builtin-kmem.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/symbol.h"
  6. #include "util/thread.h"
  7. #include "util/header.h"
  8. #include "util/session.h"
  9. #include "util/parse-options.h"
  10. #include "util/trace-event.h"
  11. #include "util/debug.h"
  12. #include <linux/rbtree.h>
  13. struct alloc_stat;
  14. typedef int (*sort_fn_t)(struct alloc_stat *, struct alloc_stat *);
  15. static char const *input_name = "perf.data";
  16. static int alloc_flag;
  17. static int caller_flag;
  18. static int alloc_lines = -1;
  19. static int caller_lines = -1;
  20. static bool raw_ip;
  21. static char default_sort_order[] = "frag,hit,bytes";
  22. static int *cpunode_map;
  23. static int max_cpu_num;
  24. struct alloc_stat {
  25. u64 call_site;
  26. u64 ptr;
  27. u64 bytes_req;
  28. u64 bytes_alloc;
  29. u32 hit;
  30. u32 pingpong;
  31. short alloc_cpu;
  32. struct rb_node node;
  33. };
  34. static struct rb_root root_alloc_stat;
  35. static struct rb_root root_alloc_sorted;
  36. static struct rb_root root_caller_stat;
  37. static struct rb_root root_caller_sorted;
  38. static unsigned long total_requested, total_allocated;
  39. static unsigned long nr_allocs, nr_cross_allocs;
  40. #define PATH_SYS_NODE "/sys/devices/system/node"
  41. static void init_cpunode_map(void)
  42. {
  43. FILE *fp;
  44. int i;
  45. fp = fopen("/sys/devices/system/cpu/kernel_max", "r");
  46. if (!fp) {
  47. max_cpu_num = 4096;
  48. return;
  49. }
  50. if (fscanf(fp, "%d", &max_cpu_num) < 1)
  51. die("Failed to read 'kernel_max' from sysfs");
  52. max_cpu_num++;
  53. cpunode_map = calloc(max_cpu_num, sizeof(int));
  54. if (!cpunode_map)
  55. die("calloc");
  56. for (i = 0; i < max_cpu_num; i++)
  57. cpunode_map[i] = -1;
  58. fclose(fp);
  59. }
  60. static void setup_cpunode_map(void)
  61. {
  62. struct dirent *dent1, *dent2;
  63. DIR *dir1, *dir2;
  64. unsigned int cpu, mem;
  65. char buf[PATH_MAX];
  66. init_cpunode_map();
  67. dir1 = opendir(PATH_SYS_NODE);
  68. if (!dir1)
  69. return;
  70. while ((dent1 = readdir(dir1)) != NULL) {
  71. if (dent1->d_type != DT_DIR ||
  72. sscanf(dent1->d_name, "node%u", &mem) < 1)
  73. continue;
  74. snprintf(buf, PATH_MAX, "%s/%s", PATH_SYS_NODE, dent1->d_name);
  75. dir2 = opendir(buf);
  76. if (!dir2)
  77. continue;
  78. while ((dent2 = readdir(dir2)) != NULL) {
  79. if (dent2->d_type != DT_LNK ||
  80. sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
  81. continue;
  82. cpunode_map[cpu] = mem;
  83. }
  84. }
  85. }
  86. static void insert_alloc_stat(unsigned long call_site, unsigned long ptr,
  87. int bytes_req, int bytes_alloc, int cpu)
  88. {
  89. struct rb_node **node = &root_alloc_stat.rb_node;
  90. struct rb_node *parent = NULL;
  91. struct alloc_stat *data = NULL;
  92. while (*node) {
  93. parent = *node;
  94. data = rb_entry(*node, struct alloc_stat, node);
  95. if (ptr > data->ptr)
  96. node = &(*node)->rb_right;
  97. else if (ptr < data->ptr)
  98. node = &(*node)->rb_left;
  99. else
  100. break;
  101. }
  102. if (data && data->ptr == ptr) {
  103. data->hit++;
  104. data->bytes_req += bytes_req;
  105. data->bytes_alloc += bytes_alloc;
  106. } else {
  107. data = malloc(sizeof(*data));
  108. if (!data)
  109. die("malloc");
  110. data->ptr = ptr;
  111. data->pingpong = 0;
  112. data->hit = 1;
  113. data->bytes_req = bytes_req;
  114. data->bytes_alloc = bytes_alloc;
  115. rb_link_node(&data->node, parent, node);
  116. rb_insert_color(&data->node, &root_alloc_stat);
  117. }
  118. data->call_site = call_site;
  119. data->alloc_cpu = cpu;
  120. }
  121. static void insert_caller_stat(unsigned long call_site,
  122. int bytes_req, int bytes_alloc)
  123. {
  124. struct rb_node **node = &root_caller_stat.rb_node;
  125. struct rb_node *parent = NULL;
  126. struct alloc_stat *data = NULL;
  127. while (*node) {
  128. parent = *node;
  129. data = rb_entry(*node, struct alloc_stat, node);
  130. if (call_site > data->call_site)
  131. node = &(*node)->rb_right;
  132. else if (call_site < data->call_site)
  133. node = &(*node)->rb_left;
  134. else
  135. break;
  136. }
  137. if (data && data->call_site == call_site) {
  138. data->hit++;
  139. data->bytes_req += bytes_req;
  140. data->bytes_alloc += bytes_alloc;
  141. } else {
  142. data = malloc(sizeof(*data));
  143. if (!data)
  144. die("malloc");
  145. data->call_site = call_site;
  146. data->pingpong = 0;
  147. data->hit = 1;
  148. data->bytes_req = bytes_req;
  149. data->bytes_alloc = bytes_alloc;
  150. rb_link_node(&data->node, parent, node);
  151. rb_insert_color(&data->node, &root_caller_stat);
  152. }
  153. }
  154. static void process_alloc_event(void *data,
  155. struct event *event,
  156. int cpu,
  157. u64 timestamp __used,
  158. struct thread *thread __used,
  159. int node)
  160. {
  161. unsigned long call_site;
  162. unsigned long ptr;
  163. int bytes_req;
  164. int bytes_alloc;
  165. int node1, node2;
  166. ptr = raw_field_value(event, "ptr", data);
  167. call_site = raw_field_value(event, "call_site", data);
  168. bytes_req = raw_field_value(event, "bytes_req", data);
  169. bytes_alloc = raw_field_value(event, "bytes_alloc", data);
  170. insert_alloc_stat(call_site, ptr, bytes_req, bytes_alloc, cpu);
  171. insert_caller_stat(call_site, bytes_req, bytes_alloc);
  172. total_requested += bytes_req;
  173. total_allocated += bytes_alloc;
  174. if (node) {
  175. node1 = cpunode_map[cpu];
  176. node2 = raw_field_value(event, "node", data);
  177. if (node1 != node2)
  178. nr_cross_allocs++;
  179. }
  180. nr_allocs++;
  181. }
  182. static int ptr_cmp(struct alloc_stat *, struct alloc_stat *);
  183. static int callsite_cmp(struct alloc_stat *, struct alloc_stat *);
  184. static struct alloc_stat *search_alloc_stat(unsigned long ptr,
  185. unsigned long call_site,
  186. struct rb_root *root,
  187. sort_fn_t sort_fn)
  188. {
  189. struct rb_node *node = root->rb_node;
  190. struct alloc_stat key = { .ptr = ptr, .call_site = call_site };
  191. while (node) {
  192. struct alloc_stat *data;
  193. int cmp;
  194. data = rb_entry(node, struct alloc_stat, node);
  195. cmp = sort_fn(&key, data);
  196. if (cmp < 0)
  197. node = node->rb_left;
  198. else if (cmp > 0)
  199. node = node->rb_right;
  200. else
  201. return data;
  202. }
  203. return NULL;
  204. }
  205. static void process_free_event(void *data,
  206. struct event *event,
  207. int cpu,
  208. u64 timestamp __used,
  209. struct thread *thread __used)
  210. {
  211. unsigned long ptr;
  212. struct alloc_stat *s_alloc, *s_caller;
  213. ptr = raw_field_value(event, "ptr", data);
  214. s_alloc = search_alloc_stat(ptr, 0, &root_alloc_stat, ptr_cmp);
  215. if (!s_alloc)
  216. return;
  217. if (cpu != s_alloc->alloc_cpu) {
  218. s_alloc->pingpong++;
  219. s_caller = search_alloc_stat(0, s_alloc->call_site,
  220. &root_caller_stat, callsite_cmp);
  221. assert(s_caller);
  222. s_caller->pingpong++;
  223. }
  224. s_alloc->alloc_cpu = -1;
  225. }
  226. static void process_raw_event(union perf_event *raw_event __used, void *data,
  227. int cpu, u64 timestamp, struct thread *thread)
  228. {
  229. struct event *event;
  230. int type;
  231. type = trace_parse_common_type(data);
  232. event = trace_find_event(type);
  233. if (!strcmp(event->name, "kmalloc") ||
  234. !strcmp(event->name, "kmem_cache_alloc")) {
  235. process_alloc_event(data, event, cpu, timestamp, thread, 0);
  236. return;
  237. }
  238. if (!strcmp(event->name, "kmalloc_node") ||
  239. !strcmp(event->name, "kmem_cache_alloc_node")) {
  240. process_alloc_event(data, event, cpu, timestamp, thread, 1);
  241. return;
  242. }
  243. if (!strcmp(event->name, "kfree") ||
  244. !strcmp(event->name, "kmem_cache_free")) {
  245. process_free_event(data, event, cpu, timestamp, thread);
  246. return;
  247. }
  248. }
  249. static int process_sample_event(union perf_event *event,
  250. struct perf_sample *sample,
  251. struct perf_evsel *evsel __used,
  252. struct perf_session *session)
  253. {
  254. struct thread *thread = perf_session__findnew(session, event->ip.pid);
  255. if (thread == NULL) {
  256. pr_debug("problem processing %d event, skipping it.\n",
  257. event->header.type);
  258. return -1;
  259. }
  260. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  261. process_raw_event(event, sample->raw_data, sample->cpu,
  262. sample->time, thread);
  263. return 0;
  264. }
  265. static struct perf_event_ops event_ops = {
  266. .sample = process_sample_event,
  267. .comm = perf_event__process_comm,
  268. .ordered_samples = true,
  269. };
  270. static double fragmentation(unsigned long n_req, unsigned long n_alloc)
  271. {
  272. if (n_alloc == 0)
  273. return 0.0;
  274. else
  275. return 100.0 - (100.0 * n_req / n_alloc);
  276. }
  277. static void __print_result(struct rb_root *root, struct perf_session *session,
  278. int n_lines, int is_caller)
  279. {
  280. struct rb_node *next;
  281. struct machine *machine;
  282. printf("%.102s\n", graph_dotted_line);
  283. printf(" %-34s |", is_caller ? "Callsite": "Alloc Ptr");
  284. printf(" Total_alloc/Per | Total_req/Per | Hit | Ping-pong | Frag\n");
  285. printf("%.102s\n", graph_dotted_line);
  286. next = rb_first(root);
  287. machine = perf_session__find_host_machine(session);
  288. if (!machine) {
  289. pr_err("__print_result: couldn't find kernel information\n");
  290. return;
  291. }
  292. while (next && n_lines--) {
  293. struct alloc_stat *data = rb_entry(next, struct alloc_stat,
  294. node);
  295. struct symbol *sym = NULL;
  296. struct map *map;
  297. char buf[BUFSIZ];
  298. u64 addr;
  299. if (is_caller) {
  300. addr = data->call_site;
  301. if (!raw_ip)
  302. sym = machine__find_kernel_function(machine, addr, &map, NULL);
  303. } else
  304. addr = data->ptr;
  305. if (sym != NULL)
  306. snprintf(buf, sizeof(buf), "%s+%" PRIx64 "", sym->name,
  307. addr - map->unmap_ip(map, sym->start));
  308. else
  309. snprintf(buf, sizeof(buf), "%#" PRIx64 "", addr);
  310. printf(" %-34s |", buf);
  311. printf(" %9llu/%-5lu | %9llu/%-5lu | %8lu | %8lu | %6.3f%%\n",
  312. (unsigned long long)data->bytes_alloc,
  313. (unsigned long)data->bytes_alloc / data->hit,
  314. (unsigned long long)data->bytes_req,
  315. (unsigned long)data->bytes_req / data->hit,
  316. (unsigned long)data->hit,
  317. (unsigned long)data->pingpong,
  318. fragmentation(data->bytes_req, data->bytes_alloc));
  319. next = rb_next(next);
  320. }
  321. if (n_lines == -1)
  322. printf(" ... | ... | ... | ... | ... | ... \n");
  323. printf("%.102s\n", graph_dotted_line);
  324. }
  325. static void print_summary(void)
  326. {
  327. printf("\nSUMMARY\n=======\n");
  328. printf("Total bytes requested: %lu\n", total_requested);
  329. printf("Total bytes allocated: %lu\n", total_allocated);
  330. printf("Total bytes wasted on internal fragmentation: %lu\n",
  331. total_allocated - total_requested);
  332. printf("Internal fragmentation: %f%%\n",
  333. fragmentation(total_requested, total_allocated));
  334. printf("Cross CPU allocations: %lu/%lu\n", nr_cross_allocs, nr_allocs);
  335. }
  336. static void print_result(struct perf_session *session)
  337. {
  338. if (caller_flag)
  339. __print_result(&root_caller_sorted, session, caller_lines, 1);
  340. if (alloc_flag)
  341. __print_result(&root_alloc_sorted, session, alloc_lines, 0);
  342. print_summary();
  343. }
  344. struct sort_dimension {
  345. const char name[20];
  346. sort_fn_t cmp;
  347. struct list_head list;
  348. };
  349. static LIST_HEAD(caller_sort);
  350. static LIST_HEAD(alloc_sort);
  351. static void sort_insert(struct rb_root *root, struct alloc_stat *data,
  352. struct list_head *sort_list)
  353. {
  354. struct rb_node **new = &(root->rb_node);
  355. struct rb_node *parent = NULL;
  356. struct sort_dimension *sort;
  357. while (*new) {
  358. struct alloc_stat *this;
  359. int cmp = 0;
  360. this = rb_entry(*new, struct alloc_stat, node);
  361. parent = *new;
  362. list_for_each_entry(sort, sort_list, list) {
  363. cmp = sort->cmp(data, this);
  364. if (cmp)
  365. break;
  366. }
  367. if (cmp > 0)
  368. new = &((*new)->rb_left);
  369. else
  370. new = &((*new)->rb_right);
  371. }
  372. rb_link_node(&data->node, parent, new);
  373. rb_insert_color(&data->node, root);
  374. }
  375. static void __sort_result(struct rb_root *root, struct rb_root *root_sorted,
  376. struct list_head *sort_list)
  377. {
  378. struct rb_node *node;
  379. struct alloc_stat *data;
  380. for (;;) {
  381. node = rb_first(root);
  382. if (!node)
  383. break;
  384. rb_erase(node, root);
  385. data = rb_entry(node, struct alloc_stat, node);
  386. sort_insert(root_sorted, data, sort_list);
  387. }
  388. }
  389. static void sort_result(void)
  390. {
  391. __sort_result(&root_alloc_stat, &root_alloc_sorted, &alloc_sort);
  392. __sort_result(&root_caller_stat, &root_caller_sorted, &caller_sort);
  393. }
  394. static int __cmd_kmem(void)
  395. {
  396. int err = -EINVAL;
  397. struct perf_session *session = perf_session__new(input_name, O_RDONLY,
  398. 0, false, &event_ops);
  399. if (session == NULL)
  400. return -ENOMEM;
  401. if (perf_session__create_kernel_maps(session) < 0)
  402. goto out_delete;
  403. if (!perf_session__has_traces(session, "kmem record"))
  404. goto out_delete;
  405. setup_pager();
  406. err = perf_session__process_events(session, &event_ops);
  407. if (err != 0)
  408. goto out_delete;
  409. sort_result();
  410. print_result(session);
  411. out_delete:
  412. perf_session__delete(session);
  413. return err;
  414. }
  415. static const char * const kmem_usage[] = {
  416. "perf kmem [<options>] {record|stat}",
  417. NULL
  418. };
  419. static int ptr_cmp(struct alloc_stat *l, struct alloc_stat *r)
  420. {
  421. if (l->ptr < r->ptr)
  422. return -1;
  423. else if (l->ptr > r->ptr)
  424. return 1;
  425. return 0;
  426. }
  427. static struct sort_dimension ptr_sort_dimension = {
  428. .name = "ptr",
  429. .cmp = ptr_cmp,
  430. };
  431. static int callsite_cmp(struct alloc_stat *l, struct alloc_stat *r)
  432. {
  433. if (l->call_site < r->call_site)
  434. return -1;
  435. else if (l->call_site > r->call_site)
  436. return 1;
  437. return 0;
  438. }
  439. static struct sort_dimension callsite_sort_dimension = {
  440. .name = "callsite",
  441. .cmp = callsite_cmp,
  442. };
  443. static int hit_cmp(struct alloc_stat *l, struct alloc_stat *r)
  444. {
  445. if (l->hit < r->hit)
  446. return -1;
  447. else if (l->hit > r->hit)
  448. return 1;
  449. return 0;
  450. }
  451. static struct sort_dimension hit_sort_dimension = {
  452. .name = "hit",
  453. .cmp = hit_cmp,
  454. };
  455. static int bytes_cmp(struct alloc_stat *l, struct alloc_stat *r)
  456. {
  457. if (l->bytes_alloc < r->bytes_alloc)
  458. return -1;
  459. else if (l->bytes_alloc > r->bytes_alloc)
  460. return 1;
  461. return 0;
  462. }
  463. static struct sort_dimension bytes_sort_dimension = {
  464. .name = "bytes",
  465. .cmp = bytes_cmp,
  466. };
  467. static int frag_cmp(struct alloc_stat *l, struct alloc_stat *r)
  468. {
  469. double x, y;
  470. x = fragmentation(l->bytes_req, l->bytes_alloc);
  471. y = fragmentation(r->bytes_req, r->bytes_alloc);
  472. if (x < y)
  473. return -1;
  474. else if (x > y)
  475. return 1;
  476. return 0;
  477. }
  478. static struct sort_dimension frag_sort_dimension = {
  479. .name = "frag",
  480. .cmp = frag_cmp,
  481. };
  482. static int pingpong_cmp(struct alloc_stat *l, struct alloc_stat *r)
  483. {
  484. if (l->pingpong < r->pingpong)
  485. return -1;
  486. else if (l->pingpong > r->pingpong)
  487. return 1;
  488. return 0;
  489. }
  490. static struct sort_dimension pingpong_sort_dimension = {
  491. .name = "pingpong",
  492. .cmp = pingpong_cmp,
  493. };
  494. static struct sort_dimension *avail_sorts[] = {
  495. &ptr_sort_dimension,
  496. &callsite_sort_dimension,
  497. &hit_sort_dimension,
  498. &bytes_sort_dimension,
  499. &frag_sort_dimension,
  500. &pingpong_sort_dimension,
  501. };
  502. #define NUM_AVAIL_SORTS \
  503. (int)(sizeof(avail_sorts) / sizeof(struct sort_dimension *))
  504. static int sort_dimension__add(const char *tok, struct list_head *list)
  505. {
  506. struct sort_dimension *sort;
  507. int i;
  508. for (i = 0; i < NUM_AVAIL_SORTS; i++) {
  509. if (!strcmp(avail_sorts[i]->name, tok)) {
  510. sort = malloc(sizeof(*sort));
  511. if (!sort)
  512. die("malloc");
  513. memcpy(sort, avail_sorts[i], sizeof(*sort));
  514. list_add_tail(&sort->list, list);
  515. return 0;
  516. }
  517. }
  518. return -1;
  519. }
  520. static int setup_sorting(struct list_head *sort_list, const char *arg)
  521. {
  522. char *tok;
  523. char *str = strdup(arg);
  524. if (!str)
  525. die("strdup");
  526. while (true) {
  527. tok = strsep(&str, ",");
  528. if (!tok)
  529. break;
  530. if (sort_dimension__add(tok, sort_list) < 0) {
  531. error("Unknown --sort key: '%s'", tok);
  532. return -1;
  533. }
  534. }
  535. free(str);
  536. return 0;
  537. }
  538. static int parse_sort_opt(const struct option *opt __used,
  539. const char *arg, int unset __used)
  540. {
  541. if (!arg)
  542. return -1;
  543. if (caller_flag > alloc_flag)
  544. return setup_sorting(&caller_sort, arg);
  545. else
  546. return setup_sorting(&alloc_sort, arg);
  547. return 0;
  548. }
  549. static int parse_caller_opt(const struct option *opt __used,
  550. const char *arg __used, int unset __used)
  551. {
  552. caller_flag = (alloc_flag + 1);
  553. return 0;
  554. }
  555. static int parse_alloc_opt(const struct option *opt __used,
  556. const char *arg __used, int unset __used)
  557. {
  558. alloc_flag = (caller_flag + 1);
  559. return 0;
  560. }
  561. static int parse_line_opt(const struct option *opt __used,
  562. const char *arg, int unset __used)
  563. {
  564. int lines;
  565. if (!arg)
  566. return -1;
  567. lines = strtoul(arg, NULL, 10);
  568. if (caller_flag > alloc_flag)
  569. caller_lines = lines;
  570. else
  571. alloc_lines = lines;
  572. return 0;
  573. }
  574. static const struct option kmem_options[] = {
  575. OPT_STRING('i', "input", &input_name, "file",
  576. "input file name"),
  577. OPT_CALLBACK_NOOPT(0, "caller", NULL, NULL,
  578. "show per-callsite statistics",
  579. parse_caller_opt),
  580. OPT_CALLBACK_NOOPT(0, "alloc", NULL, NULL,
  581. "show per-allocation statistics",
  582. parse_alloc_opt),
  583. OPT_CALLBACK('s', "sort", NULL, "key[,key2...]",
  584. "sort by keys: ptr, call_site, bytes, hit, pingpong, frag",
  585. parse_sort_opt),
  586. OPT_CALLBACK('l', "line", NULL, "num",
  587. "show n lines",
  588. parse_line_opt),
  589. OPT_BOOLEAN(0, "raw-ip", &raw_ip, "show raw ip instead of symbol"),
  590. OPT_END()
  591. };
  592. static const char *record_args[] = {
  593. "record",
  594. "-a",
  595. "-R",
  596. "-f",
  597. "-c", "1",
  598. "-e", "kmem:kmalloc",
  599. "-e", "kmem:kmalloc_node",
  600. "-e", "kmem:kfree",
  601. "-e", "kmem:kmem_cache_alloc",
  602. "-e", "kmem:kmem_cache_alloc_node",
  603. "-e", "kmem:kmem_cache_free",
  604. };
  605. static int __cmd_record(int argc, const char **argv)
  606. {
  607. unsigned int rec_argc, i, j;
  608. const char **rec_argv;
  609. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  610. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  611. if (rec_argv == NULL)
  612. return -ENOMEM;
  613. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  614. rec_argv[i] = strdup(record_args[i]);
  615. for (j = 1; j < (unsigned int)argc; j++, i++)
  616. rec_argv[i] = argv[j];
  617. return cmd_record(i, rec_argv, NULL);
  618. }
  619. int cmd_kmem(int argc, const char **argv, const char *prefix __used)
  620. {
  621. argc = parse_options(argc, argv, kmem_options, kmem_usage, 0);
  622. if (!argc)
  623. usage_with_options(kmem_usage, kmem_options);
  624. symbol__init();
  625. if (!strncmp(argv[0], "rec", 3)) {
  626. return __cmd_record(argc, argv);
  627. } else if (!strcmp(argv[0], "stat")) {
  628. setup_cpunode_map();
  629. if (list_empty(&caller_sort))
  630. setup_sorting(&caller_sort, default_sort_order);
  631. if (list_empty(&alloc_sort))
  632. setup_sorting(&alloc_sort, default_sort_order);
  633. return __cmd_kmem();
  634. } else
  635. usage_with_options(kmem_usage, kmem_options);
  636. return 0;
  637. }