xxhash.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /*
  2. xxHash - Fast Hash algorithm
  3. Copyright (C) 2012-2014, Yann Collet.
  4. Copyright (C) 2012, Maciej Adamczyk
  5. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
  6. Redistribution and use in source and binary forms, with or without
  7. modification, are permitted provided that the following conditions are
  8. met:
  9. * Redistributions of source code must retain the above copyright
  10. notice, this list of conditions and the following disclaimer.
  11. * Redistributions in binary form must reproduce the above
  12. copyright notice, this list of conditions and the following disclaimer
  13. in the documentation and/or other materials provided with the
  14. distribution.
  15. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  16. "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  17. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  18. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  19. OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  20. SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  21. LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  22. DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  23. THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24. (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. You can contact the author at :
  27. - xxHash source repository : http://code.google.com/p/xxhash/
  28. - public discussion board : https://groups.google.com/forum/#!forum/lz4c
  29. This file contains a super-fast hash function for checksumming
  30. purposes, designed for large (1 KB++) inputs.
  31. Known limitations:
  32. * they use 64-bit math and will not be so fast on 32-bit machines
  33. * on architectures that disallow unaligned memory access, the input
  34. must be 8-byte aligned. Aligning it on other architectures
  35. is not needed, but will improve performance.
  36. * it produces different results on big and small endian.
  37. */
  38. //**************************************
  39. // Tuning parameters
  40. //**************************************
  41. // Unaligned memory access is automatically enabled for "common" CPU, such as x86.
  42. // For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
  43. // If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
  44. // You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
  45. #if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
  46. # define XXH_USE_UNALIGNED_ACCESS 1
  47. #endif
  48. // XXH_ACCEPT_NULL_INPUT_POINTER :
  49. // If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
  50. // When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
  51. // This option has a very small performance cost (only measurable on small inputs).
  52. // By default, this option is disabled. To enable it, uncomment below define :
  53. // #define XXH_ACCEPT_NULL_INPUT_POINTER 1
  54. // XXH_FORCE_NATIVE_FORMAT :
  55. // By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
  56. // Results are therefore identical for little-endian and big-endian CPU.
  57. // This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
  58. // Should endian-independance be of no importance for your application, you may set the #define below to 1.
  59. // It will improve speed for Big-endian CPU.
  60. // This option has no impact on Little_Endian CPU.
  61. #define XXH_FORCE_NATIVE_FORMAT 0
  62. //**************************************
  63. // Compiler Specific Options
  64. //**************************************
  65. // Disable some Visual warning messages
  66. #ifdef _MSC_VER // Visual Studio
  67. # pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
  68. #endif
  69. #ifdef _MSC_VER // Visual Studio
  70. # define FORCE_INLINE static __forceinline
  71. #else
  72. # ifdef __GNUC__
  73. # define FORCE_INLINE static inline __attribute__((always_inline))
  74. # else
  75. # define FORCE_INLINE static inline
  76. # endif
  77. #endif
  78. //**************************************
  79. // Includes & Memory related functions
  80. //**************************************
  81. #include "xxhash.h"
  82. // Modify the local functions below should you wish to use some other memory routines
  83. // for malloc(), free()
  84. #include <stdlib.h>
  85. static void* XXH_malloc(size_t s) { return malloc(s); }
  86. static void XXH_free (void* p) { free(p); }
  87. // for memcpy()
  88. #include <string.h>
  89. static void* XXH_memcpy(void* dest, const void* src, size_t size)
  90. {
  91. return memcpy(dest,src,size);
  92. }
  93. //**************************************
  94. // Basic Types
  95. //**************************************
  96. #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
  97. # include <stdint.h>
  98. typedef uint8_t BYTE;
  99. typedef uint16_t U16;
  100. typedef uint32_t U32;
  101. typedef int32_t S32;
  102. typedef uint64_t U64;
  103. #else
  104. typedef unsigned char BYTE;
  105. typedef unsigned short U16;
  106. typedef unsigned int U32;
  107. typedef signed int S32;
  108. typedef unsigned long long U64;
  109. #endif
  110. #if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
  111. # define _PACKED __attribute__ ((packed))
  112. #else
  113. # define _PACKED
  114. #endif
  115. #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
  116. # ifdef __IBMC__
  117. # pragma pack(1)
  118. # else
  119. # pragma pack(push, 1)
  120. # endif
  121. #endif
  122. typedef struct _U32_S
  123. {
  124. U32 v;
  125. } _PACKED U32_S;
  126. typedef struct _U64_S
  127. {
  128. U64 v;
  129. } _PACKED U64_S;
  130. #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
  131. # pragma pack(pop)
  132. #endif
  133. #define A32(x) (((U32_S *)(x))->v)
  134. #define A64(x) (((U64_S *)(x))->v)
  135. //***************************************
  136. // Compiler-specific Functions and Macros
  137. //***************************************
  138. #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
  139. // Note : although _rotl exists for minGW (GCC under windows), performance seems poor
  140. #if defined(_MSC_VER)
  141. # define XXH_rotl32(x,r) _rotl(x,r)
  142. # define XXH_rotl64(x,r) _rotl64(x,r)
  143. #else
  144. # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
  145. # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
  146. #endif
  147. #if defined(_MSC_VER) // Visual Studio
  148. # define XXH_swap32 _byteswap_ulong
  149. # define XXH_swap64 _byteswap_uint64
  150. #elif GCC_VERSION >= 403
  151. # define XXH_swap32 __builtin_bswap32
  152. # define XXH_swap64 __builtin_bswap64
  153. #else
  154. static inline U32 XXH_swap32 (U32 x)
  155. {
  156. return ((x << 24) & 0xff000000 ) |
  157. ((x << 8) & 0x00ff0000 ) |
  158. ((x >> 8) & 0x0000ff00 ) |
  159. ((x >> 24) & 0x000000ff );
  160. }
  161. static inline U64 XXH_swap64 (U64 x)
  162. {
  163. return ((x << 56) & 0xff00000000000000ULL) |
  164. ((x << 40) & 0x00ff000000000000ULL) |
  165. ((x << 24) & 0x0000ff0000000000ULL) |
  166. ((x << 8) & 0x000000ff00000000ULL) |
  167. ((x >> 8) & 0x00000000ff000000ULL) |
  168. ((x >> 24) & 0x0000000000ff0000ULL) |
  169. ((x >> 40) & 0x000000000000ff00ULL) |
  170. ((x >> 56) & 0x00000000000000ffULL);
  171. }
  172. #endif
  173. //**************************************
  174. // Constants
  175. //**************************************
  176. #define PRIME32_1 2654435761U
  177. #define PRIME32_2 2246822519U
  178. #define PRIME32_3 3266489917U
  179. #define PRIME32_4 668265263U
  180. #define PRIME32_5 374761393U
  181. #define PRIME64_1 11400714785074694791ULL
  182. #define PRIME64_2 14029467366897019727ULL
  183. #define PRIME64_3 1609587929392839161ULL
  184. #define PRIME64_4 9650029242287828579ULL
  185. #define PRIME64_5 2870177450012600261ULL
  186. //**************************************
  187. // Architecture Macros
  188. //**************************************
  189. typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
  190. #ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
  191. static const int one = 1;
  192. # define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
  193. #endif
  194. //**************************************
  195. // Macros
  196. //**************************************
  197. #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
  198. //****************************
  199. // Memory reads
  200. //****************************
  201. typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
  202. FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  203. {
  204. if (align==XXH_unaligned)
  205. return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
  206. else
  207. return endian==XXH_littleEndian ? *(U32*)ptr : XXH_swap32(*(U32*)ptr);
  208. }
  209. FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
  210. {
  211. return XXH_readLE32_align(ptr, endian, XXH_unaligned);
  212. }
  213. FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  214. {
  215. if (align==XXH_unaligned)
  216. return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
  217. else
  218. return endian==XXH_littleEndian ? *(U64*)ptr : XXH_swap64(*(U64*)ptr);
  219. }
  220. FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
  221. {
  222. return XXH_readLE64_align(ptr, endian, XXH_unaligned);
  223. }
  224. //****************************
  225. // Simple Hash Functions
  226. //****************************
  227. FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
  228. {
  229. const BYTE* p = (const BYTE*)input;
  230. const BYTE* bEnd = p + len;
  231. U32 h32;
  232. #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
  233. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  234. if (p==NULL)
  235. {
  236. len=0;
  237. bEnd=p=(const BYTE*)(size_t)16;
  238. }
  239. #endif
  240. if (len>=16)
  241. {
  242. const BYTE* const limit = bEnd - 16;
  243. U32 v1 = seed + PRIME32_1 + PRIME32_2;
  244. U32 v2 = seed + PRIME32_2;
  245. U32 v3 = seed + 0;
  246. U32 v4 = seed - PRIME32_1;
  247. do
  248. {
  249. v1 += XXH_get32bits(p) * PRIME32_2;
  250. v1 = XXH_rotl32(v1, 13);
  251. v1 *= PRIME32_1;
  252. p+=4;
  253. v2 += XXH_get32bits(p) * PRIME32_2;
  254. v2 = XXH_rotl32(v2, 13);
  255. v2 *= PRIME32_1;
  256. p+=4;
  257. v3 += XXH_get32bits(p) * PRIME32_2;
  258. v3 = XXH_rotl32(v3, 13);
  259. v3 *= PRIME32_1;
  260. p+=4;
  261. v4 += XXH_get32bits(p) * PRIME32_2;
  262. v4 = XXH_rotl32(v4, 13);
  263. v4 *= PRIME32_1;
  264. p+=4;
  265. }
  266. while (p<=limit);
  267. h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
  268. }
  269. else
  270. {
  271. h32 = seed + PRIME32_5;
  272. }
  273. h32 += (U32) len;
  274. while (p+4<=bEnd)
  275. {
  276. h32 += XXH_get32bits(p) * PRIME32_3;
  277. h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
  278. p+=4;
  279. }
  280. while (p<bEnd)
  281. {
  282. h32 += (*p) * PRIME32_5;
  283. h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
  284. p++;
  285. }
  286. h32 ^= h32 >> 15;
  287. h32 *= PRIME32_2;
  288. h32 ^= h32 >> 13;
  289. h32 *= PRIME32_3;
  290. h32 ^= h32 >> 16;
  291. return h32;
  292. }
  293. unsigned int XXH32 (const void* input, size_t len, unsigned seed)
  294. {
  295. #if 0
  296. // Simple version, good for code maintenance, but unfortunately slow for small inputs
  297. XXH32_state_t state;
  298. XXH32_reset(&state, seed);
  299. XXH32_update(&state, input, len);
  300. return XXH32_digest(&state);
  301. #else
  302. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  303. # if !defined(XXH_USE_UNALIGNED_ACCESS)
  304. if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage
  305. {
  306. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  307. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  308. else
  309. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  310. }
  311. # endif
  312. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  313. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  314. else
  315. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  316. #endif
  317. }
  318. FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
  319. {
  320. const BYTE* p = (const BYTE*)input;
  321. const BYTE* bEnd = p + len;
  322. U64 h64;
  323. #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
  324. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  325. if (p==NULL)
  326. {
  327. len=0;
  328. bEnd=p=(const BYTE*)(size_t)32;
  329. }
  330. #endif
  331. if (len>=32)
  332. {
  333. const BYTE* const limit = bEnd - 32;
  334. U64 v1 = seed + PRIME64_1 + PRIME64_2;
  335. U64 v2 = seed + PRIME64_2;
  336. U64 v3 = seed + 0;
  337. U64 v4 = seed - PRIME64_1;
  338. do
  339. {
  340. v1 += XXH_get64bits(p) * PRIME64_2;
  341. p+=8;
  342. v1 = XXH_rotl64(v1, 31);
  343. v1 *= PRIME64_1;
  344. v2 += XXH_get64bits(p) * PRIME64_2;
  345. p+=8;
  346. v2 = XXH_rotl64(v2, 31);
  347. v2 *= PRIME64_1;
  348. v3 += XXH_get64bits(p) * PRIME64_2;
  349. p+=8;
  350. v3 = XXH_rotl64(v3, 31);
  351. v3 *= PRIME64_1;
  352. v4 += XXH_get64bits(p) * PRIME64_2;
  353. p+=8;
  354. v4 = XXH_rotl64(v4, 31);
  355. v4 *= PRIME64_1;
  356. }
  357. while (p<=limit);
  358. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  359. v1 *= PRIME64_2;
  360. v1 = XXH_rotl64(v1, 31);
  361. v1 *= PRIME64_1;
  362. h64 ^= v1;
  363. h64 = h64 * PRIME64_1 + PRIME64_4;
  364. v2 *= PRIME64_2;
  365. v2 = XXH_rotl64(v2, 31);
  366. v2 *= PRIME64_1;
  367. h64 ^= v2;
  368. h64 = h64 * PRIME64_1 + PRIME64_4;
  369. v3 *= PRIME64_2;
  370. v3 = XXH_rotl64(v3, 31);
  371. v3 *= PRIME64_1;
  372. h64 ^= v3;
  373. h64 = h64 * PRIME64_1 + PRIME64_4;
  374. v4 *= PRIME64_2;
  375. v4 = XXH_rotl64(v4, 31);
  376. v4 *= PRIME64_1;
  377. h64 ^= v4;
  378. h64 = h64 * PRIME64_1 + PRIME64_4;
  379. }
  380. else
  381. {
  382. h64 = seed + PRIME64_5;
  383. }
  384. h64 += (U64) len;
  385. while (p+8<=bEnd)
  386. {
  387. U64 k1 = XXH_get64bits(p);
  388. k1 *= PRIME64_2;
  389. k1 = XXH_rotl64(k1,31);
  390. k1 *= PRIME64_1;
  391. h64 ^= k1;
  392. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  393. p+=8;
  394. }
  395. if (p+4<=bEnd)
  396. {
  397. h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
  398. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  399. p+=4;
  400. }
  401. while (p<bEnd)
  402. {
  403. h64 ^= (*p) * PRIME64_5;
  404. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  405. p++;
  406. }
  407. h64 ^= h64 >> 33;
  408. h64 *= PRIME64_2;
  409. h64 ^= h64 >> 29;
  410. h64 *= PRIME64_3;
  411. h64 ^= h64 >> 32;
  412. return h64;
  413. }
  414. unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
  415. {
  416. #if 0
  417. // Simple version, good for code maintenance, but unfortunately slow for small inputs
  418. XXH64_state_t state;
  419. XXH64_reset(&state, seed);
  420. XXH64_update(&state, input, len);
  421. return XXH64_digest(&state);
  422. #else
  423. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  424. # if !defined(XXH_USE_UNALIGNED_ACCESS)
  425. if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage
  426. {
  427. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  428. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  429. else
  430. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  431. }
  432. # endif
  433. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  434. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  435. else
  436. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  437. #endif
  438. }
  439. /* Simplier, older variant added by m^2 Maciej Adamczyk. Unportable */
  440. void XXH_256(const void* input, size_t len, U64* out)
  441. {
  442. const BYTE* p = (BYTE*)input;
  443. const BYTE* const bEnd = p + len;
  444. U64 v1 = len * PRIME64_1;
  445. U64 v2 = v1;
  446. U64 v3 = v1;
  447. U64 v4 = v1;
  448. const size_t big_loop_step = 4 * 4 * sizeof(U64);
  449. const size_t small_loop_step = 4 * sizeof(U64);
  450. // Set the big loop limit early enough, so the well-mixing small loop can be executed twice after it
  451. const BYTE* const big_loop_limit = bEnd - big_loop_step - 2 * small_loop_step;
  452. const BYTE* const small_loop_limit = bEnd - small_loop_step;
  453. while (p < big_loop_limit)
  454. {
  455. v1 = XXH_rotl64(v1, 29) + (*(U64*)p); p+=sizeof(U64);
  456. v2 = XXH_rotl64(v2, 31) + (*(U64*)p); p+=sizeof(U64);
  457. v3 = XXH_rotl64(v3, 33) + (*(U64*)p); p+=sizeof(U64);
  458. v4 = XXH_rotl64(v4, 35) + (*(U64*)p); p+=sizeof(U64);
  459. v1 += v2 *= PRIME64_1;
  460. v1 = XXH_rotl64(v1, 29) + (*(U64*)p); p+=sizeof(U64);
  461. v2 = XXH_rotl64(v2, 31) + (*(U64*)p); p+=sizeof(U64);
  462. v3 = XXH_rotl64(v3, 33) + (*(U64*)p); p+=sizeof(U64);
  463. v4 = XXH_rotl64(v4, 35) + (*(U64*)p); p+=sizeof(U64);
  464. v2 += v3 *= PRIME64_1;
  465. v1 = XXH_rotl64(v1, 29) + (*(U64*)p); p+=sizeof(U64);
  466. v2 = XXH_rotl64(v2, 31) + (*(U64*)p); p+=sizeof(U64);
  467. v3 = XXH_rotl64(v3, 33) + (*(U64*)p); p+=sizeof(U64);
  468. v4 = XXH_rotl64(v4, 35) + (*(U64*)p); p+=sizeof(U64);
  469. v3 += v4 *= PRIME64_1;
  470. v1 = XXH_rotl64(v1, 29) + (*(U64*)p); p+=sizeof(U64);
  471. v2 = XXH_rotl64(v2, 31) + (*(U64*)p); p+=sizeof(U64);
  472. v3 = XXH_rotl64(v3, 33) + (*(U64*)p); p+=sizeof(U64);
  473. v4 = XXH_rotl64(v4, 35) + (*(U64*)p); p+=sizeof(U64);
  474. v4 += v1 *= PRIME64_1;
  475. }
  476. while (p < small_loop_limit)
  477. {
  478. v1 = XXH_rotl64(v1, 29) + (*(U64*)p); p+=sizeof(U64);
  479. v2 += v1 *= PRIME64_1;
  480. v2 = XXH_rotl64(v2, 31) + (*(U64*)p); p+=sizeof(U64);
  481. v3 += v2 *= PRIME64_1;
  482. v3 = XXH_rotl64(v3, 33) + (*(U64*)p); p+=sizeof(U64);
  483. v4 += v3 *= PRIME64_1;
  484. v4 = XXH_rotl64(v4, 35) + (*(U64*)p); p+=sizeof(U64);
  485. v1 += v4 *= PRIME64_1;
  486. }
  487. XXH_memcpy(out, p, bEnd - p);
  488. out[0] += v1;
  489. out[1] += v2;
  490. out[2] += v3;
  491. out[3] += v4;
  492. }
  493. /****************************************************
  494. * Advanced Hash Functions
  495. ****************************************************/
  496. /*** Allocation ***/
  497. typedef struct
  498. {
  499. U64 total_len;
  500. U32 seed;
  501. U32 v1;
  502. U32 v2;
  503. U32 v3;
  504. U32 v4;
  505. U32 mem32[4]; /* defined as U32 for alignment */
  506. U32 memsize;
  507. } XXH_istate32_t;
  508. typedef struct
  509. {
  510. U64 total_len;
  511. U64 seed;
  512. U64 v1;
  513. U64 v2;
  514. U64 v3;
  515. U64 v4;
  516. U64 mem64[4]; /* defined as U64 for alignment */
  517. U32 memsize;
  518. } XXH_istate64_t;
  519. XXH32_state_t* XXH32_createState(void)
  520. {
  521. XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t)); // A compilation error here means XXH32_state_t is not large enough
  522. return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
  523. }
  524. XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
  525. {
  526. XXH_free(statePtr);
  527. return XXH_OK;
  528. };
  529. XXH64_state_t* XXH64_createState(void)
  530. {
  531. XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t)); // A compilation error here means XXH64_state_t is not large enough
  532. return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
  533. }
  534. XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
  535. {
  536. XXH_free(statePtr);
  537. return XXH_OK;
  538. };
  539. /*** Hash feed ***/
  540. XXH_errorcode XXH32_reset(XXH32_state_t* state_in, U32 seed)
  541. {
  542. XXH_istate32_t* state = (XXH_istate32_t*) state_in;
  543. state->seed = seed;
  544. state->v1 = seed + PRIME32_1 + PRIME32_2;
  545. state->v2 = seed + PRIME32_2;
  546. state->v3 = seed + 0;
  547. state->v4 = seed - PRIME32_1;
  548. state->total_len = 0;
  549. state->memsize = 0;
  550. return XXH_OK;
  551. }
  552. XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed)
  553. {
  554. XXH_istate64_t* state = (XXH_istate64_t*) state_in;
  555. state->seed = seed;
  556. state->v1 = seed + PRIME64_1 + PRIME64_2;
  557. state->v2 = seed + PRIME64_2;
  558. state->v3 = seed + 0;
  559. state->v4 = seed - PRIME64_1;
  560. state->total_len = 0;
  561. state->memsize = 0;
  562. return XXH_OK;
  563. }
  564. FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
  565. {
  566. XXH_istate32_t* state = (XXH_istate32_t *) state_in;
  567. const BYTE* p = (const BYTE*)input;
  568. const BYTE* const bEnd = p + len;
  569. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  570. if (input==NULL) return XXH_ERROR;
  571. #endif
  572. state->total_len += len;
  573. if (state->memsize + len < 16) // fill in tmp buffer
  574. {
  575. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
  576. state->memsize += (U32)len;
  577. return XXH_OK;
  578. }
  579. if (state->memsize) // some data left from previous update
  580. {
  581. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
  582. {
  583. const U32* p32 = state->mem32;
  584. state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
  585. state->v1 = XXH_rotl32(state->v1, 13);
  586. state->v1 *= PRIME32_1;
  587. p32++;
  588. state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
  589. state->v2 = XXH_rotl32(state->v2, 13);
  590. state->v2 *= PRIME32_1;
  591. p32++;
  592. state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
  593. state->v3 = XXH_rotl32(state->v3, 13);
  594. state->v3 *= PRIME32_1;
  595. p32++;
  596. state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
  597. state->v4 = XXH_rotl32(state->v4, 13);
  598. state->v4 *= PRIME32_1;
  599. p32++;
  600. }
  601. p += 16-state->memsize;
  602. state->memsize = 0;
  603. }
  604. if (p <= bEnd-16)
  605. {
  606. const BYTE* const limit = bEnd - 16;
  607. U32 v1 = state->v1;
  608. U32 v2 = state->v2;
  609. U32 v3 = state->v3;
  610. U32 v4 = state->v4;
  611. do
  612. {
  613. v1 += XXH_readLE32(p, endian) * PRIME32_2;
  614. v1 = XXH_rotl32(v1, 13);
  615. v1 *= PRIME32_1;
  616. p+=4;
  617. v2 += XXH_readLE32(p, endian) * PRIME32_2;
  618. v2 = XXH_rotl32(v2, 13);
  619. v2 *= PRIME32_1;
  620. p+=4;
  621. v3 += XXH_readLE32(p, endian) * PRIME32_2;
  622. v3 = XXH_rotl32(v3, 13);
  623. v3 *= PRIME32_1;
  624. p+=4;
  625. v4 += XXH_readLE32(p, endian) * PRIME32_2;
  626. v4 = XXH_rotl32(v4, 13);
  627. v4 *= PRIME32_1;
  628. p+=4;
  629. }
  630. while (p<=limit);
  631. state->v1 = v1;
  632. state->v2 = v2;
  633. state->v3 = v3;
  634. state->v4 = v4;
  635. }
  636. if (p < bEnd)
  637. {
  638. XXH_memcpy(state->mem32, p, bEnd-p);
  639. state->memsize = (int)(bEnd-p);
  640. }
  641. return XXH_OK;
  642. }
  643. XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
  644. {
  645. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  646. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  647. return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
  648. else
  649. return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
  650. }
  651. FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianess endian)
  652. {
  653. XXH_istate32_t* state = (XXH_istate32_t*) state_in;
  654. const BYTE * p = (const BYTE*)state->mem32;
  655. BYTE* bEnd = (BYTE*)(state->mem32) + state->memsize;
  656. U32 h32;
  657. if (state->total_len >= 16)
  658. {
  659. h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
  660. }
  661. else
  662. {
  663. h32 = state->seed + PRIME32_5;
  664. }
  665. h32 += (U32) state->total_len;
  666. while (p+4<=bEnd)
  667. {
  668. h32 += XXH_readLE32(p, endian) * PRIME32_3;
  669. h32 = XXH_rotl32(h32, 17) * PRIME32_4;
  670. p+=4;
  671. }
  672. while (p<bEnd)
  673. {
  674. h32 += (*p) * PRIME32_5;
  675. h32 = XXH_rotl32(h32, 11) * PRIME32_1;
  676. p++;
  677. }
  678. h32 ^= h32 >> 15;
  679. h32 *= PRIME32_2;
  680. h32 ^= h32 >> 13;
  681. h32 *= PRIME32_3;
  682. h32 ^= h32 >> 16;
  683. return h32;
  684. }
  685. U32 XXH32_digest (const XXH32_state_t* state_in)
  686. {
  687. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  688. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  689. return XXH32_digest_endian(state_in, XXH_littleEndian);
  690. else
  691. return XXH32_digest_endian(state_in, XXH_bigEndian);
  692. }
  693. FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
  694. {
  695. XXH_istate64_t * state = (XXH_istate64_t *) state_in;
  696. const BYTE* p = (const BYTE*)input;
  697. const BYTE* const bEnd = p + len;
  698. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  699. if (input==NULL) return XXH_ERROR;
  700. #endif
  701. state->total_len += len;
  702. if (state->memsize + len < 32) // fill in tmp buffer
  703. {
  704. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
  705. state->memsize += (U32)len;
  706. return XXH_OK;
  707. }
  708. if (state->memsize) // some data left from previous update
  709. {
  710. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
  711. {
  712. const U64* p64 = state->mem64;
  713. state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
  714. state->v1 = XXH_rotl64(state->v1, 31);
  715. state->v1 *= PRIME64_1;
  716. p64++;
  717. state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
  718. state->v2 = XXH_rotl64(state->v2, 31);
  719. state->v2 *= PRIME64_1;
  720. p64++;
  721. state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
  722. state->v3 = XXH_rotl64(state->v3, 31);
  723. state->v3 *= PRIME64_1;
  724. p64++;
  725. state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
  726. state->v4 = XXH_rotl64(state->v4, 31);
  727. state->v4 *= PRIME64_1;
  728. p64++;
  729. }
  730. p += 32-state->memsize;
  731. state->memsize = 0;
  732. }
  733. if (p+32 <= bEnd)
  734. {
  735. const BYTE* const limit = bEnd - 32;
  736. U64 v1 = state->v1;
  737. U64 v2 = state->v2;
  738. U64 v3 = state->v3;
  739. U64 v4 = state->v4;
  740. do
  741. {
  742. v1 += XXH_readLE64(p, endian) * PRIME64_2;
  743. v1 = XXH_rotl64(v1, 31);
  744. v1 *= PRIME64_1;
  745. p+=8;
  746. v2 += XXH_readLE64(p, endian) * PRIME64_2;
  747. v2 = XXH_rotl64(v2, 31);
  748. v2 *= PRIME64_1;
  749. p+=8;
  750. v3 += XXH_readLE64(p, endian) * PRIME64_2;
  751. v3 = XXH_rotl64(v3, 31);
  752. v3 *= PRIME64_1;
  753. p+=8;
  754. v4 += XXH_readLE64(p, endian) * PRIME64_2;
  755. v4 = XXH_rotl64(v4, 31);
  756. v4 *= PRIME64_1;
  757. p+=8;
  758. }
  759. while (p<=limit);
  760. state->v1 = v1;
  761. state->v2 = v2;
  762. state->v3 = v3;
  763. state->v4 = v4;
  764. }
  765. if (p < bEnd)
  766. {
  767. XXH_memcpy(state->mem64, p, bEnd-p);
  768. state->memsize = (int)(bEnd-p);
  769. }
  770. return XXH_OK;
  771. }
  772. XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
  773. {
  774. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  775. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  776. return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
  777. else
  778. return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
  779. }
  780. FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianess endian)
  781. {
  782. XXH_istate64_t * state = (XXH_istate64_t *) state_in;
  783. const BYTE * p = (const BYTE*)state->mem64;
  784. BYTE* bEnd = (BYTE*)state->mem64 + state->memsize;
  785. U64 h64;
  786. if (state->total_len >= 32)
  787. {
  788. U64 v1 = state->v1;
  789. U64 v2 = state->v2;
  790. U64 v3 = state->v3;
  791. U64 v4 = state->v4;
  792. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  793. v1 *= PRIME64_2;
  794. v1 = XXH_rotl64(v1, 31);
  795. v1 *= PRIME64_1;
  796. h64 ^= v1;
  797. h64 = h64*PRIME64_1 + PRIME64_4;
  798. v2 *= PRIME64_2;
  799. v2 = XXH_rotl64(v2, 31);
  800. v2 *= PRIME64_1;
  801. h64 ^= v2;
  802. h64 = h64*PRIME64_1 + PRIME64_4;
  803. v3 *= PRIME64_2;
  804. v3 = XXH_rotl64(v3, 31);
  805. v3 *= PRIME64_1;
  806. h64 ^= v3;
  807. h64 = h64*PRIME64_1 + PRIME64_4;
  808. v4 *= PRIME64_2;
  809. v4 = XXH_rotl64(v4, 31);
  810. v4 *= PRIME64_1;
  811. h64 ^= v4;
  812. h64 = h64*PRIME64_1 + PRIME64_4;
  813. }
  814. else
  815. {
  816. h64 = state->seed + PRIME64_5;
  817. }
  818. h64 += (U64) state->total_len;
  819. while (p+8<=bEnd)
  820. {
  821. U64 k1 = XXH_readLE64(p, endian);
  822. k1 *= PRIME64_2;
  823. k1 = XXH_rotl64(k1,31);
  824. k1 *= PRIME64_1;
  825. h64 ^= k1;
  826. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  827. p+=8;
  828. }
  829. if (p+4<=bEnd)
  830. {
  831. h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
  832. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  833. p+=4;
  834. }
  835. while (p<bEnd)
  836. {
  837. h64 ^= (*p) * PRIME64_5;
  838. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  839. p++;
  840. }
  841. h64 ^= h64 >> 33;
  842. h64 *= PRIME64_2;
  843. h64 ^= h64 >> 29;
  844. h64 *= PRIME64_3;
  845. h64 ^= h64 >> 32;
  846. return h64;
  847. }
  848. unsigned long long XXH64_digest (const XXH64_state_t* state_in)
  849. {
  850. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  851. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  852. return XXH64_digest_endian(state_in, XXH_littleEndian);
  853. else
  854. return XXH64_digest_endian(state_in, XXH_bigEndian);
  855. }