cpufreq.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /* linux/arch/arm/mach-s5pv210/cpufreq.c
  2. *
  3. * Copyright (c) 2010 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * CPU frequency scaling for S5PC110/S5PV210
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/io.h>
  18. #include <linux/cpufreq.h>
  19. #include <mach/map.h>
  20. #include <mach/regs-clock.h>
  21. static struct clk *cpu_clk;
  22. static struct clk *dmc0_clk;
  23. static struct clk *dmc1_clk;
  24. static struct cpufreq_freqs freqs;
  25. /* APLL M,P,S values for 1G/800Mhz */
  26. #define APLL_VAL_1000 ((1 << 31) | (125 << 16) | (3 << 8) | 1)
  27. #define APLL_VAL_800 ((1 << 31) | (100 << 16) | (3 << 8) | 1)
  28. /*
  29. * DRAM configurations to calculate refresh counter for changing
  30. * frequency of memory.
  31. */
  32. struct dram_conf {
  33. unsigned long freq; /* HZ */
  34. unsigned long refresh; /* DRAM refresh counter * 1000 */
  35. };
  36. /* DRAM configuration (DMC0 and DMC1) */
  37. static struct dram_conf s5pv210_dram_conf[2];
  38. enum perf_level {
  39. L0, L1, L2, L3, L4,
  40. };
  41. enum s5pv210_mem_type {
  42. LPDDR = 0x1,
  43. LPDDR2 = 0x2,
  44. DDR2 = 0x4,
  45. };
  46. enum s5pv210_dmc_port {
  47. DMC0 = 0,
  48. DMC1,
  49. };
  50. static struct cpufreq_frequency_table s5pv210_freq_table[] = {
  51. {L0, 1000*1000},
  52. {L1, 800*1000},
  53. {L2, 400*1000},
  54. {L3, 200*1000},
  55. {L4, 100*1000},
  56. {0, CPUFREQ_TABLE_END},
  57. };
  58. static u32 clkdiv_val[5][11] = {
  59. /*
  60. * Clock divider value for following
  61. * { APLL, A2M, HCLK_MSYS, PCLK_MSYS,
  62. * HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS,
  63. * ONEDRAM, MFC, G3D }
  64. */
  65. /* L0 : [1000/200/100][166/83][133/66][200/200] */
  66. {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0},
  67. /* L1 : [800/200/100][166/83][133/66][200/200] */
  68. {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0},
  69. /* L2 : [400/200/100][166/83][133/66][200/200] */
  70. {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  71. /* L3 : [200/200/100][166/83][133/66][200/200] */
  72. {3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  73. /* L4 : [100/100/100][83/83][66/66][100/100] */
  74. {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0},
  75. };
  76. /*
  77. * This function set DRAM refresh counter
  78. * accoriding to operating frequency of DRAM
  79. * ch: DMC port number 0 or 1
  80. * freq: Operating frequency of DRAM(KHz)
  81. */
  82. static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq)
  83. {
  84. unsigned long tmp, tmp1;
  85. void __iomem *reg = NULL;
  86. if (ch == DMC0) {
  87. reg = (S5P_VA_DMC0 + 0x30);
  88. } else if (ch == DMC1) {
  89. reg = (S5P_VA_DMC1 + 0x30);
  90. } else {
  91. printk(KERN_ERR "Cannot find DMC port\n");
  92. return;
  93. }
  94. /* Find current DRAM frequency */
  95. tmp = s5pv210_dram_conf[ch].freq;
  96. do_div(tmp, freq);
  97. tmp1 = s5pv210_dram_conf[ch].refresh;
  98. do_div(tmp1, tmp);
  99. __raw_writel(tmp1, reg);
  100. }
  101. int s5pv210_verify_speed(struct cpufreq_policy *policy)
  102. {
  103. if (policy->cpu)
  104. return -EINVAL;
  105. return cpufreq_frequency_table_verify(policy, s5pv210_freq_table);
  106. }
  107. unsigned int s5pv210_getspeed(unsigned int cpu)
  108. {
  109. if (cpu)
  110. return 0;
  111. return clk_get_rate(cpu_clk) / 1000;
  112. }
  113. static int s5pv210_target(struct cpufreq_policy *policy,
  114. unsigned int target_freq,
  115. unsigned int relation)
  116. {
  117. unsigned long reg;
  118. unsigned int index, priv_index;
  119. unsigned int pll_changing = 0;
  120. unsigned int bus_speed_changing = 0;
  121. freqs.old = s5pv210_getspeed(0);
  122. if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
  123. target_freq, relation, &index))
  124. return -EINVAL;
  125. freqs.new = s5pv210_freq_table[index].frequency;
  126. freqs.cpu = 0;
  127. if (freqs.new == freqs.old)
  128. return 0;
  129. /* Finding current running level index */
  130. if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
  131. freqs.old, relation, &priv_index))
  132. return -EINVAL;
  133. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  134. if (freqs.new > freqs.old) {
  135. /* Voltage up: will be implemented */
  136. }
  137. /* Check if there need to change PLL */
  138. if ((index == L0) || (priv_index == L0))
  139. pll_changing = 1;
  140. /* Check if there need to change System bus clock */
  141. if ((index == L4) || (priv_index == L4))
  142. bus_speed_changing = 1;
  143. if (bus_speed_changing) {
  144. /*
  145. * Reconfigure DRAM refresh counter value for minimum
  146. * temporary clock while changing divider.
  147. * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287
  148. */
  149. if (pll_changing)
  150. s5pv210_set_refresh(DMC1, 83000);
  151. else
  152. s5pv210_set_refresh(DMC1, 100000);
  153. s5pv210_set_refresh(DMC0, 83000);
  154. }
  155. /*
  156. * APLL should be changed in this level
  157. * APLL -> MPLL(for stable transition) -> APLL
  158. * Some clock source's clock API are not prepared.
  159. * Do not use clock API in below code.
  160. */
  161. if (pll_changing) {
  162. /*
  163. * 1. Temporary Change divider for MFC and G3D
  164. * SCLKA2M(200/1=200)->(200/4=50)Mhz
  165. */
  166. reg = __raw_readl(S5P_CLK_DIV2);
  167. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  168. reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) |
  169. (3 << S5P_CLKDIV2_MFC_SHIFT);
  170. __raw_writel(reg, S5P_CLK_DIV2);
  171. /* For MFC, G3D dividing */
  172. do {
  173. reg = __raw_readl(S5P_CLKDIV_STAT0);
  174. } while (reg & ((1 << 16) | (1 << 17)));
  175. /*
  176. * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX
  177. * (200/4=50)->(667/4=166)Mhz
  178. */
  179. reg = __raw_readl(S5P_CLK_SRC2);
  180. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  181. reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) |
  182. (1 << S5P_CLKSRC2_MFC_SHIFT);
  183. __raw_writel(reg, S5P_CLK_SRC2);
  184. do {
  185. reg = __raw_readl(S5P_CLKMUX_STAT1);
  186. } while (reg & ((1 << 7) | (1 << 3)));
  187. /*
  188. * 3. DMC1 refresh count for 133Mhz if (index == L4) is
  189. * true refresh counter is already programed in upper
  190. * code. 0x287@83Mhz
  191. */
  192. if (!bus_speed_changing)
  193. s5pv210_set_refresh(DMC1, 133000);
  194. /* 4. SCLKAPLL -> SCLKMPLL */
  195. reg = __raw_readl(S5P_CLK_SRC0);
  196. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  197. reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT);
  198. __raw_writel(reg, S5P_CLK_SRC0);
  199. do {
  200. reg = __raw_readl(S5P_CLKMUX_STAT0);
  201. } while (reg & (0x1 << 18));
  202. }
  203. /* Change divider */
  204. reg = __raw_readl(S5P_CLK_DIV0);
  205. reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK |
  206. S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK |
  207. S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK |
  208. S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK);
  209. reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) |
  210. (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) |
  211. (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) |
  212. (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) |
  213. (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) |
  214. (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) |
  215. (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) |
  216. (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT));
  217. __raw_writel(reg, S5P_CLK_DIV0);
  218. do {
  219. reg = __raw_readl(S5P_CLKDIV_STAT0);
  220. } while (reg & 0xff);
  221. /* ARM MCS value changed */
  222. reg = __raw_readl(S5P_ARM_MCS_CON);
  223. reg &= ~0x3;
  224. if (index >= L3)
  225. reg |= 0x3;
  226. else
  227. reg |= 0x1;
  228. __raw_writel(reg, S5P_ARM_MCS_CON);
  229. if (pll_changing) {
  230. /* 5. Set Lock time = 30us*24Mhz = 0x2cf */
  231. __raw_writel(0x2cf, S5P_APLL_LOCK);
  232. /*
  233. * 6. Turn on APLL
  234. * 6-1. Set PMS values
  235. * 6-2. Wait untile the PLL is locked
  236. */
  237. if (index == L0)
  238. __raw_writel(APLL_VAL_1000, S5P_APLL_CON);
  239. else
  240. __raw_writel(APLL_VAL_800, S5P_APLL_CON);
  241. do {
  242. reg = __raw_readl(S5P_APLL_CON);
  243. } while (!(reg & (0x1 << 29)));
  244. /*
  245. * 7. Change souce clock from SCLKMPLL(667Mhz)
  246. * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX
  247. * (667/4=166)->(200/4=50)Mhz
  248. */
  249. reg = __raw_readl(S5P_CLK_SRC2);
  250. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  251. reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) |
  252. (0 << S5P_CLKSRC2_MFC_SHIFT);
  253. __raw_writel(reg, S5P_CLK_SRC2);
  254. do {
  255. reg = __raw_readl(S5P_CLKMUX_STAT1);
  256. } while (reg & ((1 << 7) | (1 << 3)));
  257. /*
  258. * 8. Change divider for MFC and G3D
  259. * (200/4=50)->(200/1=200)Mhz
  260. */
  261. reg = __raw_readl(S5P_CLK_DIV2);
  262. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  263. reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) |
  264. (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT);
  265. __raw_writel(reg, S5P_CLK_DIV2);
  266. /* For MFC, G3D dividing */
  267. do {
  268. reg = __raw_readl(S5P_CLKDIV_STAT0);
  269. } while (reg & ((1 << 16) | (1 << 17)));
  270. /* 9. Change MPLL to APLL in MSYS_MUX */
  271. reg = __raw_readl(S5P_CLK_SRC0);
  272. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  273. reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT);
  274. __raw_writel(reg, S5P_CLK_SRC0);
  275. do {
  276. reg = __raw_readl(S5P_CLKMUX_STAT0);
  277. } while (reg & (0x1 << 18));
  278. /*
  279. * 10. DMC1 refresh counter
  280. * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c
  281. * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618
  282. */
  283. if (!bus_speed_changing)
  284. s5pv210_set_refresh(DMC1, 200000);
  285. }
  286. /*
  287. * L4 level need to change memory bus speed, hence onedram clock divier
  288. * and memory refresh parameter should be changed
  289. */
  290. if (bus_speed_changing) {
  291. reg = __raw_readl(S5P_CLK_DIV6);
  292. reg &= ~S5P_CLKDIV6_ONEDRAM_MASK;
  293. reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT);
  294. __raw_writel(reg, S5P_CLK_DIV6);
  295. do {
  296. reg = __raw_readl(S5P_CLKDIV_STAT1);
  297. } while (reg & (1 << 15));
  298. /* Reconfigure DRAM refresh counter value */
  299. if (index != L4) {
  300. /*
  301. * DMC0 : 166Mhz
  302. * DMC1 : 200Mhz
  303. */
  304. s5pv210_set_refresh(DMC0, 166000);
  305. s5pv210_set_refresh(DMC1, 200000);
  306. } else {
  307. /*
  308. * DMC0 : 83Mhz
  309. * DMC1 : 100Mhz
  310. */
  311. s5pv210_set_refresh(DMC0, 83000);
  312. s5pv210_set_refresh(DMC1, 100000);
  313. }
  314. }
  315. if (freqs.new < freqs.old) {
  316. /* Voltage down: will be implemented */
  317. }
  318. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  319. printk(KERN_DEBUG "Perf changed[L%d]\n", index);
  320. return 0;
  321. }
  322. #ifdef CONFIG_PM
  323. static int s5pv210_cpufreq_suspend(struct cpufreq_policy *policy)
  324. {
  325. return 0;
  326. }
  327. static int s5pv210_cpufreq_resume(struct cpufreq_policy *policy)
  328. {
  329. return 0;
  330. }
  331. #endif
  332. static int check_mem_type(void __iomem *dmc_reg)
  333. {
  334. unsigned long val;
  335. val = __raw_readl(dmc_reg + 0x4);
  336. val = (val & (0xf << 8));
  337. return val >> 8;
  338. }
  339. static int __init s5pv210_cpu_init(struct cpufreq_policy *policy)
  340. {
  341. unsigned long mem_type;
  342. cpu_clk = clk_get(NULL, "armclk");
  343. if (IS_ERR(cpu_clk))
  344. return PTR_ERR(cpu_clk);
  345. dmc0_clk = clk_get(NULL, "sclk_dmc0");
  346. if (IS_ERR(dmc0_clk)) {
  347. clk_put(cpu_clk);
  348. return PTR_ERR(dmc0_clk);
  349. }
  350. dmc1_clk = clk_get(NULL, "hclk_msys");
  351. if (IS_ERR(dmc1_clk)) {
  352. clk_put(dmc0_clk);
  353. clk_put(cpu_clk);
  354. return PTR_ERR(dmc1_clk);
  355. }
  356. if (policy->cpu != 0)
  357. return -EINVAL;
  358. /*
  359. * check_mem_type : This driver only support LPDDR & LPDDR2.
  360. * other memory type is not supported.
  361. */
  362. mem_type = check_mem_type(S5P_VA_DMC0);
  363. if ((mem_type != LPDDR) && (mem_type != LPDDR2)) {
  364. printk(KERN_ERR "CPUFreq doesn't support this memory type\n");
  365. return -EINVAL;
  366. }
  367. /* Find current refresh counter and frequency each DMC */
  368. s5pv210_dram_conf[0].refresh = (__raw_readl(S5P_VA_DMC0 + 0x30) * 1000);
  369. s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk);
  370. s5pv210_dram_conf[1].refresh = (__raw_readl(S5P_VA_DMC1 + 0x30) * 1000);
  371. s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk);
  372. policy->cur = policy->min = policy->max = s5pv210_getspeed(0);
  373. cpufreq_frequency_table_get_attr(s5pv210_freq_table, policy->cpu);
  374. policy->cpuinfo.transition_latency = 40000;
  375. return cpufreq_frequency_table_cpuinfo(policy, s5pv210_freq_table);
  376. }
  377. static struct cpufreq_driver s5pv210_driver = {
  378. .flags = CPUFREQ_STICKY,
  379. .verify = s5pv210_verify_speed,
  380. .target = s5pv210_target,
  381. .get = s5pv210_getspeed,
  382. .init = s5pv210_cpu_init,
  383. .name = "s5pv210",
  384. #ifdef CONFIG_PM
  385. .suspend = s5pv210_cpufreq_suspend,
  386. .resume = s5pv210_cpufreq_resume,
  387. #endif
  388. };
  389. static int __init s5pv210_cpufreq_init(void)
  390. {
  391. return cpufreq_register_driver(&s5pv210_driver);
  392. }
  393. late_initcall(s5pv210_cpufreq_init);