iw_rdma.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include "rds.h"
  36. #include "iw.h"
  37. /*
  38. * This is stored as mr->r_trans_private.
  39. */
  40. struct rds_iw_mr {
  41. struct rds_iw_device *device;
  42. struct rds_iw_mr_pool *pool;
  43. struct rdma_cm_id *cm_id;
  44. struct ib_mr *mr;
  45. struct ib_fast_reg_page_list *page_list;
  46. struct rds_iw_mapping mapping;
  47. unsigned char remap_count;
  48. };
  49. /*
  50. * Our own little MR pool
  51. */
  52. struct rds_iw_mr_pool {
  53. struct rds_iw_device *device; /* back ptr to the device that owns us */
  54. struct mutex flush_lock; /* serialize fmr invalidate */
  55. struct work_struct flush_worker; /* flush worker */
  56. spinlock_t list_lock; /* protect variables below */
  57. atomic_t item_count; /* total # of MRs */
  58. atomic_t dirty_count; /* # dirty of MRs */
  59. struct list_head dirty_list; /* dirty mappings */
  60. struct list_head clean_list; /* unused & unamapped MRs */
  61. atomic_t free_pinned; /* memory pinned by free MRs */
  62. unsigned long max_message_size; /* in pages */
  63. unsigned long max_items;
  64. unsigned long max_items_soft;
  65. unsigned long max_free_pinned;
  66. int max_pages;
  67. };
  68. static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
  69. static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
  70. static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  71. static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
  72. struct rds_iw_mr *ibmr,
  73. struct scatterlist *sg, unsigned int nents);
  74. static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  75. static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
  76. struct list_head *unmap_list,
  77. struct list_head *kill_list);
  78. static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  79. static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
  80. {
  81. struct rds_iw_device *iwdev;
  82. struct rds_iw_cm_id *i_cm_id;
  83. *rds_iwdev = NULL;
  84. *cm_id = NULL;
  85. list_for_each_entry(iwdev, &rds_iw_devices, list) {
  86. spin_lock_irq(&iwdev->spinlock);
  87. list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
  88. struct sockaddr_in *src_addr, *dst_addr;
  89. src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
  90. dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
  91. rdsdebug("local ipaddr = %x port %d, "
  92. "remote ipaddr = %x port %d"
  93. "..looking for %x port %d, "
  94. "remote ipaddr = %x port %d\n",
  95. src_addr->sin_addr.s_addr,
  96. src_addr->sin_port,
  97. dst_addr->sin_addr.s_addr,
  98. dst_addr->sin_port,
  99. rs->rs_bound_addr,
  100. rs->rs_bound_port,
  101. rs->rs_conn_addr,
  102. rs->rs_conn_port);
  103. #ifdef WORKING_TUPLE_DETECTION
  104. if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
  105. src_addr->sin_port == rs->rs_bound_port &&
  106. dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
  107. dst_addr->sin_port == rs->rs_conn_port) {
  108. #else
  109. /* FIXME - needs to compare the local and remote
  110. * ipaddr/port tuple, but the ipaddr is the only
  111. * available information in the rds_sock (as the rest are
  112. * zero'ed. It doesn't appear to be properly populated
  113. * during connection setup...
  114. */
  115. if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
  116. #endif
  117. spin_unlock_irq(&iwdev->spinlock);
  118. *rds_iwdev = iwdev;
  119. *cm_id = i_cm_id->cm_id;
  120. return 0;
  121. }
  122. }
  123. spin_unlock_irq(&iwdev->spinlock);
  124. }
  125. return 1;
  126. }
  127. static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
  128. {
  129. struct rds_iw_cm_id *i_cm_id;
  130. i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
  131. if (!i_cm_id)
  132. return -ENOMEM;
  133. i_cm_id->cm_id = cm_id;
  134. spin_lock_irq(&rds_iwdev->spinlock);
  135. list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
  136. spin_unlock_irq(&rds_iwdev->spinlock);
  137. return 0;
  138. }
  139. static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
  140. struct rdma_cm_id *cm_id)
  141. {
  142. struct rds_iw_cm_id *i_cm_id;
  143. spin_lock_irq(&rds_iwdev->spinlock);
  144. list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
  145. if (i_cm_id->cm_id == cm_id) {
  146. list_del(&i_cm_id->list);
  147. kfree(i_cm_id);
  148. break;
  149. }
  150. }
  151. spin_unlock_irq(&rds_iwdev->spinlock);
  152. }
  153. int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
  154. {
  155. struct sockaddr_in *src_addr, *dst_addr;
  156. struct rds_iw_device *rds_iwdev_old;
  157. struct rds_sock rs;
  158. struct rdma_cm_id *pcm_id;
  159. int rc;
  160. src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
  161. dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
  162. rs.rs_bound_addr = src_addr->sin_addr.s_addr;
  163. rs.rs_bound_port = src_addr->sin_port;
  164. rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
  165. rs.rs_conn_port = dst_addr->sin_port;
  166. rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
  167. if (rc)
  168. rds_iw_remove_cm_id(rds_iwdev, cm_id);
  169. return rds_iw_add_cm_id(rds_iwdev, cm_id);
  170. }
  171. void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
  172. {
  173. struct rds_iw_connection *ic = conn->c_transport_data;
  174. /* conn was previously on the nodev_conns_list */
  175. spin_lock_irq(&iw_nodev_conns_lock);
  176. BUG_ON(list_empty(&iw_nodev_conns));
  177. BUG_ON(list_empty(&ic->iw_node));
  178. list_del(&ic->iw_node);
  179. spin_lock(&rds_iwdev->spinlock);
  180. list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
  181. spin_unlock(&rds_iwdev->spinlock);
  182. spin_unlock_irq(&iw_nodev_conns_lock);
  183. ic->rds_iwdev = rds_iwdev;
  184. }
  185. void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
  186. {
  187. struct rds_iw_connection *ic = conn->c_transport_data;
  188. /* place conn on nodev_conns_list */
  189. spin_lock(&iw_nodev_conns_lock);
  190. spin_lock_irq(&rds_iwdev->spinlock);
  191. BUG_ON(list_empty(&ic->iw_node));
  192. list_del(&ic->iw_node);
  193. spin_unlock_irq(&rds_iwdev->spinlock);
  194. list_add_tail(&ic->iw_node, &iw_nodev_conns);
  195. spin_unlock(&iw_nodev_conns_lock);
  196. rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
  197. ic->rds_iwdev = NULL;
  198. }
  199. void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
  200. {
  201. struct rds_iw_connection *ic, *_ic;
  202. LIST_HEAD(tmp_list);
  203. /* avoid calling conn_destroy with irqs off */
  204. spin_lock_irq(list_lock);
  205. list_splice(list, &tmp_list);
  206. INIT_LIST_HEAD(list);
  207. spin_unlock_irq(list_lock);
  208. list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
  209. rds_conn_destroy(ic->conn);
  210. }
  211. static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
  212. struct scatterlist *list, unsigned int sg_len)
  213. {
  214. sg->list = list;
  215. sg->len = sg_len;
  216. sg->dma_len = 0;
  217. sg->dma_npages = 0;
  218. sg->bytes = 0;
  219. }
  220. static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
  221. struct rds_iw_scatterlist *sg)
  222. {
  223. struct ib_device *dev = rds_iwdev->dev;
  224. u64 *dma_pages = NULL;
  225. int i, j, ret;
  226. WARN_ON(sg->dma_len);
  227. sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
  228. if (unlikely(!sg->dma_len)) {
  229. printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
  230. return ERR_PTR(-EBUSY);
  231. }
  232. sg->bytes = 0;
  233. sg->dma_npages = 0;
  234. ret = -EINVAL;
  235. for (i = 0; i < sg->dma_len; ++i) {
  236. unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
  237. u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
  238. u64 end_addr;
  239. sg->bytes += dma_len;
  240. end_addr = dma_addr + dma_len;
  241. if (dma_addr & PAGE_MASK) {
  242. if (i > 0)
  243. goto out_unmap;
  244. dma_addr &= ~PAGE_MASK;
  245. }
  246. if (end_addr & PAGE_MASK) {
  247. if (i < sg->dma_len - 1)
  248. goto out_unmap;
  249. end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
  250. }
  251. sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
  252. }
  253. /* Now gather the dma addrs into one list */
  254. if (sg->dma_npages > fastreg_message_size)
  255. goto out_unmap;
  256. dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
  257. if (!dma_pages) {
  258. ret = -ENOMEM;
  259. goto out_unmap;
  260. }
  261. for (i = j = 0; i < sg->dma_len; ++i) {
  262. unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
  263. u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
  264. u64 end_addr;
  265. end_addr = dma_addr + dma_len;
  266. dma_addr &= ~PAGE_MASK;
  267. for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
  268. dma_pages[j++] = dma_addr;
  269. BUG_ON(j > sg->dma_npages);
  270. }
  271. return dma_pages;
  272. out_unmap:
  273. ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
  274. sg->dma_len = 0;
  275. kfree(dma_pages);
  276. return ERR_PTR(ret);
  277. }
  278. struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
  279. {
  280. struct rds_iw_mr_pool *pool;
  281. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  282. if (!pool) {
  283. printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
  284. return ERR_PTR(-ENOMEM);
  285. }
  286. pool->device = rds_iwdev;
  287. INIT_LIST_HEAD(&pool->dirty_list);
  288. INIT_LIST_HEAD(&pool->clean_list);
  289. mutex_init(&pool->flush_lock);
  290. spin_lock_init(&pool->list_lock);
  291. INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
  292. pool->max_message_size = fastreg_message_size;
  293. pool->max_items = fastreg_pool_size;
  294. pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
  295. pool->max_pages = fastreg_message_size;
  296. /* We never allow more than max_items MRs to be allocated.
  297. * When we exceed more than max_items_soft, we start freeing
  298. * items more aggressively.
  299. * Make sure that max_items > max_items_soft > max_items / 2
  300. */
  301. pool->max_items_soft = pool->max_items * 3 / 4;
  302. return pool;
  303. }
  304. void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
  305. {
  306. struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
  307. iinfo->rdma_mr_max = pool->max_items;
  308. iinfo->rdma_mr_size = pool->max_pages;
  309. }
  310. void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
  311. {
  312. flush_workqueue(rds_wq);
  313. rds_iw_flush_mr_pool(pool, 1);
  314. BUG_ON(atomic_read(&pool->item_count));
  315. BUG_ON(atomic_read(&pool->free_pinned));
  316. kfree(pool);
  317. }
  318. static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
  319. {
  320. struct rds_iw_mr *ibmr = NULL;
  321. unsigned long flags;
  322. spin_lock_irqsave(&pool->list_lock, flags);
  323. if (!list_empty(&pool->clean_list)) {
  324. ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
  325. list_del_init(&ibmr->mapping.m_list);
  326. }
  327. spin_unlock_irqrestore(&pool->list_lock, flags);
  328. return ibmr;
  329. }
  330. static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
  331. {
  332. struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
  333. struct rds_iw_mr *ibmr = NULL;
  334. int err = 0, iter = 0;
  335. while (1) {
  336. ibmr = rds_iw_reuse_fmr(pool);
  337. if (ibmr)
  338. return ibmr;
  339. /* No clean MRs - now we have the choice of either
  340. * allocating a fresh MR up to the limit imposed by the
  341. * driver, or flush any dirty unused MRs.
  342. * We try to avoid stalling in the send path if possible,
  343. * so we allocate as long as we're allowed to.
  344. *
  345. * We're fussy with enforcing the FMR limit, though. If the driver
  346. * tells us we can't use more than N fmrs, we shouldn't start
  347. * arguing with it */
  348. if (atomic_inc_return(&pool->item_count) <= pool->max_items)
  349. break;
  350. atomic_dec(&pool->item_count);
  351. if (++iter > 2) {
  352. rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
  353. return ERR_PTR(-EAGAIN);
  354. }
  355. /* We do have some empty MRs. Flush them out. */
  356. rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
  357. rds_iw_flush_mr_pool(pool, 0);
  358. }
  359. ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
  360. if (!ibmr) {
  361. err = -ENOMEM;
  362. goto out_no_cigar;
  363. }
  364. spin_lock_init(&ibmr->mapping.m_lock);
  365. INIT_LIST_HEAD(&ibmr->mapping.m_list);
  366. ibmr->mapping.m_mr = ibmr;
  367. err = rds_iw_init_fastreg(pool, ibmr);
  368. if (err)
  369. goto out_no_cigar;
  370. rds_iw_stats_inc(s_iw_rdma_mr_alloc);
  371. return ibmr;
  372. out_no_cigar:
  373. if (ibmr) {
  374. rds_iw_destroy_fastreg(pool, ibmr);
  375. kfree(ibmr);
  376. }
  377. atomic_dec(&pool->item_count);
  378. return ERR_PTR(err);
  379. }
  380. void rds_iw_sync_mr(void *trans_private, int direction)
  381. {
  382. struct rds_iw_mr *ibmr = trans_private;
  383. struct rds_iw_device *rds_iwdev = ibmr->device;
  384. switch (direction) {
  385. case DMA_FROM_DEVICE:
  386. ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
  387. ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
  388. break;
  389. case DMA_TO_DEVICE:
  390. ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
  391. ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
  392. break;
  393. }
  394. }
  395. static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
  396. {
  397. unsigned int item_count;
  398. item_count = atomic_read(&pool->item_count);
  399. if (free_all)
  400. return item_count;
  401. return 0;
  402. }
  403. /*
  404. * Flush our pool of MRs.
  405. * At a minimum, all currently unused MRs are unmapped.
  406. * If the number of MRs allocated exceeds the limit, we also try
  407. * to free as many MRs as needed to get back to this limit.
  408. */
  409. static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
  410. {
  411. struct rds_iw_mr *ibmr, *next;
  412. LIST_HEAD(unmap_list);
  413. LIST_HEAD(kill_list);
  414. unsigned long flags;
  415. unsigned int nfreed = 0, ncleaned = 0, free_goal;
  416. int ret = 0;
  417. rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
  418. mutex_lock(&pool->flush_lock);
  419. spin_lock_irqsave(&pool->list_lock, flags);
  420. /* Get the list of all mappings to be destroyed */
  421. list_splice_init(&pool->dirty_list, &unmap_list);
  422. if (free_all)
  423. list_splice_init(&pool->clean_list, &kill_list);
  424. spin_unlock_irqrestore(&pool->list_lock, flags);
  425. free_goal = rds_iw_flush_goal(pool, free_all);
  426. /* Batched invalidate of dirty MRs.
  427. * For FMR based MRs, the mappings on the unmap list are
  428. * actually members of an ibmr (ibmr->mapping). They either
  429. * migrate to the kill_list, or have been cleaned and should be
  430. * moved to the clean_list.
  431. * For fastregs, they will be dynamically allocated, and
  432. * will be destroyed by the unmap function.
  433. */
  434. if (!list_empty(&unmap_list)) {
  435. ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
  436. /* If we've been asked to destroy all MRs, move those
  437. * that were simply cleaned to the kill list */
  438. if (free_all)
  439. list_splice_init(&unmap_list, &kill_list);
  440. }
  441. /* Destroy any MRs that are past their best before date */
  442. list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
  443. rds_iw_stats_inc(s_iw_rdma_mr_free);
  444. list_del(&ibmr->mapping.m_list);
  445. rds_iw_destroy_fastreg(pool, ibmr);
  446. kfree(ibmr);
  447. nfreed++;
  448. }
  449. /* Anything that remains are laundered ibmrs, which we can add
  450. * back to the clean list. */
  451. if (!list_empty(&unmap_list)) {
  452. spin_lock_irqsave(&pool->list_lock, flags);
  453. list_splice(&unmap_list, &pool->clean_list);
  454. spin_unlock_irqrestore(&pool->list_lock, flags);
  455. }
  456. atomic_sub(ncleaned, &pool->dirty_count);
  457. atomic_sub(nfreed, &pool->item_count);
  458. mutex_unlock(&pool->flush_lock);
  459. return ret;
  460. }
  461. static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
  462. {
  463. struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
  464. rds_iw_flush_mr_pool(pool, 0);
  465. }
  466. void rds_iw_free_mr(void *trans_private, int invalidate)
  467. {
  468. struct rds_iw_mr *ibmr = trans_private;
  469. struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
  470. rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
  471. if (!pool)
  472. return;
  473. /* Return it to the pool's free list */
  474. rds_iw_free_fastreg(pool, ibmr);
  475. /* If we've pinned too many pages, request a flush */
  476. if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
  477. atomic_read(&pool->dirty_count) >= pool->max_items / 10)
  478. queue_work(rds_wq, &pool->flush_worker);
  479. if (invalidate) {
  480. if (likely(!in_interrupt())) {
  481. rds_iw_flush_mr_pool(pool, 0);
  482. } else {
  483. /* We get here if the user created a MR marked
  484. * as use_once and invalidate at the same time. */
  485. queue_work(rds_wq, &pool->flush_worker);
  486. }
  487. }
  488. }
  489. void rds_iw_flush_mrs(void)
  490. {
  491. struct rds_iw_device *rds_iwdev;
  492. list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
  493. struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
  494. if (pool)
  495. rds_iw_flush_mr_pool(pool, 0);
  496. }
  497. }
  498. void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
  499. struct rds_sock *rs, u32 *key_ret)
  500. {
  501. struct rds_iw_device *rds_iwdev;
  502. struct rds_iw_mr *ibmr = NULL;
  503. struct rdma_cm_id *cm_id;
  504. int ret;
  505. ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
  506. if (ret || !cm_id) {
  507. ret = -ENODEV;
  508. goto out;
  509. }
  510. if (!rds_iwdev->mr_pool) {
  511. ret = -ENODEV;
  512. goto out;
  513. }
  514. ibmr = rds_iw_alloc_mr(rds_iwdev);
  515. if (IS_ERR(ibmr))
  516. return ibmr;
  517. ibmr->cm_id = cm_id;
  518. ibmr->device = rds_iwdev;
  519. ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
  520. if (ret == 0)
  521. *key_ret = ibmr->mr->rkey;
  522. else
  523. printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
  524. out:
  525. if (ret) {
  526. if (ibmr)
  527. rds_iw_free_mr(ibmr, 0);
  528. ibmr = ERR_PTR(ret);
  529. }
  530. return ibmr;
  531. }
  532. /*
  533. * iWARP fastreg handling
  534. *
  535. * The life cycle of a fastreg registration is a bit different from
  536. * FMRs.
  537. * The idea behind fastreg is to have one MR, to which we bind different
  538. * mappings over time. To avoid stalling on the expensive map and invalidate
  539. * operations, these operations are pipelined on the same send queue on
  540. * which we want to send the message containing the r_key.
  541. *
  542. * This creates a bit of a problem for us, as we do not have the destination
  543. * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
  544. * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
  545. * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
  546. * before queuing the SEND. When completions for these arrive, they are
  547. * dispatched to the MR has a bit set showing that RDMa can be performed.
  548. *
  549. * There is another interesting aspect that's related to invalidation.
  550. * The application can request that a mapping is invalidated in FREE_MR.
  551. * The expectation there is that this invalidation step includes ALL
  552. * PREVIOUSLY FREED MRs.
  553. */
  554. static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
  555. struct rds_iw_mr *ibmr)
  556. {
  557. struct rds_iw_device *rds_iwdev = pool->device;
  558. struct ib_fast_reg_page_list *page_list = NULL;
  559. struct ib_mr *mr;
  560. int err;
  561. mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
  562. if (IS_ERR(mr)) {
  563. err = PTR_ERR(mr);
  564. printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
  565. return err;
  566. }
  567. /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
  568. * is not filled in.
  569. */
  570. page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
  571. if (IS_ERR(page_list)) {
  572. err = PTR_ERR(page_list);
  573. printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
  574. ib_dereg_mr(mr);
  575. return err;
  576. }
  577. ibmr->page_list = page_list;
  578. ibmr->mr = mr;
  579. return 0;
  580. }
  581. static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
  582. {
  583. struct rds_iw_mr *ibmr = mapping->m_mr;
  584. struct ib_send_wr f_wr, *failed_wr;
  585. int ret;
  586. /*
  587. * Perform a WR for the fast_reg_mr. Each individual page
  588. * in the sg list is added to the fast reg page list and placed
  589. * inside the fast_reg_mr WR. The key used is a rolling 8bit
  590. * counter, which should guarantee uniqueness.
  591. */
  592. ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
  593. mapping->m_rkey = ibmr->mr->rkey;
  594. memset(&f_wr, 0, sizeof(f_wr));
  595. f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
  596. f_wr.opcode = IB_WR_FAST_REG_MR;
  597. f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
  598. f_wr.wr.fast_reg.rkey = mapping->m_rkey;
  599. f_wr.wr.fast_reg.page_list = ibmr->page_list;
  600. f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
  601. f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
  602. f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
  603. IB_ACCESS_REMOTE_READ |
  604. IB_ACCESS_REMOTE_WRITE;
  605. f_wr.wr.fast_reg.iova_start = 0;
  606. f_wr.send_flags = IB_SEND_SIGNALED;
  607. failed_wr = &f_wr;
  608. ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
  609. BUG_ON(failed_wr != &f_wr);
  610. if (ret && printk_ratelimit())
  611. printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
  612. __func__, __LINE__, ret);
  613. return ret;
  614. }
  615. static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
  616. {
  617. struct ib_send_wr s_wr, *failed_wr;
  618. int ret = 0;
  619. if (!ibmr->cm_id->qp || !ibmr->mr)
  620. goto out;
  621. memset(&s_wr, 0, sizeof(s_wr));
  622. s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
  623. s_wr.opcode = IB_WR_LOCAL_INV;
  624. s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
  625. s_wr.send_flags = IB_SEND_SIGNALED;
  626. failed_wr = &s_wr;
  627. ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
  628. if (ret && printk_ratelimit()) {
  629. printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
  630. __func__, __LINE__, ret);
  631. goto out;
  632. }
  633. out:
  634. return ret;
  635. }
  636. static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
  637. struct rds_iw_mr *ibmr,
  638. struct scatterlist *sg,
  639. unsigned int sg_len)
  640. {
  641. struct rds_iw_device *rds_iwdev = pool->device;
  642. struct rds_iw_mapping *mapping = &ibmr->mapping;
  643. u64 *dma_pages;
  644. int i, ret = 0;
  645. rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
  646. dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
  647. if (IS_ERR(dma_pages)) {
  648. ret = PTR_ERR(dma_pages);
  649. dma_pages = NULL;
  650. goto out;
  651. }
  652. if (mapping->m_sg.dma_len > pool->max_message_size) {
  653. ret = -EMSGSIZE;
  654. goto out;
  655. }
  656. for (i = 0; i < mapping->m_sg.dma_npages; ++i)
  657. ibmr->page_list->page_list[i] = dma_pages[i];
  658. ret = rds_iw_rdma_build_fastreg(mapping);
  659. if (ret)
  660. goto out;
  661. rds_iw_stats_inc(s_iw_rdma_mr_used);
  662. out:
  663. kfree(dma_pages);
  664. return ret;
  665. }
  666. /*
  667. * "Free" a fastreg MR.
  668. */
  669. static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
  670. struct rds_iw_mr *ibmr)
  671. {
  672. unsigned long flags;
  673. int ret;
  674. if (!ibmr->mapping.m_sg.dma_len)
  675. return;
  676. ret = rds_iw_rdma_fastreg_inv(ibmr);
  677. if (ret)
  678. return;
  679. /* Try to post the LOCAL_INV WR to the queue. */
  680. spin_lock_irqsave(&pool->list_lock, flags);
  681. list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
  682. atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
  683. atomic_inc(&pool->dirty_count);
  684. spin_unlock_irqrestore(&pool->list_lock, flags);
  685. }
  686. static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
  687. struct list_head *unmap_list,
  688. struct list_head *kill_list)
  689. {
  690. struct rds_iw_mapping *mapping, *next;
  691. unsigned int ncleaned = 0;
  692. LIST_HEAD(laundered);
  693. /* Batched invalidation of fastreg MRs.
  694. * Why do we do it this way, even though we could pipeline unmap
  695. * and remap? The reason is the application semantics - when the
  696. * application requests an invalidation of MRs, it expects all
  697. * previously released R_Keys to become invalid.
  698. *
  699. * If we implement MR reuse naively, we risk memory corruption
  700. * (this has actually been observed). So the default behavior
  701. * requires that a MR goes through an explicit unmap operation before
  702. * we can reuse it again.
  703. *
  704. * We could probably improve on this a little, by allowing immediate
  705. * reuse of a MR on the same socket (eg you could add small
  706. * cache of unused MRs to strct rds_socket - GET_MR could grab one
  707. * of these without requiring an explicit invalidate).
  708. */
  709. while (!list_empty(unmap_list)) {
  710. unsigned long flags;
  711. spin_lock_irqsave(&pool->list_lock, flags);
  712. list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
  713. list_move(&mapping->m_list, &laundered);
  714. ncleaned++;
  715. }
  716. spin_unlock_irqrestore(&pool->list_lock, flags);
  717. }
  718. /* Move all laundered mappings back to the unmap list.
  719. * We do not kill any WRs right now - it doesn't seem the
  720. * fastreg API has a max_remap limit. */
  721. list_splice_init(&laundered, unmap_list);
  722. return ncleaned;
  723. }
  724. static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
  725. struct rds_iw_mr *ibmr)
  726. {
  727. if (ibmr->page_list)
  728. ib_free_fast_reg_page_list(ibmr->page_list);
  729. if (ibmr->mr)
  730. ib_dereg_mr(ibmr->mr);
  731. }