123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- {-
- - Copyright (C) 2019 Koz Ross <koz.ross@retro-freedom.nz>
- -
- - This program is free software: you can redistribute it and/or modify
- - it under the terms of the GNU General Public License as published by
- - the Free Software Foundation, either version 3 of the License, or
- - (at your option) any later version.
- -
- - This program is distributed in the hope that it will be useful,
- - but WITHOUT ANY WARRANTY; without even the implied warranty of
- - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- - GNU General Public License for more details.
- -
- - You should have received a copy of the GNU General Public License
- - along with this program. If not, see <http://www.gnu.org/licenses/>.
- -}
- {-# LANGUAGE DeriveAnyClass #-}
- {-# LANGUAGE DeriveGeneric #-}
- {-# LANGUAGE TypeInType #-}
- {-# LANGUAGE AllowAmbiguousTypes #-}
- {-# LANGUAGE ScopedTypeVariables #-}
- {-# LANGUAGE TypeApplications #-}
- {-# LANGUAGE OverloadedStrings #-}
- {-# LANGUAGE TypeOperators #-}
- {-# LANGUAGE TypeFamilies #-}
- {-# LANGUAGE GADTs #-}
- {-# LANGUAGE RankNTypes #-}
- module Main where
- import Data.List (sort, sortOn)
- import Data.Ord (Down)
- import Data.Maybe (isNothing, isJust)
- import Data.Int (Int8, Int16, Int32, Int64)
- import Data.Word (Word8, Word16, Word32, Word64)
- import GHC.TypeNats
- import GHC.Generics
- import Data.Kind (Type)
- import Data.Finite (Finite, finites)
- import Data.Proxy (Proxy(..))
- import Control.Monad.Loops (andM)
- import Data.Typeable (Typeable, typeRep)
- import Data.String (fromString)
- import Hedgehog
- import qualified Hedgehog.Gen as G
- import qualified Hedgehog.Range as R
- import qualified Data.Vector.Sized as VS
- import qualified Data.Vector.Unboxed.Sized as VUS
- import qualified Data.Vector.Storable.Sized as VSS
- import qualified Data.Bit as B
- import qualified Data.Bit.ThreadSafe as BTS
- import Data.Finitary
- -- A representation of types
- data SomeFinitaryRep where
- SomeFinitaryRep :: forall (a :: Type) . (Finitary a, Ord a, Show a, Typeable a, 1 <= (Cardinality a)) => Proxy a -> SomeFinitaryRep
- -- A representation of test functions
- data SomeTestFunction where
- SomeTestFunction :: (forall (a :: Type) . (Finitary a, Ord a, Show a, 1 <= (Cardinality a)) => Proxy a -> Property) -> SomeTestFunction
- -- Some weird generic
- data Foo = Bar | Baz (VS.Vector 4 Bool) | Quux Word8
- deriving (Eq, Show, Typeable, Generic, Finitary, Ord)
- -- Something I will need for further tests
- iterateMN :: forall (m :: Type -> Type) (a :: Type) (b :: Type) . (Eq a, Bounded a, Enum a, Monad m) => a -> (b -> m b) -> b -> m b
- iterateMN i f x = if i == minBound
- then f x
- else iterateMN (pred i) f x >>= f
- -- How much testing do I want to do for random inputs?
- testLimit :: forall (a :: Type) (b :: Type) . (Finitary a, Num b) => b
- testLimit = fromIntegral . (* 2) . min 32767 . natVal $ Proxy @(Cardinality a)
- -- Generators
- choose :: forall (a :: Type) m . (MonadGen m, Finitary a) => m a
- choose = fromFinite <$> chooseFinite
- chooseFinite :: forall (n :: Nat) m . (KnownNat n, MonadGen m) => m (Finite n)
- chooseFinite = fromIntegral <$> G.integral (R.linear 0 limit)
- where limit = subtract @Integer 1 . fromIntegral . natVal @n $ Proxy
- -- Data
- allTheTypes :: [SomeFinitaryRep]
- allTheTypes = [
- SomeFinitaryRep @(Proxy Int) Proxy,
- SomeFinitaryRep @Bool Proxy,
- SomeFinitaryRep @B.Bit Proxy,
- SomeFinitaryRep @BTS.Bit Proxy,
- SomeFinitaryRep @Ordering Proxy,
- SomeFinitaryRep @Char Proxy,
- SomeFinitaryRep @Word8 Proxy,
- SomeFinitaryRep @Word16 Proxy,
- SomeFinitaryRep @Word32 Proxy,
- SomeFinitaryRep @Word64 Proxy,
- SomeFinitaryRep @Int16 Proxy,
- SomeFinitaryRep @Int8 Proxy,
- SomeFinitaryRep @Int32 Proxy,
- SomeFinitaryRep @Int64 Proxy,
- SomeFinitaryRep @Int Proxy,
- SomeFinitaryRep @Word Proxy,
- SomeFinitaryRep @(Down Int) Proxy,
- SomeFinitaryRep @(Maybe Word8) Proxy,
- SomeFinitaryRep @(Either Word8 Int8) Proxy,
- SomeFinitaryRep @(Word8, Int8) Proxy,
- SomeFinitaryRep @(VS.Vector 4 Bool) Proxy,
- SomeFinitaryRep @(VUS.Vector 4 Bool) Proxy,
- SomeFinitaryRep @(VSS.Vector 4 Bool) Proxy
- ]
- constructTest :: SomeTestFunction -> GroupName -> IO Bool
- constructTest (SomeTestFunction testFunc) name = checkParallel . Group name $ fmap go allTheTypes
- where go (SomeFinitaryRep p) = (fromString . show . typeRep $ p, testFunc p)
- -- Properties
- isBijection :: forall (a :: Type) . (Finitary a, Show a) => Proxy a -> Property
- isBijection _ = withTests (testLimit @a) (property $ do x <- forAll $ choose @a
- x === (fromFinite . toFinite $ x))
- isOrderPreserving :: forall (a :: Type) . (Finitary a, Ord a) => Proxy a -> Property
- isOrderPreserving _ = withTests (testLimit @a) (property $ do i <- forAll $ chooseFinite @(Cardinality a)
- j <- forAll $ chooseFinite @(Cardinality a)
- assert (fromFinite @a i > fromFinite @a j || i <= j))
- startIsCorrect :: forall (a :: Type) . (Finitary a, Show a, 1 <= (Cardinality a)) => Proxy a -> Property
- startIsCorrect _ = property $ start @a === fromFinite minBound
- previousStartNothing :: forall (a :: Type) . (Finitary a, 1 <= (Cardinality a)) => Proxy a -> Property
- previousStartNothing _ = property $ assert (isNothing . previous $ start @a)
- endNextNothing :: forall (a :: Type) . (Finitary a, 1 <= (Cardinality a)) => Proxy a -> Property
- endNextNothing _ = property $ assert (isNothing . next $ end @a)
- endIsCorrect :: forall (a :: Type) . (Finitary a, Show a, 1 <= (Cardinality a)) => Proxy a -> Property
- endIsCorrect _ = property $ end @a === fromFinite maxBound
- previousIsCorrect :: forall (a :: Type) . (Finitary a, 1 <= Cardinality a, Show a) => Proxy a -> Property
- previousIsCorrect _ = withTests (testLimit @a) (property $ do x <- forAll $ choose @a
- if x == start
- then success
- else assert . isJust . previous $ x)
- nextIsCorrect :: forall (a :: Type) . (Finitary a, 1 <= Cardinality a, Show a) => Proxy a -> Property
- nextIsCorrect _ = withTests (testLimit @a) (property $ do x <- forAll $ choose @a
- if x == end
- then success
- else assert . isJust . next $ x)
- -- Check the behaviour of the tuple generic so that we don't violate
- -- order-preservation
- agreesWithOrd :: Property
- agreesWithOrd = property $ do let xs = (,) <$> [LT ..] <*> [False ..]
- sort xs === sortOn toFinite xs
- -- Check that we can enumerate properly and that our type, in order, is
- -- isomorphic to 'finites'
- enumeratesProperly :: Property
- enumeratesProperly = property $ do let xs = (,) <$> [LT ..] <*> [False ..]
- (toFinite <$> sort xs) === finites
- -- All the tests I want to use
- allTests :: [(SomeTestFunction, GroupName)]
- allTests = [
- (SomeTestFunction isBijection, "bijectivity"),
- (SomeTestFunction isOrderPreserving, "order preservation"),
- (SomeTestFunction startIsCorrect, "start"),
- (SomeTestFunction endIsCorrect, "end"),
- (SomeTestFunction previousStartNothing, "previous + start"),
- (SomeTestFunction endNextNothing, "next + end"),
- (SomeTestFunction previousIsCorrect, "previous"),
- (SomeTestFunction nextIsCorrect, "next")
- ]
- main :: IO Bool
- main = andM . (:) (checkSequential . Group "Ord agreement" $ [("ordering", agreesWithOrd), ("totality", enumeratesProperly)]) . fmap (uncurry constructTest) $ allTests
|