irq.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. /*
  2. * linux/arch/ia64/kernel/irq.c
  3. *
  4. * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  5. *
  6. * This file contains the code used by various IRQ handling routines:
  7. * asking for different IRQs should be done through these routines
  8. * instead of just grabbing them. Thus setups with different IRQ numbers
  9. * shouldn't result in any weird surprises, and installing new handlers
  10. * should be easier.
  11. *
  12. * Copyright (C) Ashok Raj<ashok.raj@intel.com>, Intel Corporation 2004
  13. *
  14. * 4/14/2004: Added code to handle cpu migration and do safe irq
  15. * migration without losing interrupts for iosapic
  16. * architecture.
  17. */
  18. #include <asm/delay.h>
  19. #include <asm/uaccess.h>
  20. #include <linux/module.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/kernel_stat.h>
  24. /*
  25. * 'what should we do if we get a hw irq event on an illegal vector'.
  26. * each architecture has to answer this themselves.
  27. */
  28. void ack_bad_irq(unsigned int irq)
  29. {
  30. printk(KERN_ERR "Unexpected irq vector 0x%x on CPU %u!\n", irq, smp_processor_id());
  31. }
  32. #ifdef CONFIG_IA64_GENERIC
  33. ia64_vector __ia64_irq_to_vector(int irq)
  34. {
  35. return irq_cfg[irq].vector;
  36. }
  37. unsigned int __ia64_local_vector_to_irq (ia64_vector vec)
  38. {
  39. return __get_cpu_var(vector_irq)[vec];
  40. }
  41. #endif
  42. /*
  43. * Interrupt statistics:
  44. */
  45. atomic_t irq_err_count;
  46. /*
  47. * /proc/interrupts printing:
  48. */
  49. int arch_show_interrupts(struct seq_file *p, int prec)
  50. {
  51. seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
  52. return 0;
  53. }
  54. #ifdef CONFIG_SMP
  55. static char irq_redir [NR_IRQS]; // = { [0 ... NR_IRQS-1] = 1 };
  56. void set_irq_affinity_info (unsigned int irq, int hwid, int redir)
  57. {
  58. if (irq < NR_IRQS) {
  59. cpumask_copy(irq_get_irq_data(irq)->affinity,
  60. cpumask_of(cpu_logical_id(hwid)));
  61. irq_redir[irq] = (char) (redir & 0xff);
  62. }
  63. }
  64. bool is_affinity_mask_valid(const struct cpumask *cpumask)
  65. {
  66. if (ia64_platform_is("sn2")) {
  67. /* Only allow one CPU to be specified in the smp_affinity mask */
  68. if (cpumask_weight(cpumask) != 1)
  69. return false;
  70. }
  71. return true;
  72. }
  73. #endif /* CONFIG_SMP */
  74. #ifdef CONFIG_HOTPLUG_CPU
  75. unsigned int vectors_in_migration[NR_IRQS];
  76. /*
  77. * Since cpu_online_mask is already updated, we just need to check for
  78. * affinity that has zeros
  79. */
  80. static void migrate_irqs(void)
  81. {
  82. int irq, new_cpu;
  83. for (irq=0; irq < NR_IRQS; irq++) {
  84. struct irq_desc *desc = irq_to_desc(irq);
  85. struct irq_data *data = irq_desc_get_irq_data(desc);
  86. struct irq_chip *chip = irq_data_get_irq_chip(data);
  87. if (irqd_irq_disabled(data))
  88. continue;
  89. /*
  90. * No handling for now.
  91. * TBD: Implement a disable function so we can now
  92. * tell CPU not to respond to these local intr sources.
  93. * such as ITV,CPEI,MCA etc.
  94. */
  95. if (irqd_is_per_cpu(data))
  96. continue;
  97. if (cpumask_any_and(data->affinity, cpu_online_mask)
  98. >= nr_cpu_ids) {
  99. /*
  100. * Save it for phase 2 processing
  101. */
  102. vectors_in_migration[irq] = irq;
  103. new_cpu = cpumask_any(cpu_online_mask);
  104. /*
  105. * Al three are essential, currently WARN_ON.. maybe panic?
  106. */
  107. if (chip && chip->irq_disable &&
  108. chip->irq_enable && chip->irq_set_affinity) {
  109. chip->irq_disable(data);
  110. chip->irq_set_affinity(data,
  111. cpumask_of(new_cpu), false);
  112. chip->irq_enable(data);
  113. } else {
  114. WARN_ON((!chip || !chip->irq_disable ||
  115. !chip->irq_enable ||
  116. !chip->irq_set_affinity));
  117. }
  118. }
  119. }
  120. }
  121. void fixup_irqs(void)
  122. {
  123. unsigned int irq;
  124. extern void ia64_process_pending_intr(void);
  125. extern volatile int time_keeper_id;
  126. /* Mask ITV to disable timer */
  127. ia64_set_itv(1 << 16);
  128. /*
  129. * Find a new timesync master
  130. */
  131. if (smp_processor_id() == time_keeper_id) {
  132. time_keeper_id = cpumask_first(cpu_online_mask);
  133. printk ("CPU %d is now promoted to time-keeper master\n", time_keeper_id);
  134. }
  135. /*
  136. * Phase 1: Locate IRQs bound to this cpu and
  137. * relocate them for cpu removal.
  138. */
  139. migrate_irqs();
  140. /*
  141. * Phase 2: Perform interrupt processing for all entries reported in
  142. * local APIC.
  143. */
  144. ia64_process_pending_intr();
  145. /*
  146. * Phase 3: Now handle any interrupts not captured in local APIC.
  147. * This is to account for cases that device interrupted during the time the
  148. * rte was being disabled and re-programmed.
  149. */
  150. for (irq=0; irq < NR_IRQS; irq++) {
  151. if (vectors_in_migration[irq]) {
  152. struct pt_regs *old_regs = set_irq_regs(NULL);
  153. vectors_in_migration[irq]=0;
  154. generic_handle_irq(irq);
  155. set_irq_regs(old_regs);
  156. }
  157. }
  158. /*
  159. * Now let processor die. We do irq disable and max_xtp() to
  160. * ensure there is no more interrupts routed to this processor.
  161. * But the local timer interrupt can have 1 pending which we
  162. * take care in timer_interrupt().
  163. */
  164. max_xtp();
  165. local_irq_disable();
  166. }
  167. #endif