123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 |
- /*
- Author : Shay Gal-On, EEMBC
- This file is part of EEMBC(R) and CoreMark(TM), which are Copyright (C) 2009
- All rights reserved.
- EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the
- CoreMark License that is distributed with the official EEMBC COREMARK Software release.
- If you received this EEMBC CoreMark Software without the accompanying CoreMark License,
- you must discontinue use and download the official release from www.coremark.org.
- Also, if you are publicly displaying scores generated from the EEMBC CoreMark software,
- make sure that you are in compliance with Run and Reporting rules specified in the accompanying readme.txt file.
- EEMBC
- 4354 Town Center Blvd. Suite 114-200
- El Dorado Hills, CA, 95762
- */
- #include "coremark.h"
- /*
- Topic: Description
- Matrix manipulation benchmark
-
- This very simple algorithm forms the basis of many more complex algorithms.
-
- The tight inner loop is the focus of many optimizations (compiler as well as hardware based)
- and is thus relevant for embedded processing.
-
- The total available data space will be divided to 3 parts:
- NxN Matrix A - initialized with small values (upper 3/4 of the bits all zero).
- NxN Matrix B - initialized with medium values (upper half of the bits all zero).
- NxN Matrix C - used for the result.
- The actual values for A and B must be derived based on input that is not available at compile time.
- */
- ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val);
- ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval);
- void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val);
- void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
- void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
- void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
- void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val);
- #define matrix_test_next(x) (x+1)
- #define matrix_clip(x,y) ((y) ? (x) & 0x0ff : (x) & 0x0ffff)
- #define matrix_big(x) (0xf000 | (x))
- #define bit_extract(x,from,to) (((x)>>(from)) & (~(0xffffffff << (to))))
- #if CORE_DEBUG
- void printmat(MATDAT *A, ee_u32 N, char *name) {
- ee_u32 i,j;
- ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
- for (i=0; i<N; i++) {
- for (j=0; j<N; j++) {
- if (j!=0)
- ee_printf(",");
- ee_printf("%d",A[i*N+j]);
- }
- ee_printf("\n");
- }
- }
- void printmatC(MATRES *C, ee_u32 N, char *name) {
- ee_u32 i,j;
- ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
- for (i=0; i<N; i++) {
- for (j=0; j<N; j++) {
- if (j!=0)
- ee_printf(",");
- ee_printf("%d",C[i*N+j]);
- }
- ee_printf("\n");
- }
- }
- #endif
- /* Function: core_bench_matrix
- Benchmark function
- Iterate <matrix_test> N times,
- changing the matrix values slightly by a constant amount each time.
- */
- ee_u16 core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc) {
- ee_u32 N=p->N;
- MATRES *C=p->C;
- MATDAT *A=p->A;
- MATDAT *B=p->B;
- MATDAT val=(MATDAT)seed;
- crc=crc16(matrix_test(N,C,A,B,val),crc);
- return crc;
- }
- /* Function: matrix_test
- Perform matrix manipulation.
- Parameters:
- N - Dimensions of the matrix.
- C - memory for result matrix.
- A - input matrix
- B - operator matrix (not changed during operations)
- Returns:
- A CRC value that captures all results calculated in the function.
- In particular, crc of the value calculated on the result matrix
- after each step by <matrix_sum>.
- Operation:
-
- 1 - Add a constant value to all elements of a matrix.
- 2 - Multiply a matrix by a constant.
- 3 - Multiply a matrix by a vector.
- 4 - Multiply a matrix by a matrix.
- 5 - Add a constant value to all elements of a matrix.
- After the last step, matrix A is back to original contents.
- */
- ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val) {
- ee_u16 crc=0;
- MATDAT clipval=matrix_big(val);
- matrix_add_const(N,A,val); /* make sure data changes */
- #if CORE_DEBUG
- printmat(A,N,"matrix_add_const");
- #endif
- matrix_mul_const(N,C,A,val);
- crc=crc16(matrix_sum(N,C,clipval),crc);
- #if CORE_DEBUG
- printmatC(C,N,"matrix_mul_const");
- #endif
- matrix_mul_vect(N,C,A,B);
- crc=crc16(matrix_sum(N,C,clipval),crc);
- #if CORE_DEBUG
- printmatC(C,N,"matrix_mul_vect");
- #endif
- matrix_mul_matrix(N,C,A,B);
- crc=crc16(matrix_sum(N,C,clipval),crc);
- #if CORE_DEBUG
- printmatC(C,N,"matrix_mul_matrix");
- #endif
- matrix_mul_matrix_bitextract(N,C,A,B);
- crc=crc16(matrix_sum(N,C,clipval),crc);
- #if CORE_DEBUG
- printmatC(C,N,"matrix_mul_matrix_bitextract");
- #endif
-
- matrix_add_const(N,A,-val); /* return matrix to initial value */
- return crc;
- }
- /* Function : matrix_init
- Initialize the memory block for matrix benchmarking.
- Parameters:
- blksize - Size of memory to be initialized.
- memblk - Pointer to memory block.
- seed - Actual values chosen depend on the seed parameter.
- p - pointers to <mat_params> containing initialized matrixes.
- Returns:
- Matrix dimensions.
-
- Note:
- The seed parameter MUST be supplied from a source that cannot be determined at compile time
- */
- ee_u32 core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p) {
- ee_u32 N=0;
- MATDAT *A;
- MATDAT *B;
- ee_s32 order=1;
- MATDAT val;
- ee_u32 i=0,j=0;
- if (seed==0)
- seed=1;
- while (j<blksize) {
- i++;
- j=i*i*2*4;
- }
- N=i-1;
- A=(MATDAT *)align_mem(memblk);
- B=A+N*N;
- for (i=0; i<N; i++) {
- for (j=0; j<N; j++) {
- seed = ( ( order * seed ) % 65536 );
- val = (seed + order);
- val=matrix_clip(val,0);
- B[i*N+j] = val;
- val = (val + order);
- val=matrix_clip(val,1);
- A[i*N+j] = val;
- order++;
- }
- }
- p->A=A;
- p->B=B;
- p->C=(MATRES *)align_mem(B+N*N);
- p->N=N;
- #if CORE_DEBUG
- printmat(A,N,"A");
- printmat(B,N,"B");
- #endif
- return N;
- }
- /* Function: matrix_sum
- Calculate a function that depends on the values of elements in the matrix.
- For each element, accumulate into a temporary variable.
-
- As long as this value is under the parameter clipval,
- add 1 to the result if the element is bigger then the previous.
-
- Otherwise, reset the accumulator and add 10 to the result.
- */
- ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval) {
- MATRES tmp=0,prev=0,cur=0;
- ee_s16 ret=0;
- ee_u32 i,j;
- for (i=0; i<N; i++) {
- for (j=0; j<N; j++) {
- cur=C[i*N+j];
- tmp+=cur;
- if (tmp>clipval) {
- ret+=10;
- tmp=0;
- } else {
- ret += (cur>prev) ? 1 : 0;
- }
- prev=cur;
- }
- }
- return ret;
- }
- /* Function: matrix_mul_const
- Multiply a matrix by a constant.
- This could be used as a scaler for instance.
- */
- void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val) {
- ee_u32 i,j;
- for (i=0; i<N; i++) {
- for (j=0; j<N; j++) {
- C[i*N+j]=(MATRES)A[i*N+j] * (MATRES)val;
- }
- }
- }
- /* Function: matrix_add_const
- Add a constant value to all elements of a matrix.
- */
- void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val) {
- ee_u32 i,j;
- for (i=0; i<N; i++) {
- for (j=0; j<N; j++) {
- A[i*N+j] += val;
- }
- }
- }
- /* Function: matrix_mul_vect
- Multiply a matrix by a vector.
- This is common in many simple filters (e.g. fir where a vector of coefficients is applied to the matrix.)
- */
- void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
- ee_u32 i,j;
- for (i=0; i<N; i++) {
- C[i]=0;
- for (j=0; j<N; j++) {
- C[i]+=(MATRES)A[i*N+j] * (MATRES)B[j];
- }
- }
- }
- /* Function: matrix_mul_matrix
- Multiply a matrix by a matrix.
- Basic code is used in many algorithms, mostly with minor changes such as scaling.
- */
- void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
- ee_u32 i,j,k;
- for (i=0; i<N; i++) {
- for (j=0; j<N; j++) {
- C[i*N+j]=0;
- for(k=0;k<N;k++)
- {
- C[i*N+j]+=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
- }
- }
- }
- }
- /* Function: matrix_mul_matrix_bitextract
- Multiply a matrix by a matrix, and extract some bits from the result.
- Basic code is used in many algorithms, mostly with minor changes such as scaling.
- */
- void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
- ee_u32 i,j,k;
- for (i=0; i<N; i++) {
- for (j=0; j<N; j++) {
- C[i*N+j]=0;
- for(k=0;k<N;k++)
- {
- MATRES tmp=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
- C[i*N+j]+=bit_extract(tmp,2,4)*bit_extract(tmp,5,7);
- }
- }
- }
- }
|