123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389 |
- #pragma once
- #include "Types.h"
- #include <math.h>
- #include <vector>
- #include <map>
- #include <algorithm> // for std::sort
- #include <string.h> // for memset
- #include <stdio.h> // for printf
- double calcScore ( const int * bins, const int bincount, const int ballcount );
- void plot ( double n );
- inline double ExpectedCollisions ( double balls, double bins )
- {
- return balls - bins + bins * pow(1 - 1/bins,balls);
- }
- double chooseK ( int b, int k );
- double chooseUpToK ( int n, int k );
- //-----------------------------------------------------------------------------
- inline uint32_t f3mix ( uint32_t k )
- {
- k ^= k >> 16;
- k *= 0x85ebca6b;
- k ^= k >> 13;
- k *= 0xc2b2ae35;
- k ^= k >> 16;
- return k;
- }
- //-----------------------------------------------------------------------------
- // Sort the hash list, count the total number of collisions and return
- // the first N collisions for further processing
- template< typename hashtype >
- int FindCollisions ( std::vector<hashtype> & hashes,
- HashSet<hashtype> & collisions,
- int maxCollisions )
- {
- int collcount = 0;
- std::sort(hashes.begin(),hashes.end());
- for(size_t i = 1; i < hashes.size(); i++)
- {
- if(hashes[i] == hashes[i-1])
- {
- collcount++;
- if((int)collisions.size() < maxCollisions)
- {
- collisions.insert(hashes[i]);
- }
- }
- }
- return collcount;
- }
- //-----------------------------------------------------------------------------
- template < class keytype, typename hashtype >
- int PrintCollisions ( hashfunc<hashtype> hash, std::vector<keytype> & keys )
- {
- int collcount = 0;
- typedef std::map<hashtype,keytype> htab;
- htab tab;
- for(size_t i = 1; i < keys.size(); i++)
- {
- keytype & k1 = keys[i];
- hashtype h = hash(&k1,sizeof(keytype),0);
- typename htab::iterator it = tab.find(h);
- if(it != tab.end())
- {
- keytype & k2 = (*it).second;
- printf("A: ");
- printbits(&k1,sizeof(keytype));
- printf("B: ");
- printbits(&k2,sizeof(keytype));
- }
- else
- {
- tab.insert( std::make_pair(h,k1) );
- }
- }
- return collcount;
- }
- //----------------------------------------------------------------------------
- // Measure the distribution "score" for each possible N-bit span up to 20 bits
- template< typename hashtype >
- double TestDistribution ( std::vector<hashtype> & hashes, bool drawDiagram )
- {
- printf("Testing distribution - ");
- if(drawDiagram) printf("\n");
- const int hashbits = sizeof(hashtype) * 8;
- int maxwidth = 20;
- // We need at least 5 keys per bin to reliably test distribution biases
- // down to 1%, so don't bother to test sparser distributions than that
- while(double(hashes.size()) / double(1 << maxwidth) < 5.0)
- {
- maxwidth--;
- }
- std::vector<int> bins;
- bins.resize(1 << maxwidth);
- double worst = 0;
- int worstStart = -1;
- int worstWidth = -1;
- for(int start = 0; start < hashbits; start++)
- {
- int width = maxwidth;
- int bincount = (1 << width);
- memset(&bins[0],0,sizeof(int)*bincount);
- for(size_t j = 0; j < hashes.size(); j++)
- {
- hashtype & hash = hashes[j];
- uint32_t index = window(&hash,sizeof(hash),start,width);
- bins[index]++;
- }
- // Test the distribution, then fold the bins in half,
- // repeat until we're down to 256 bins
- if(drawDiagram) printf("[");
- while(bincount >= 256)
- {
- double n = calcScore(&bins[0],bincount,(int)hashes.size());
- if(drawDiagram) plot(n);
- if(n > worst)
- {
- worst = n;
- worstStart = start;
- worstWidth = width;
- }
- width--;
- bincount /= 2;
- if(width < 8) break;
- for(int i = 0; i < bincount; i++)
- {
- bins[i] += bins[i+bincount];
- }
- }
- if(drawDiagram) printf("]\n");
- }
- double pct = worst * 100.0;
- printf("Worst bias is the %3d-bit window at bit %3d - %5.3f%%",worstWidth,worstStart,pct);
- if(pct >= 1.0) printf(" !!!!! ");
- printf("\n");
- return worst;
- }
- //----------------------------------------------------------------------------
- template < typename hashtype >
- bool TestHashList ( std::vector<hashtype> & hashes, std::vector<hashtype> & collisions, bool testDist, bool drawDiagram )
- {
- bool result = true;
- {
- size_t count = hashes.size();
- double expected = (double(count) * double(count-1)) / pow(2.0,double(sizeof(hashtype) * 8 + 1));
- printf("Testing collisions - Expected %8.2f, ",expected);
- double collcount = 0;
- HashSet<hashtype> collisions;
- collcount = FindCollisions(hashes,collisions,1000);
- printf("actual %8.2f (%5.2fx)",collcount, collcount / expected);
- if(sizeof(hashtype) == sizeof(uint32_t))
- {
- // 2x expected collisions = fail
- // #TODO - collision failure cutoff needs to be expressed as a standard deviation instead
- // of a scale factor, otherwise we fail erroneously if there are a small expected number
- // of collisions
- if(double(collcount) / double(expected) > 2.0)
- {
- printf(" !!!!! ");
- result = false;
- }
- }
- else
- {
- // For all hashes larger than 32 bits, _any_ collisions are a failure.
-
- if(collcount > 0)
- {
- printf(" !!!!! ");
- result = false;
- }
- }
- printf("\n");
- }
- //----------
- if(testDist)
- {
- TestDistribution(hashes,drawDiagram);
- }
- return result;
- }
- //----------
- template < typename hashtype >
- bool TestHashList ( std::vector<hashtype> & hashes, bool /*testColl*/, bool testDist, bool drawDiagram )
- {
- std::vector<hashtype> collisions;
- return TestHashList(hashes,collisions,testDist,drawDiagram);
- }
- //-----------------------------------------------------------------------------
- template < class keytype, typename hashtype >
- bool TestKeyList ( hashfunc<hashtype> hash, std::vector<keytype> & keys, bool testColl, bool testDist, bool drawDiagram )
- {
- int keycount = (int)keys.size();
- std::vector<hashtype> hashes;
- hashes.resize(keycount);
- printf("Hashing");
- for(int i = 0; i < keycount; i++)
- {
- if(i % (keycount / 10) == 0) printf(".");
- keytype & k = keys[i];
- hash(&k,sizeof(k),0,&hashes[i]);
- }
- printf("\n");
- bool result = TestHashList(hashes,testColl,testDist,drawDiagram);
- printf("\n");
- return result;
- }
- //-----------------------------------------------------------------------------
- // Bytepair test - generate 16-bit indices from all possible non-overlapping
- // 8-bit sections of the hash value, check distribution on all of them.
- // This is a very good test for catching weak intercorrelations between bits -
- // much harder to pass than the normal distribution test. However, it doesn't
- // really model the normal usage of hash functions in hash table lookup, so
- // I'm not sure it's that useful (and hash functions that fail this test but
- // pass the normal distribution test still work well in practice)
- template < typename hashtype >
- double TestDistributionBytepairs ( std::vector<hashtype> & hashes, bool drawDiagram )
- {
- const int nbytes = sizeof(hashtype);
- const int hashbits = nbytes * 8;
-
- const int nbins = 65536;
- std::vector<int> bins(nbins,0);
- double worst = 0;
- for(int a = 0; a < hashbits; a++)
- {
- if(drawDiagram) if((a % 8 == 0) && (a > 0)) printf("\n");
- if(drawDiagram) printf("[");
- for(int b = 0; b < hashbits; b++)
- {
- if(drawDiagram) if((b % 8 == 0) && (b > 0)) printf(" ");
- bins.clear();
- bins.resize(nbins,0);
- for(size_t i = 0; i < hashes.size(); i++)
- {
- hashtype & hash = hashes[i];
- uint32_t pa = window(&hash,sizeof(hash),a,8);
- uint32_t pb = window(&hash,sizeof(hash),b,8);
- bins[pa | (pb << 8)]++;
- }
- double s = calcScore(bins,bins.size(),hashes.size());
- if(drawDiagram) plot(s);
- if(s > worst)
- {
- worst = s;
- }
- }
- if(drawDiagram) printf("]\n");
- }
- return worst;
- }
- //-----------------------------------------------------------------------------
- // Simplified test - only check 64k distributions, and only on byte boundaries
- template < typename hashtype >
- void TestDistributionFast ( std::vector<hashtype> & hashes, double & dworst, double & davg )
- {
- const int hashbits = sizeof(hashtype) * 8;
- const int nbins = 65536;
-
- std::vector<int> bins(nbins,0);
- dworst = -1.0e90;
- davg = 0;
- for(int start = 0; start < hashbits; start += 8)
- {
- bins.clear();
- bins.resize(nbins,0);
- for(size_t j = 0; j < hashes.size(); j++)
- {
- hashtype & hash = hashes[j];
- uint32_t index = window(&hash,sizeof(hash),start,16);
- bins[index]++;
- }
- double n = calcScore(&bins.front(),(int)bins.size(),(int)hashes.size());
-
- davg += n;
- if(n > dworst) dworst = n;
- }
- davg /= double(hashbits/8);
- }
- //-----------------------------------------------------------------------------
|