followed by feature bitmasks. */
  210. static u8 *get_feature_bits(struct device *dev)
  211. {
  212. return (u8 *)(dev->desc + 1)
  213. + dev->num_vq * sizeof(struct lguest_vqconfig);
  214. }
  215. /*L:100
  216. * The Launcher code itself takes us out into userspace, that scary place where
  217. * pointers run wild and free! Unfortunately, like most userspace programs,
  218. * it's quite boring (which is why everyone likes to hack on the kernel!).
  219. * Perhaps if you make up an Lguest Drinking Game at this point, it will get
  220. * you through this section. Or, maybe not.
  221. *
  222. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  223. * memory and stores it in "guest_base". In other words, Guest physical ==
  224. * Launcher virtual with an offset.
  225. *
  226. * This can be tough to get your head around, but usually it just means that we
  227. * use these trivial conversion functions when the Guest gives us its
  228. * "physical" addresses:
  229. */
  230. static void *from_guest_phys(unsigned long addr)
  231. {
  232. return guest_base + addr;
  233. }
  234. static unsigned long to_guest_phys(const void *addr)
  235. {
  236. return (addr - guest_base);
  237. }
  238. /*L:130
  239. * Loading the Kernel.
  240. *
  241. * We start with couple of simple helper routines. open_or_die() avoids
  242. * error-checking code cluttering the callers:
  243. */
  244. static int open_or_die(const char *name, int flags)
  245. {
  246. int fd = open(name, flags);
  247. if (fd < 0)
  248. err(1, "Failed to open %s", name);
  249. return fd;
  250. }
  251. /* map_zeroed_pages() takes a number of pages. */
  252. static void *map_zeroed_pages(unsigned int num)
  253. {
  254. int fd = open_or_die("/dev/zero", O_RDONLY);
  255. void *addr;
  256. /*
  257. * We use a private mapping (ie. if we write to the page, it will be
  258. * copied). We allocate an extra two pages PROT_NONE to act as guard
  259. * pages against read/write attempts that exceed allocated space.
  260. */
  261. addr = mmap(NULL, getpagesize() * (num+2),
  262. PROT_NONE, MAP_PRIVATE, fd, 0);
  263. if (addr == MAP_FAILED)
  264. err(1, "Mmapping %u pages of /dev/zero", num);
  265. if (mprotect(addr + getpagesize(), getpagesize() * num,
  266. PROT_READ|PROT_WRITE) == -1)
  267. err(1, "mprotect rw %u pages failed", num);
  268. /*
  269. * One neat mmap feature is that you can close the fd, and it
  270. * stays mapped.
  271. */
  272. close(fd);
  273. /* Return address after PROT_NONE page */
  274. return addr + getpagesize();
  275. }
  276. /* Get some more pages for a device. */
  277. static void *get_pages(unsigned int num)
  278. {
  279. void *addr = from_guest_phys(guest_limit);
  280. guest_limit += num * getpagesize();
  281. if (guest_limit > guest_max)
  282. errx(1, "Not enough memory for devices");
  283. return addr;
  284. }
  285. /*
  286. * This routine is used to load the kernel or initrd. It tries mmap, but if
  287. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  288. * it falls back to reading the memory in.
  289. */
  290. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  291. {
  292. ssize_t r;
  293. /*
  294. * We map writable even though for some segments are marked read-only.
  295. * The kernel really wants to be writable: it patches its own
  296. * instructions.
  297. *
  298. * MAP_PRIVATE means that the page won't be copied until a write is
  299. * done to it. This allows us to share untouched memory between
  300. * Guests.
  301. */
  302. if (mmap(addr, len, PROT_READ|PROT_WRITE,
  303. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  304. return;
  305. /* pread does a seek and a read in one shot: saves a few lines. */
  306. r = pread(fd, addr, len, offset);
  307. if (r != len)
  308. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  309. }
  310. /*
  311. * This routine takes an open vmlinux image, which is in ELF, and maps it into
  312. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  313. * by all modern binaries on Linux including the kernel.
  314. *
  315. * The ELF headers give *two* addresses: a physical address, and a virtual
  316. * address. We use the physical address; the Guest will map itself to the
  317. * virtual address.
  318. *
  319. * We return the starting address.
  320. */
  321. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  322. {
  323. Elf32_Phdr phdr[ehdr->e_phnum];
  324. unsigned int i;
  325. /*
  326. * Sanity checks on the main ELF header: an x86 executable with a
  327. * reasonable number of correctly-sized program headers.
  328. */
  329. if (ehdr->e_type != ET_EXEC
  330. || ehdr->e_machine != EM_386
  331. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  332. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  333. errx(1, "Malformed elf header");
  334. /*
  335. * An ELF executable contains an ELF header and a number of "program"
  336. * headers which indicate which parts ("segments") of the program to
  337. * load where.
  338. */
  339. /* We read in all the program headers at once: */
  340. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  341. err(1, "Seeking to program headers");
  342. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  343. err(1, "Reading program headers");
  344. /*
  345. * Try all the headers: there are usually only three. A read-only one,
  346. * a read-write one, and a "note" section which we don't load.
  347. */
  348. for (i = 0; i < ehdr->e_phnum; i++) {
  349. /* If this isn't a loadable segment, we ignore it */
  350. if (phdr[i].p_type != PT_LOAD)
  351. continue;
  352. verbose("Section %i: size %i addr %p\n",
  353. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  354. /* We map this section of the file at its physical address. */
  355. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  356. phdr[i].p_offset, phdr[i].p_filesz);
  357. }
  358. /* The entry point is given in the ELF header. */
  359. return ehdr->e_entry;
  360. }
  361. /*L:150
  362. * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
  363. * to jump into it and it will unpack itself. We used to have to perform some
  364. * hairy magic because the unpacking code scared me.
  365. *
  366. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  367. * a small patch to jump over the tricky bits in the Guest, so now we just read
  368. * the funky header so we know where in the file to load, and away we go!
  369. */
  370. static unsigned long load_bzimage(int fd)
  371. {
  372. struct boot_params boot;
  373. int r;
  374. /* Modern bzImages get loaded at 1M. */
  375. void *p = from_guest_phys(0x100000);
  376. /*
  377. * Go back to the start of the file and read the header. It should be
  378. * a Linux boot header (see Documentation/x86/i386/boot.txt)
  379. */
  380. lseek(fd, 0, SEEK_SET);
  381. read(fd, &boot, sizeof(boot));
  382. /* Inside the setup_hdr, we expect the magic "HdrS" */
  383. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  384. errx(1, "This doesn't look like a bzImage to me");
  385. /* Skip over the extra sectors of the header. */
  386. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  387. /* Now read everything into memory. in nice big chunks. */
  388. while ((r = read(fd, p, 65536)) > 0)
  389. p += r;
  390. /* Finally, code32_start tells us where to enter the kernel. */
  391. return boot.hdr.code32_start;
  392. }
  393. /*L:140
  394. * Loading the kernel is easy when it's a "vmlinux", but most kernels
  395. * come wrapped up in the self-decompressing "bzImage" format. With a little
  396. * work, we can load those, too.
  397. */
  398. static unsigned long load_kernel(int fd)
  399. {
  400. Elf32_Ehdr hdr;
  401. /* Read in the first few bytes. */
  402. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  403. err(1, "Reading kernel");
  404. /* If it's an ELF file, it starts with "\177ELF" */
  405. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  406. return map_elf(fd, &hdr);
  407. /* Otherwise we assume it's a bzImage, and try to load it. */
  408. return load_bzimage(fd);
  409. }
  410. /*
  411. * This is a trivial little helper to align pages. Andi Kleen hated it because
  412. * it calls getpagesize() twice: "it's dumb code."
  413. *
  414. * Kernel guys get really het up about optimization, even when it's not
  415. * necessary. I leave this code as a reaction against that.
  416. */
  417. static inline unsigned long page_align(unsigned long addr)
  418. {
  419. /* Add upwards and truncate downwards. */
  420. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  421. }
  422. /*L:180
  423. * An "initial ram disk" is a disk image loaded into memory along with the
  424. * kernel which the kernel can use to boot from without needing any drivers.
  425. * Most distributions now use this as standard: the initrd contains the code to
  426. * load the appropriate driver modules for the current machine.
  427. *
  428. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  429. * kernels. He sent me this (and tells me when I break it).
  430. */
  431. static unsigned long load_initrd(const char *name, unsigned long mem)
  432. {
  433. int ifd;
  434. struct stat st;
  435. unsigned long len;
  436. ifd = open_or_die(name, O_RDONLY);
  437. /* fstat() is needed to get the file size. */
  438. if (fstat(ifd, &st) < 0)
  439. err(1, "fstat() on initrd '%s'", name);
  440. /*
  441. * We map the initrd at the top of memory, but mmap wants it to be
  442. * page-aligned, so we round the size up for that.
  443. */
  444. len = page_align(st.st_size);
  445. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  446. /*
  447. * Once a file is mapped, you can close the file descriptor. It's a
  448. * little odd, but quite useful.
  449. */
  450. close(ifd);
  451. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  452. /* We return the initrd size. */
  453. return len;
  454. }
  455. /*:*/
  456. /*
  457. * Simple routine to roll all the commandline arguments together with spaces
  458. * between them.
  459. */
  460. static void concat(char *dst, char *args[])
  461. {
  462. unsigned int i, len = 0;
  463. for (i = 0; args[i]; i++) {
  464. if (i) {
  465. strcat(dst+len, " ");
  466. len++;
  467. }
  468. strcpy(dst+len, args[i]);
  469. len += strlen(args[i]);
  470. }
  471. /* In case it's empty. */
  472. dst[len] = '\0';
  473. }
  474. /*L:185
  475. * This is where we actually tell the kernel to initialize the Guest. We
  476. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  477. * the base of Guest "physical" memory, the top physical page to allow and the
  478. * entry point for the Guest.
  479. */
  480. static void tell_kernel(unsigned long start)
  481. {
  482. unsigned long args[] = { LHREQ_INITIALIZE,
  483. (unsigned long)guest_base,
  484. guest_limit / getpagesize(), start };
  485. verbose("Guest: %p - %p (%#lx)\n",
  486. guest_base, guest_base + guest_limit, guest_limit);
  487. lguest_fd = open_or_die("/dev/lguest", O_RDWR);
  488. if (write(lguest_fd, args, sizeof(args)) < 0)
  489. err(1, "Writing to /dev/lguest");
  490. }
  491. /*:*/
  492. /*L:200
  493. * Device Handling.
  494. *
  495. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  496. * We need to make sure it's not trying to reach into the Launcher itself, so
  497. * we have a convenient routine which checks it and exits with an error message
  498. * if something funny is going on:
  499. */
  500. static void *_check_pointer(unsigned long addr, unsigned int size,
  501. unsigned int line)
  502. {
  503. /*
  504. * Check if the requested address and size exceeds the allocated memory,
  505. * or addr + size wraps around.
  506. */
  507. if ((addr + size) > guest_limit || (addr + size) < addr)
  508. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  509. /*
  510. * We return a pointer for the caller's convenience, now we know it's
  511. * safe to use.
  512. */
  513. return from_guest_phys(addr);
  514. }
  515. /* A macro which transparently hands the line number to the real function. */
  516. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  517. /*
  518. * Each buffer in the virtqueues is actually a chain of descriptors. This
  519. * function returns the next descriptor in the chain, or vq->vring.num if we're
  520. * at the end.
  521. */
  522. static unsigned next_desc(struct vring_desc *desc,
  523. unsigned int i, unsigned int max)
  524. {
  525. unsigned int next;
  526. /* If this descriptor says it doesn't chain, we're done. */
  527. if (!(desc[i].flags & VRING_DESC_F_NEXT))
  528. return max;
  529. /* Check they're not leading us off end of descriptors. */
  530. next = desc[i].next;
  531. /* Make sure compiler knows to grab that: we don't want it changing! */
  532. wmb();
  533. if (next >= max)
  534. errx(1, "Desc next is %u", next);
  535. return next;
  536. }
  537. /*
  538. * This actually sends the interrupt for this virtqueue, if we've used a
  539. * buffer.
  540. */
  541. static void trigger_irq(struct virtqueue *vq)
  542. {
  543. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  544. /* Don't inform them if nothing used. */
  545. if (!vq->pending_used)
  546. return;
  547. vq->pending_used = 0;
  548. /* If they don't want an interrupt, don't send one... */
  549. if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
  550. return;
  551. }
  552. /* Send the Guest an interrupt tell them we used something up. */
  553. if (write(lguest_fd, buf, sizeof(buf)) != 0)
  554. err(1, "Triggering irq %i", vq->config.irq);
  555. }
  556. /*
  557. * This looks in the virtqueue for the first available buffer, and converts
  558. * it to an iovec for convenient access. Since descriptors consist of some
  559. * number of output then some number of input descriptors, it's actually two
  560. * iovecs, but we pack them into one and note how many of each there were.
  561. *
  562. * This function waits if necessary, and returns the descriptor number found.
  563. */
  564. static unsigned wait_for_vq_desc(struct virtqueue *vq,
  565. struct iovec iov[],
  566. unsigned int *out_num, unsigned int *in_num)
  567. {
  568. unsigned int i, head, max;
  569. struct vring_desc *desc;
  570. u16 last_avail = lg_last_avail(vq);
  571. /* There's nothing available? */
  572. while (last_avail == vq->vring.avail->idx) {
  573. u64 event;
  574. /*
  575. * Since we're about to sleep, now is a good time to tell the
  576. * Guest about what we've used up to now.
  577. */
  578. trigger_irq(vq);
  579. /* OK, now we need to know about added descriptors. */
  580. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  581. /*
  582. * They could have slipped one in as we were doing that: make
  583. * sure it's written, then check again.
  584. */
  585. mb();
  586. if (last_avail != vq->vring.avail->idx) {
  587. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  588. break;
  589. }
  590. /* Nothing new? Wait for eventfd to tell us they refilled. */
  591. if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
  592. errx(1, "Event read failed?");
  593. /* We don't need to be notified again. */
  594. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  595. }
  596. /* Check it isn't doing very strange things with descriptor numbers. */
  597. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  598. errx(1, "Guest moved used index from %u to %u",
  599. last_avail, vq->vring.avail->idx);
  600. /*
  601. * Grab the next descriptor number they're advertising, and increment
  602. * the index we've seen.
  603. */
  604. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  605. lg_last_avail(vq)++;
  606. /* If their number is silly, that's a fatal mistake. */
  607. if (head >= vq->vring.num)
  608. errx(1, "Guest says index %u is available", head);
  609. /* When we start there are none of either input nor output. */
  610. *out_num = *in_num = 0;
  611. max = vq->vring.num;
  612. desc = vq->vring.desc;
  613. i = head;
  614. /*
  615. * If this is an indirect entry, then this buffer contains a descriptor
  616. * table which we handle as if it's any normal descriptor chain.
  617. */
  618. if (desc[i].flags & VRING_DESC_F_INDIRECT) {
  619. if (desc[i].len % sizeof(struct vring_desc))
  620. errx(1, "Invalid size for indirect buffer table");
  621. max = desc[i].len / sizeof(struct vring_desc);
  622. desc = check_pointer(desc[i].addr, desc[i].len);
  623. i = 0;
  624. }
  625. do {
  626. /* Grab the first descriptor, and check it's OK. */
  627. iov[*out_num + *in_num].iov_len = desc[i].len;
  628. iov[*out_num + *in_num].iov_base
  629. = check_pointer(desc[i].addr, desc[i].len);
  630. /* If this is an input descriptor, increment that count. */
  631. if (desc[i].flags & VRING_DESC_F_WRITE)
  632. (*in_num)++;
  633. else {
  634. /*
  635. * If it's an output descriptor, they're all supposed
  636. * to come before any input descriptors.
  637. */
  638. if (*in_num)
  639. errx(1, "Descriptor has out after in");
  640. (*out_num)++;
  641. }
  642. /* If we've got too many, that implies a descriptor loop. */
  643. if (*out_num + *in_num > max)
  644. errx(1, "Looped descriptor");
  645. } while ((i = next_desc(desc, i, max)) != max);
  646. return head;
  647. }
  648. /*
  649. * After we've used one of their buffers, we tell the Guest about it. Sometime
  650. * later we'll want to send them an interrupt using trigger_irq(); note that
  651. * wait_for_vq_desc() does that for us if it has to wait.
  652. */
  653. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  654. {
  655. struct vring_used_elem *used;
  656. /*
  657. * The virtqueue contains a ring of used buffers. Get a pointer to the
  658. * next entry in that used ring.
  659. */
  660. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  661. used->id = head;
  662. used->len = len;
  663. /* Make sure buffer is written before we update index. */
  664. wmb();
  665. vq->vring.used->idx++;
  666. vq->pending_used++;
  667. }
  668. /* And here's the combo meal deal. Supersize me! */
  669. static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
  670. {
  671. add_used(vq, head, len);
  672. trigger_irq(vq);
  673. }
  674. /*
  675. * The Console
  676. *
  677. * We associate some data with the console for our exit hack.
  678. */
  679. struct console_abort {
  680. /* How many times have they hit ^C? */
  681. int count;
  682. /* When did they start? */
  683. struct timeval start;
  684. };
  685. /* This is the routine which handles console input (ie. stdin). */
  686. static void console_input(struct virtqueue *vq)
  687. {
  688. int len;
  689. unsigned int head, in_num, out_num;
  690. struct console_abort *abort = vq->dev->priv;
  691. struct iovec iov[vq->vring.num];
  692. /* Make sure there's a descriptor available. */
  693. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  694. if (out_num)
  695. errx(1, "Output buffers in console in queue?");
  696. /* Read into it. This is where we usually wait. */
  697. len = readv(STDIN_FILENO, iov, in_num);
  698. if (len <= 0) {
  699. /* Ran out of input? */
  700. warnx("Failed to get console input, ignoring console.");
  701. /*
  702. * For simplicity, dying threads kill the whole Launcher. So
  703. * just nap here.
  704. */
  705. for (;;)
  706. pause();
  707. }
  708. /* Tell the Guest we used a buffer. */
  709. add_used_and_trigger(vq, head, len);
  710. /*
  711. * Three ^C within one second? Exit.
  712. *
  713. * This is such a hack, but works surprisingly well. Each ^C has to
  714. * be in a buffer by itself, so they can't be too fast. But we check
  715. * that we get three within about a second, so they can't be too
  716. * slow.
  717. */
  718. if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
  719. abort->count = 0;
  720. return;
  721. }
  722. abort->count++;
  723. if (abort->count == 1)
  724. gettimeofday(&abort->start, NULL);
  725. else if (abort->count == 3) {
  726. struct timeval now;
  727. gettimeofday(&now, NULL);
  728. /* Kill all Launcher processes with SIGINT, like normal ^C */
  729. if (now.tv_sec <= abort->start.tv_sec+1)
  730. kill(0, SIGINT);
  731. abort->count = 0;
  732. }
  733. }
  734. /* This is the routine which handles console output (ie. stdout). */
  735. static void console_output(struct virtqueue *vq)
  736. {
  737. unsigned int head, out, in;
  738. struct iovec iov[vq->vring.num];
  739. /* We usually wait in here, for the Guest to give us something. */
  740. head = wait_for_vq_desc(vq, iov, &out, &in);
  741. if (in)
  742. errx(1, "Input buffers in console output queue?");
  743. /* writev can return a partial write, so we loop here. */
  744. while (!iov_empty(iov, out)) {
  745. int len = writev(STDOUT_FILENO, iov, out);
  746. if (len <= 0)
  747. err(1, "Write to stdout gave %i", len);
  748. iov_consume(iov, out, len);
  749. }
  750. /*
  751. * We're finished with that buffer: if we're going to sleep,
  752. * wait_for_vq_desc() will prod the Guest with an interrupt.
  753. */
  754. add_used(vq, head, 0);
  755. }
  756. /*
  757. * The Network
  758. *
  759. * Handling output for network is also simple: we get all the output buffers
  760. * and write them to /dev/net/tun.
  761. */
  762. struct net_info {
  763. int tunfd;
  764. };
  765. static void net_output(struct virtqueue *vq)
  766. {
  767. struct net_info *net_info = vq->dev->priv;
  768. unsigned int head, out, in;
  769. struct iovec iov[vq->vring.num];
  770. /* We usually wait in here for the Guest to give us a packet. */
  771. head = wait_for_vq_desc(vq, iov, &out, &in);
  772. if (in)
  773. errx(1, "Input buffers in net output queue?");
  774. /*
  775. * Send the whole thing through to /dev/net/tun. It expects the exact
  776. * same format: what a coincidence!
  777. */
  778. if (writev(net_info->tunfd, iov, out) < 0)
  779. errx(1, "Write to tun failed?");
  780. /*
  781. * Done with that one; wait_for_vq_desc() will send the interrupt if
  782. * all packets are processed.
  783. */
  784. add_used(vq, head, 0);
  785. }
  786. /*
  787. * Handling network input is a bit trickier, because I've tried to optimize it.
  788. *
  789. * First we have a helper routine which tells is if from this file descriptor
  790. * (ie. the /dev/net/tun device) will block:
  791. */
  792. static bool will_block(int fd)
  793. {
  794. fd_set fdset;
  795. struct timeval zero = { 0, 0 };
  796. FD_ZERO(&fdset);
  797. FD_SET(fd, &fdset);
  798. return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
  799. }
  800. /*
  801. * This handles packets coming in from the tun device to our Guest. Like all
  802. * service routines, it gets called again as soon as it returns, so you don't
  803. * see a while(1) loop here.
  804. */
  805. static void net_input(struct virtqueue *vq)
  806. {
  807. int len;
  808. unsigned int head, out, in;
  809. struct iovec iov[vq->vring.num];
  810. struct net_info *net_info = vq->dev->priv;
  811. /*
  812. * Get a descriptor to write an incoming packet into. This will also
  813. * send an interrupt if they're out of descriptors.
  814. */
  815. head = wait_for_vq_desc(vq, iov, &out, &in);
  816. if (out)
  817. errx(1, "Output buffers in net input queue?");
  818. /*
  819. * If it looks like we'll block reading from the tun device, send them
  820. * an interrupt.
  821. */
  822. if (vq->pending_used && will_block(net_info->tunfd))
  823. trigger_irq(vq);
  824. /*
  825. * Read in the packet. This is where we normally wait (when there's no
  826. * incoming network traffic).
  827. */
  828. len = readv(net_info->tunfd, iov, in);
  829. if (len <= 0)
  830. err(1, "Failed to read from tun.");
  831. /*
  832. * Mark that packet buffer as used, but don't interrupt here. We want
  833. * to wait until we've done as much work as we can.
  834. */
  835. add_used(vq, head, len);
  836. }
  837. /*:*/
  838. /* This is the helper to create threads: run the service routine in a loop. */
  839. static int do_thread(void *_vq)
  840. {
  841. struct virtqueue *vq = _vq;
  842. for (;;)
  843. vq->service(vq);
  844. return 0;
  845. }
  846. /*
  847. * When a child dies, we kill our entire process group with SIGTERM. This
  848. * also has the side effect that the shell restores the console for us!
  849. */
  850. static void kill_launcher(int signal)
  851. {
  852. kill(0, SIGTERM);
  853. }
  854. static void reset_device(struct device *dev)
  855. {
  856. struct virtqueue *vq;
  857. verbose("Resetting device %s\n", dev->name);
  858. /* Clear any features they've acked. */
  859. memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
  860. /* We're going to be explicitly killing threads, so ignore them. */
  861. signal(SIGCHLD, SIG_IGN);
  862. /* Zero out the virtqueues, get rid of their threads */
  863. for (vq = dev->vq; vq; vq = vq->next) {
  864. if (vq->thread != (pid_t)-1) {
  865. kill(vq->thread, SIGTERM);
  866. waitpid(vq->thread, NULL, 0);
  867. vq->thread = (pid_t)-1;
  868. }
  869. memset(vq->vring.desc, 0,
  870. vring_size(vq->config.num, LGUEST_VRING_ALIGN));
  871. lg_last_avail(vq) = 0;
  872. }
  873. dev->running = false;
  874. /* Now we care if threads die. */
  875. signal(SIGCHLD, (void *)kill_launcher);
  876. }
  877. /*L:216
  878. * This actually creates the thread which services the virtqueue for a device.
  879. */
  880. static void create_thread(struct virtqueue *vq)
  881. {
  882. /*
  883. * Create stack for thread. Since the stack grows upwards, we point
  884. * the stack pointer to the end of this region.
  885. */
  886. char *stack = malloc(32768);
  887. unsigned long args[] = { LHREQ_EVENTFD,
  888. vq->config.pfn*getpagesize(), 0 };
  889. /* Create a zero-initialized eventfd. */
  890. vq->eventfd = eventfd(0, 0);
  891. if (vq->eventfd < 0)
  892. err(1, "Creating eventfd");
  893. args[2] = vq->eventfd;
  894. /*
  895. * Attach an eventfd to this virtqueue: it will go off when the Guest
  896. * does an LHCALL_NOTIFY for this vq.
  897. */
  898. if (write(lguest_fd, &args, sizeof(args)) != 0)
  899. err(1, "Attaching eventfd");
  900. /*
  901. * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
  902. * we get a signal if it dies.
  903. */
  904. vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
  905. if (vq->thread == (pid_t)-1)
  906. err(1, "Creating clone");
  907. /* We close our local copy now the child has it. */
  908. close(vq->eventfd);
  909. }
  910. static void start_device(struct device *dev)
  911. {
  912. unsigned int i;
  913. struct virtqueue *vq;
  914. verbose("Device %s OK: offered", dev->name);
  915. for (i = 0; i < dev->feature_len; i++)
  916. verbose(" %02x", get_feature_bits(dev)[i]);
  917. verbose(", accepted");
  918. for (i = 0; i < dev->feature_len; i++)
  919. verbose(" %02x", get_feature_bits(dev)
  920. [dev->feature_len+i]);
  921. for (vq = dev->vq; vq; vq = vq->next) {
  922. if (vq->service)
  923. create_thread(vq);
  924. }
  925. dev->running = true;
  926. }
  927. static void cleanup_devices(void)
  928. {
  929. struct device *dev;
  930. for (dev = devices.dev; dev; dev = dev->next)
  931. reset_device(dev);
  932. /* If we saved off the original terminal settings, restore them now. */
  933. if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
  934. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  935. }
  936. /* When the Guest tells us they updated the status field, we handle it. */
  937. static void update_device_status(struct device *dev)
  938. {
  939. /* A zero status is a reset, otherwise it's a set of flags. */
  940. if (dev->desc->status == 0)
  941. reset_device(dev);
  942. else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  943. warnx("Device %s configuration FAILED", dev->name);
  944. if (dev->running)
  945. reset_device(dev);
  946. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  947. if (!dev->running)
  948. start_device(dev);
  949. }
  950. }
  951. /*L:215
  952. * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
  953. * particular, it's used to notify us of device status changes during boot.
  954. */
  955. static void handle_output(unsigned long addr)
  956. {
  957. struct device *i;
  958. /* Check each device. */
  959. for (i = devices.dev; i; i = i->next) {
  960. struct virtqueue *vq;
  961. /*
  962. * Notifications to device descriptors mean they updated the
  963. * device status.
  964. */
  965. if (from_guest_phys(addr) == i->desc) {
  966. update_device_status(i);
  967. return;
  968. }
  969. /*
  970. * Devices *can* be used before status is set to DRIVER_OK.
  971. * The original plan was that they would never do this: they
  972. * would always finish setting up their status bits before
  973. * actually touching the virtqueues. In practice, we allowed
  974. * them to, and they do (eg. the disk probes for partition
  975. * tables as part of initialization).
  976. *
  977. * If we see this, we start the device: once it's running, we
  978. * expect the device to catch all the notifications.
  979. */
  980. for (vq = i->vq; vq; vq = vq->next) {
  981. if (addr != vq->config.pfn*getpagesize())
  982. continue;
  983. if (i->running)
  984. errx(1, "Notification on running %s", i->name);
  985. /* This just calls create_thread() for each virtqueue */
  986. start_device(i);
  987. return;
  988. }
  989. }
  990. /*
  991. * Early console write is done using notify on a nul-terminated string
  992. * in Guest memory. It's also great for hacking debugging messages
  993. * into a Guest.
  994. */
  995. if (addr >= guest_limit)
  996. errx(1, "Bad NOTIFY %#lx", addr);
  997. write(STDOUT_FILENO, from_guest_phys(addr),
  998. strnlen(from_guest_phys(addr), guest_limit - addr));
  999. }
  1000. /*L:190
  1001. * Device Setup
  1002. *
  1003. * All devices need a descriptor so the Guest knows it exists, and a "struct
  1004. * device" so the Launcher can keep track of it. We have common helper
  1005. * routines to allocate and manage them.
  1006. */
  1007. /*
  1008. * The layout of the device page is a "struct lguest_device_desc" followed by a
  1009. * number of virtqueue descriptors, then two sets of feature bits, then an
  1010. * array of configuration bytes. This routine returns the configuration
  1011. * pointer.
  1012. */
  1013. static u8 *device_config(const struct device *dev)
  1014. {
  1015. return (void *)(dev->desc + 1)
  1016. + dev->num_vq * sizeof(struct lguest_vqconfig)
  1017. + dev->feature_len * 2;
  1018. }
  1019. /*
  1020. * This routine allocates a new "struct lguest_device_desc" from descriptor
  1021. * table page just above the Guest's normal memory. It returns a pointer to
  1022. * that descriptor.
  1023. */
  1024. static struct lguest_device_desc *new_dev_desc(u16 type)
  1025. {
  1026. struct lguest_device_desc d = { .type = type };
  1027. void *p;
  1028. /* Figure out where the next device config is, based on the last one. */
  1029. if (devices.lastdev)
  1030. p = device_config(devices.lastdev)
  1031. + devices.lastdev->desc->config_len;
  1032. else
  1033. p = devices.descpage;
  1034. /* We only have one page for all the descriptors. */
  1035. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  1036. errx(1, "Too many devices");
  1037. /* p might not be aligned, so we memcpy in. */
  1038. return memcpy(p, &d, sizeof(d));
  1039. }
  1040. /*
  1041. * Each device descriptor is followed by the description of its virtqueues. We
  1042. * specify how many descriptors the virtqueue is to have.
  1043. */
  1044. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  1045. void (*service)(struct virtqueue *))
  1046. {
  1047. unsigned int pages;
  1048. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  1049. void *p;
  1050. /* First we need some memory for this virtqueue. */
  1051. pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
  1052. / getpagesize();
  1053. p = get_pages(pages);
  1054. /* Initialize the virtqueue */
  1055. vq->next = NULL;
  1056. vq->last_avail_idx = 0;
  1057. vq->dev = dev;
  1058. /*
  1059. * This is the routine the service thread will run, and its Process ID
  1060. * once it's running.
  1061. */
  1062. vq->service = service;
  1063. vq->thread = (pid_t)-1;
  1064. /* Initialize the configuration. */
  1065. vq->config.num = num_descs;
  1066. vq->config.irq = devices.next_irq++;
  1067. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1068. /* Initialize the vring. */
  1069. vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
  1070. /*
  1071. * Append virtqueue to this device's descriptor. We use
  1072. * device_config() to get the end of the device's current virtqueues;
  1073. * we check that we haven't added any config or feature information
  1074. * yet, otherwise we'd be overwriting them.
  1075. */
  1076. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1077. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1078. dev->num_vq++;
  1079. dev->desc->num_vq++;
  1080. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1081. /*
  1082. * Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1083. * second.
  1084. */
  1085. for (i = &dev->vq; *i; i = &(*i)->next);
  1086. *i = vq;
  1087. }
  1088. /*
  1089. * The first half of the feature bitmask is for us to advertise features. The
  1090. * second half is for the Guest to accept features.
  1091. */
  1092. static void add_feature(struct device *dev, unsigned bit)
  1093. {
  1094. u8 *features = get_feature_bits(dev);
  1095. /* We can't extend the feature bits once we've added config bytes */
  1096. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1097. assert(dev->desc->config_len == 0);
  1098. dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
  1099. }
  1100. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1101. }
  1102. /*
  1103. * This routine sets the configuration fields for an existing device's
  1104. * descriptor. It only works for the last device, but that's OK because that's
  1105. * how we use it.
  1106. */
  1107. static void set_config(struct device *dev, unsigned len, const void *conf)
  1108. {
  1109. /* Check we haven't overflowed our single page. */
  1110. if (device_config(dev) + len > devices.descpage + getpagesize())
  1111. errx(1, "Too many devices");
  1112. /* Copy in the config information, and store the length. */
  1113. memcpy(device_config(dev), conf, len);
  1114. dev->desc->config_len = len;
  1115. /* Size must fit in config_len field (8 bits)! */
  1116. assert(dev->desc->config_len == len);
  1117. }
  1118. /*
  1119. * This routine does all the creation and setup of a new device, including
  1120. * calling new_dev_desc() to allocate the descriptor and device memory. We
  1121. * don't actually start the service threads until later.
  1122. *
  1123. * See what I mean about userspace being boring?
  1124. */
  1125. static struct device *new_device(const char *name, u16 type)
  1126. {
  1127. struct device *dev = malloc(sizeof(*dev));
  1128. /* Now we populate the fields one at a time. */
  1129. dev->desc = new_dev_desc(type);
  1130. dev->name = name;
  1131. dev->vq = NULL;
  1132. dev->feature_len = 0;
  1133. dev->num_vq = 0;
  1134. dev->running = false;
  1135. /*
  1136. * Append to device list. Prepending to a single-linked list is
  1137. * easier, but the user expects the devices to be arranged on the bus
  1138. * in command-line order. The first network device on the command line
  1139. * is eth0, the first block device /dev/vda, etc.
  1140. */
  1141. if (devices.lastdev)
  1142. devices.lastdev->next = dev;
  1143. else
  1144. devices.dev = dev;
  1145. devices.lastdev = dev;
  1146. return dev;
  1147. }
  1148. /*
  1149. * Our first setup routine is the console. It's a fairly simple device, but
  1150. * UNIX tty handling makes it uglier than it could be.
  1151. */
  1152. static void setup_console(void)
  1153. {
  1154. struct device *dev;
  1155. /* If we can save the initial standard input settings... */
  1156. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1157. struct termios term = orig_term;
  1158. /*
  1159. * Then we turn off echo, line buffering and ^C etc: We want a
  1160. * raw input stream to the Guest.
  1161. */
  1162. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1163. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1164. }
  1165. dev = new_device("console", VIRTIO_ID_CONSOLE);
  1166. /* We store the console state in dev->priv, and initialize it. */
  1167. dev->priv = malloc(sizeof(struct console_abort));
  1168. ((struct console_abort *)dev->priv)->count = 0;
  1169. /*
  1170. * The console needs two virtqueues: the input then the output. When
  1171. * they put something the input queue, we make sure we're listening to
  1172. * stdin. When they put something in the output queue, we write it to
  1173. * stdout.
  1174. */
  1175. add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
  1176. add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
  1177. verbose("device %u: console\n", ++devices.device_num);
  1178. }
  1179. /*:*/
  1180. /*M:010
  1181. * Inter-guest networking is an interesting area. Simplest is to have a
  1182. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1183. * used to send packets to another guest in a 1:1 manner.
  1184. *
  1185. * More sopisticated is to use one of the tools developed for project like UML
  1186. * to do networking.
  1187. *
  1188. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1189. * completely generic ("here's my vring, attach to your vring") and would work
  1190. * for any traffic. Of course, namespace and permissions issues need to be
  1191. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1192. * multiple inter-guest channels behind one interface, although it would
  1193. * require some manner of hotplugging new virtio channels.
  1194. *
  1195. * Finally, we could implement a virtio network switch in the kernel.
  1196. :*/
  1197. static u32 str2ip(const char *ipaddr)
  1198. {
  1199. unsigned int b[4];
  1200. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1201. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1202. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1203. }
  1204. static void str2mac(const char *macaddr, unsigned char mac[6])
  1205. {
  1206. unsigned int m[6];
  1207. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1208. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1209. errx(1, "Failed to parse mac address '%s'", macaddr);
  1210. mac[0] = m[0];
  1211. mac[1] = m[1];
  1212. mac[2] = m[2];
  1213. mac[3] = m[3];
  1214. mac[4] = m[4];
  1215. mac[5] = m[5];
  1216. }
  1217. /*
  1218. * This code is "adapted" from libbridge: it attaches the Host end of the
  1219. * network device to the bridge device specified by the command line.
  1220. *
  1221. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1222. * dislike bridging), and I just try not to break it.
  1223. */
  1224. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1225. {
  1226. int ifidx;
  1227. struct ifreq ifr;
  1228. if (!*br_name)
  1229. errx(1, "must specify bridge name");
  1230. ifidx = if_nametoindex(if_name);
  1231. if (!ifidx)
  1232. errx(1, "interface %s does not exist!", if_name);
  1233. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1234. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1235. ifr.ifr_ifindex = ifidx;
  1236. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1237. err(1, "can't add %s to bridge %s", if_name, br_name);
  1238. }
  1239. /*
  1240. * This sets up the Host end of the network device with an IP address, brings
  1241. * it up so packets will flow, the copies the MAC address into the hwaddr
  1242. * pointer.
  1243. */
  1244. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1245. {
  1246. struct ifreq ifr;
  1247. struct sockaddr_in sin;
  1248. memset(&ifr, 0, sizeof(ifr));
  1249. strcpy(ifr.ifr_name, tapif);
  1250. /* Don't read these incantations. Just cut & paste them like I did! */
  1251. sin.sin_family = AF_INET;
  1252. sin.sin_addr.s_addr = htonl(ipaddr);
  1253. memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
  1254. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1255. err(1, "Setting %s interface address", tapif);
  1256. ifr.ifr_flags = IFF_UP;
  1257. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1258. err(1, "Bringing interface %s up", tapif);
  1259. }
  1260. static int get_tun_device(char tapif[IFNAMSIZ])
  1261. {
  1262. struct ifreq ifr;
  1263. int netfd;
  1264. /* Start with this zeroed. Messy but sure. */
  1265. memset(&ifr, 0, sizeof(ifr));
  1266. /*
  1267. * We open the /dev/net/tun device and tell it we want a tap device. A
  1268. * tap device is like a tun device, only somehow different. To tell
  1269. * the truth, I completely blundered my way through this code, but it
  1270. * works now!
  1271. */
  1272. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1273. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1274. strcpy(ifr.ifr_name, "tap%d");
  1275. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1276. err(1, "configuring /dev/net/tun");
  1277. if (ioctl(netfd, TUNSETOFFLOAD,
  1278. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1279. err(1, "Could not set features for tun device");
  1280. /*
  1281. * We don't need checksums calculated for packets coming in this
  1282. * device: trust us!
  1283. */
  1284. ioctl(netfd, TUNSETNOCSUM, 1);
  1285. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1286. return netfd;
  1287. }
  1288. /*L:195
  1289. * Our network is a Host<->Guest network. This can either use bridging or
  1290. * routing, but the principle is the same: it uses the "tun" device to inject
  1291. * packets into the Host as if they came in from a normal network card. We
  1292. * just shunt packets between the Guest and the tun device.
  1293. */
  1294. static void setup_tun_net(char *arg)
  1295. {
  1296. struct device *dev;
  1297. struct net_info *net_info = malloc(sizeof(*net_info));
  1298. int ipfd;
  1299. u32 ip = INADDR_ANY;
  1300. bool bridging = false;
  1301. char tapif[IFNAMSIZ], *p;
  1302. struct virtio_net_config conf;
  1303. net_info->tunfd = get_tun_device(tapif);
  1304. /* First we create a new network device. */
  1305. dev = new_device("net", VIRTIO_ID_NET);
  1306. dev->priv = net_info;
  1307. /* Network devices need a recv and a send queue, just like console. */
  1308. add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
  1309. add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
  1310. /*
  1311. * We need a socket to perform the magic network ioctls to bring up the
  1312. * tap interface, connect to the bridge etc. Any socket will do!
  1313. */
  1314. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1315. if (ipfd < 0)
  1316. err(1, "opening IP socket");
  1317. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1318. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1319. arg += strlen(BRIDGE_PFX);
  1320. bridging = true;
  1321. }
  1322. /* A mac address may follow the bridge name or IP address */
  1323. p = strchr(arg, ':');
  1324. if (p) {
  1325. str2mac(p+1, conf.mac);
  1326. add_feature(dev, VIRTIO_NET_F_MAC);
  1327. *p = '\0';
  1328. }
  1329. /* arg is now either an IP address or a bridge name */
  1330. if (bridging)
  1331. add_to_bridge(ipfd, tapif, arg);
  1332. else
  1333. ip = str2ip(arg);
  1334. /* Set up the tun device. */
  1335. configure_device(ipfd, tapif, ip);
  1336. /* Expect Guest to handle everything except UFO */
  1337. add_feature(dev, VIRTIO_NET_F_CSUM);
  1338. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1339. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1340. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1341. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1342. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1343. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1344. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1345. /* We handle indirect ring entries */
  1346. add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
  1347. set_config(dev, sizeof(conf), &conf);
  1348. /* We don't need the socket any more; setup is done. */
  1349. close(ipfd);
  1350. devices.device_num++;
  1351. if (bridging)
  1352. verbose("device %u: tun %s attached to bridge: %s\n",
  1353. devices.device_num, tapif, arg);
  1354. else
  1355. verbose("device %u: tun %s: %s\n",
  1356. devices.device_num, tapif, arg);
  1357. }
  1358. /*:*/
  1359. /* This hangs off device->priv. */
  1360. struct vblk_info {
  1361. /* The size of the file. */
  1362. off64_t len;
  1363. /* The file descriptor for the file. */
  1364. int fd;
  1365. };
  1366. /*L:210
  1367. * The Disk
  1368. *
  1369. * The disk only has one virtqueue, so it only has one thread. It is really
  1370. * simple: the Guest asks for a block number and we read or write that position
  1371. * in the file.
  1372. *
  1373. * Before we serviced each virtqueue in a separate thread, that was unacceptably
  1374. * slow: the Guest waits until the read is finished before running anything
  1375. * else, even if it could have been doing useful work.
  1376. *
  1377. * We could have used async I/O, except it's reputed to suck so hard that
  1378. * characters actually go missing from your code when you try to use it.
  1379. */
  1380. static void blk_request(struct virtqueue *vq)
  1381. {
  1382. struct vblk_info *vblk = vq->dev->priv;
  1383. unsigned int head, out_num, in_num, wlen;
  1384. int ret;
  1385. u8 *in;
  1386. struct virtio_blk_outhdr *out;
  1387. struct iovec iov[vq->vring.num];
  1388. off64_t off;
  1389. /*
  1390. * Get the next request, where we normally wait. It triggers the
  1391. * interrupt to acknowledge previously serviced requests (if any).
  1392. */
  1393. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  1394. /*
  1395. * Every block request should contain at least one output buffer
  1396. * (detailing the location on disk and the type of request) and one
  1397. * input buffer (to hold the result).
  1398. */
  1399. if (out_num == 0 || in_num == 0)
  1400. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1401. head, out_num, in_num);
  1402. out = convert(&iov[0], struct virtio_blk_outhdr);
  1403. in = convert(&iov[out_num+in_num-1], u8);
  1404. /*
  1405. * For historical reasons, block operations are expressed in 512 byte
  1406. * "sectors".
  1407. */
  1408. off = out->sector * 512;
  1409. /*
  1410. * In general the virtio block driver is allowed to try SCSI commands.
  1411. * It'd be nice if we supported eject, for example, but we don't.
  1412. */
  1413. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1414. fprintf(stderr, "Scsi commands unsupported\n");
  1415. *in = VIRTIO_BLK_S_UNSUPP;
  1416. wlen = sizeof(*in);
  1417. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1418. /*
  1419. * Write
  1420. *
  1421. * Move to the right location in the block file. This can fail
  1422. * if they try to write past end.
  1423. */
  1424. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1425. err(1, "Bad seek to sector %llu", out->sector);
  1426. ret = writev(vblk->fd, iov+1, out_num-1);
  1427. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1428. /*
  1429. * Grr... Now we know how long the descriptor they sent was, we
  1430. * make sure they didn't try to write over the end of the block
  1431. * file (possibly extending it).
  1432. */
  1433. if (ret > 0 && off + ret > vblk->len) {
  1434. /* Trim it back to the correct length */
  1435. ftruncate64(vblk->fd, vblk->len);
  1436. /* Die, bad Guest, die. */
  1437. errx(1, "Write past end %llu+%u", off, ret);
  1438. }
  1439. wlen = sizeof(*in);
  1440. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1441. } else if (out->type & VIRTIO_BLK_T_FLUSH) {
  1442. /* Flush */
  1443. ret = fdatasync(vblk->fd);
  1444. verbose("FLUSH fdatasync: %i\n", ret);
  1445. wlen = sizeof(*in);
  1446. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1447. } else {
  1448. /*
  1449. * Read
  1450. *
  1451. * Move to the right location in the block file. This can fail
  1452. * if they try to read past end.
  1453. */
  1454. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1455. err(1, "Bad seek to sector %llu", out->sector);
  1456. ret = readv(vblk->fd, iov+1, in_num-1);
  1457. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1458. if (ret >= 0) {
  1459. wlen = sizeof(*in) + ret;
  1460. *in = VIRTIO_BLK_S_OK;
  1461. } else {
  1462. wlen = sizeof(*in);
  1463. *in = VIRTIO_BLK_S_IOERR;
  1464. }
  1465. }
  1466. /* Finished that request. */
  1467. add_used(vq, head, wlen);
  1468. }
  1469. /*L:198 This actually sets up a virtual block device. */
  1470. static void setup_block_file(const char *filename)
  1471. {
  1472. struct device *dev;
  1473. struct vblk_info *vblk;
  1474. struct virtio_blk_config conf;
  1475. /* Creat the device. */
  1476. dev = new_device("block", VIRTIO_ID_BLOCK);
  1477. /* The device has one virtqueue, where the Guest places requests. */
  1478. add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
  1479. /* Allocate the room for our own bookkeeping */
  1480. vblk = dev->priv = malloc(sizeof(*vblk));
  1481. /* First we open the file and store the length. */
  1482. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1483. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1484. /* We support FLUSH. */
  1485. add_feature(dev, VIRTIO_BLK_F_FLUSH);
  1486. /* Tell Guest how many sectors this device has. */
  1487. conf.capacity = cpu_to_le64(vblk->len / 512);
  1488. /*
  1489. * Tell Guest not to put in too many descriptors at once: two are used
  1490. * for the in and out elements.
  1491. */
  1492. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1493. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1494. /* Don't try to put whole struct: we have 8 bit limit. */
  1495. set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
  1496. verbose("device %u: virtblock %llu sectors\n",
  1497. ++devices.device_num, le64_to_cpu(conf.capacity));
  1498. }
  1499. /*L:211
  1500. * Our random number generator device reads from /dev/random into the Guest's
  1501. * input buffers. The usual case is that the Guest doesn't want random numbers
  1502. * and so has no buffers although /dev/random is still readable, whereas
  1503. * console is the reverse.
  1504. *
  1505. * The same logic applies, however.
  1506. */
  1507. struct rng_info {
  1508. int rfd;
  1509. };
  1510. static void rng_input(struct virtqueue *vq)
  1511. {
  1512. int len;
  1513. unsigned int head, in_num, out_num, totlen = 0;
  1514. struct rng_info *rng_info = vq->dev->priv;
  1515. struct iovec iov[vq->vring.num];
  1516. /* First we need a buffer from the Guests's virtqueue. */
  1517. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  1518. if (out_num)
  1519. errx(1, "Output buffers in rng?");
  1520. /*
  1521. * Just like the console write, we loop to cover the whole iovec.
  1522. * In this case, short reads actually happen quite a bit.
  1523. */
  1524. while (!iov_empty(iov, in_num)) {
  1525. len = readv(rng_info->rfd, iov, in_num);
  1526. if (len <= 0)
  1527. err(1, "Read from /dev/random gave %i", len);
  1528. iov_consume(iov, in_num, len);
  1529. totlen += len;
  1530. }
  1531. /* Tell the Guest about the new input. */
  1532. add_used(vq, head, totlen);
  1533. }
  1534. /*L:199
  1535. * This creates a "hardware" random number device for the Guest.
  1536. */
  1537. static void setup_rng(void)
  1538. {
  1539. struct device *dev;
  1540. struct rng_info *rng_info = malloc(sizeof(*rng_info));
  1541. /* Our device's privat info simply contains the /dev/random fd. */
  1542. rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
  1543. /* Create the new device. */
  1544. dev = new_device("rng", VIRTIO_ID_RNG);
  1545. dev->priv = rng_info;
  1546. /* The device has one virtqueue, where the Guest places inbufs. */
  1547. add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
  1548. verbose("device %u: rng\n", devices.device_num++);
  1549. }
  1550. /* That's the end of device setup. */
  1551. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1552. static void __attribute__((noreturn)) restart_guest(void)
  1553. {
  1554. unsigned int i;
  1555. /*
  1556. * Since we don't track all open fds, we simply close everything beyond
  1557. * stderr.
  1558. */
  1559. for (i = 3; i < FD_SETSIZE; i++)
  1560. close(i);
  1561. /* Reset all the devices (kills all threads). */
  1562. cleanup_devices();
  1563. execv(main_args[0], main_args);
  1564. err(1, "Could not exec %s", main_args[0]);
  1565. }
  1566. /*L:220
  1567. * Finally we reach the core of the Launcher which runs the Guest, serves
  1568. * its input and output, and finally, lays it to rest.
  1569. */
  1570. static void __attribute__((noreturn)) run_guest(void)
  1571. {
  1572. for (;;) {
  1573. unsigned long notify_addr;
  1574. int readval;
  1575. /* We read from the /dev/lguest device to run the Guest. */
  1576. readval = pread(lguest_fd, &notify_addr,
  1577. sizeof(notify_addr), cpu_id);
  1578. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1579. if (readval == sizeof(notify_addr)) {
  1580. verbose("Notify on address %#lx\n", notify_addr);
  1581. handle_output(notify_addr);
  1582. /* ENOENT means the Guest died. Reading tells us why. */
  1583. } else if (errno == ENOENT) {
  1584. char reason[1024] = { 0 };
  1585. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1586. errx(1, "%s", reason);
  1587. /* ERESTART means that we need to reboot the guest */
  1588. } else if (errno == ERESTART) {
  1589. restart_guest();
  1590. /* Anything else means a bug or incompatible change. */
  1591. } else
  1592. err(1, "Running guest failed");
  1593. }
  1594. }
  1595. /*L:240
  1596. * This is the end of the Launcher. The good news: we are over halfway
  1597. * through! The bad news: the most fiendish part of the code still lies ahead
  1598. * of us.
  1599. *
  1600. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1601. * "make Host".
  1602. :*/
  1603. static struct option opts[] = {
  1604. { "verbose", 0, NULL, 'v' },
  1605. { "tunnet", 1, NULL, 't' },
  1606. { "block", 1, NULL, 'b' },
  1607. { "rng", 0, NULL, 'r' },
  1608. { "initrd", 1, NULL, 'i' },
  1609. { "username", 1, NULL, 'u' },
  1610. { "chroot", 1, NULL, 'c' },
  1611. { NULL },
  1612. };
  1613. static void usage(void)
  1614. {
  1615. errx(1, "Usage: lguest [--verbose] "
  1616. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1617. "|--block=<filename>|--initrd=<filename>]...\n"
  1618. "<mem-in-mb> vmlinux [args...]");
  1619. }
  1620. /*L:105 The main routine is where the real work begins: */
  1621. int main(int argc, char *argv[])
  1622. {
  1623. /* Memory, code startpoint and size of the (optional) initrd. */
  1624. unsigned long mem = 0, start, initrd_size = 0;
  1625. /* Two temporaries. */
  1626. int i, c;
  1627. /* The boot information for the Guest. */
  1628. struct boot_params *boot;
  1629. /* If they specify an initrd file to load. */
  1630. const char *initrd_name = NULL;
  1631. /* Password structure for initgroups/setres[gu]id */
  1632. struct passwd *user_details = NULL;
  1633. /* Directory to chroot to */
  1634. char *chroot_path = NULL;
  1635. /* Save the args: we "reboot" by execing ourselves again. */
  1636. main_args = argv;
  1637. /*
  1638. * First we initialize the device list. We keep a pointer to the last
  1639. * device, and the next interrupt number to use for devices (1:
  1640. * remember that 0 is used by the timer).
  1641. */
  1642. devices.lastdev = NULL;
  1643. devices.next_irq = 1;
  1644. /* We're CPU 0. In fact, that's the only CPU possible right now. */
  1645. cpu_id = 0;
  1646. /*
  1647. * We need to know how much memory so we can set up the device
  1648. * descriptor and memory pages for the devices as we parse the command
  1649. * line. So we quickly look through the arguments to find the amount
  1650. * of memory now.
  1651. */
  1652. for (i = 1; i < argc; i++) {
  1653. if (argv[i][0] != '-') {
  1654. mem = atoi(argv[i]) * 1024 * 1024;
  1655. /*
  1656. * We start by mapping anonymous pages over all of
  1657. * guest-physical memory range. This fills it with 0,
  1658. * and ensures that the Guest won't be killed when it
  1659. * tries to access it.
  1660. */
  1661. guest_base = map_zeroed_pages(mem / getpagesize()
  1662. + DEVICE_PAGES);
  1663. guest_limit = mem;
  1664. guest_max = mem + DEVICE_PAGES*getpagesize();
  1665. devices.descpage = get_pages(1);
  1666. break;
  1667. }
  1668. }
  1669. /* The options are fairly straight-forward */
  1670. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1671. switch (c) {
  1672. case 'v':
  1673. verbose = true;
  1674. break;
  1675. case 't':
  1676. setup_tun_net(optarg);
  1677. break;
  1678. case 'b':
  1679. setup_block_file(optarg);
  1680. break;
  1681. case 'r':
  1682. setup_rng();
  1683. break;
  1684. case 'i':
  1685. initrd_name = optarg;
  1686. break;
  1687. case 'u':
  1688. user_details = getpwnam(optarg);
  1689. if (!user_details)
  1690. err(1, "getpwnam failed, incorrect username?");
  1691. break;
  1692. case 'c':
  1693. chroot_path = optarg;
  1694. break;
  1695. default:
  1696. warnx("Unknown argument %s", argv[optind]);
  1697. usage();
  1698. }
  1699. }
  1700. /*
  1701. * After the other arguments we expect memory and kernel image name,
  1702. * followed by command line arguments for the kernel.
  1703. */
  1704. if (optind + 2 > argc)
  1705. usage();
  1706. verbose("Guest base is at %p\n", guest_base);
  1707. /* We always have a console device */
  1708. setup_console();
  1709. /* Now we load the kernel */
  1710. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1711. /* Boot information is stashed at physical address 0 */
  1712. boot = from_guest_phys(0);
  1713. /* Map the initrd image if requested (at top of physical memory) */
  1714. if (initrd_name) {
  1715. initrd_size = load_initrd(initrd_name, mem);
  1716. /*
  1717. * These are the location in the Linux boot header where the
  1718. * start and size of the initrd are expected to be found.
  1719. */
  1720. boot->hdr.ramdisk_image = mem - initrd_size;
  1721. boot->hdr.ramdisk_size = initrd_size;
  1722. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1723. boot->hdr.type_of_loader = 0xFF;
  1724. }
  1725. /*
  1726. * The Linux boot header contains an "E820" memory map: ours is a
  1727. * simple, single region.
  1728. */
  1729. boot->e820_entries = 1;
  1730. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1731. /*
  1732. * The boot header contains a command line pointer: we put the command
  1733. * line after the boot header.
  1734. */
  1735. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1736. /* We use a simple helper to copy the arguments separated by spaces. */
  1737. concat((char *)(boot + 1), argv+optind+2);
  1738. /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
  1739. boot->hdr.kernel_alignment = 0x1000000;
  1740. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1741. boot->hdr.version = 0x207;
  1742. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1743. boot->hdr.hardware_subarch = 1;
  1744. /* Tell the entry path not to try to reload segment registers. */
  1745. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1746. /*
  1747. * We tell the kernel to initialize the Guest: this returns the open
  1748. * /dev/lguest file descriptor.
  1749. */
  1750. tell_kernel(start);
  1751. /* Ensure that we terminate if a device-servicing child dies. */
  1752. signal(SIGCHLD, kill_launcher);
  1753. /* If we exit via err(), this kills all the threads, restores tty. */
  1754. atexit(cleanup_devices);
  1755. /* If requested, chroot to a directory */
  1756. if (chroot_path) {
  1757. if (chroot(chroot_path) != 0)
  1758. err(1, "chroot(\"%s\") failed", chroot_path);
  1759. if (chdir("/") != 0)
  1760. err(1, "chdir(\"/\") failed");
  1761. verbose("chroot done\n");
  1762. }
  1763. /* If requested, drop privileges */
  1764. if (user_details) {
  1765. uid_t u;
  1766. gid_t g;
  1767. u = user_details->pw_uid;
  1768. g = user_details->pw_gid;
  1769. if (initgroups(user_details->pw_name, g) != 0)
  1770. err(1, "initgroups failed");
  1771. if (setresgid(g, g, g) != 0)
  1772. err(1, "setresgid failed");
  1773. if (setresuid(u, u, u) != 0)
  1774. err(1, "setresuid failed");
  1775. verbose("Dropping privileges completed\n");
  1776. }
  1777. /* Finally, run the Guest. This doesn't return. */
  1778. run_guest();
  1779. }
  1780. /*:*/
  1781. /*M:999
  1782. * Mastery is done: you now know everything I do.
  1783. *
  1784. * But surely you have seen code, features and bugs in your wanderings which
  1785. * you now yearn to attack? That is the real game, and I look forward to you
  1786. * patching and forking lguest into the Your-Name-Here-visor.
  1787. *
  1788. * Farewell, and good coding!
  1789. * Rusty Russell.
  1790. */