123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485 |
- ;;; Bytevectors
- ;;; Copyright (C) 2024 Igalia, S.L.
- ;;;
- ;;; Licensed under the Apache License, Version 2.0 (the "License");
- ;;; you may not use this file except in compliance with the License.
- ;;; You may obtain a copy of the License at
- ;;;
- ;;; http://www.apache.org/licenses/LICENSE-2.0
- ;;;
- ;;; Unless required by applicable law or agreed to in writing, software
- ;;; distributed under the License is distributed on an "AS IS" BASIS,
- ;;; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- ;;; See the License for the specific language governing permissions and
- ;;; limitations under the License.
- ;;; Commentary:
- ;;;
- ;;; Bytevectors.
- ;;;
- ;;; Code:
- (library (hoot numbers)
- (export + * - /
- < <= = >= >
- 1+ 1-
- abs
- floor
- ceiling
- round
- truncate
- number?
- complex?
- real?
- rational?
- integer?
- exact-integer?
- exact?
- inexact?
- finite?
- infinite?
- nan?
- inexact
- exact
- quotient
- remainder
- modulo
- even?
- odd?
- numerator
- denominator
- exact-integer-sqrt
- floor/
- floor-quotient
- floor-remainder
- truncate/
- truncate-quotient
- truncate-remainder
- gcd lcm
- max min
- negative?
- positive?
- zero?
- sin
- cos
- tan
- asin
- acos
- atan
- sqrt
- log
- exp
- rationalize
- square
- expt
- make-rectangular
- make-polar
- magnitude
- angle
- real-part
- imag-part)
- (import (hoot primitives)
- (hoot values)
- (hoot eq)
- (hoot not)
- (hoot errors)
- (hoot match)
- (hoot bitwise))
- (define (1+ x) (%+ x 1))
- (define (1- x) (%- x 1))
- (define-syntax-rule (define-associative-eta-expansion f %f)
- (define f
- (case-lambda
- (() (%f))
- ((x) (%f x))
- ((x y) (%f x y))
- ((x y . z) (apply f (%f x y) z)))))
- (define-associative-eta-expansion * %*)
- (define-associative-eta-expansion + %+)
- (define-syntax-rule (define-sub/div-eta-expansion f %f zero)
- (begin
- (define %generic
- (case-lambda
- ((y) (%f zero y))
- ((x y) (%f x y))
- ((x y . z) (apply %generic (%f x y) z))))
- (define-syntax f
- (lambda (stx)
- (syntax-case stx ()
- ((_ . x) #'(%f . x))
- (f (identifier? #'f) #'%generic))))))
- (define-sub/div-eta-expansion - %- 0)
- (define-sub/div-eta-expansion / %/ 1)
- (define-syntax-rule (define-comparison-expansion f %f)
- (begin
- (define %generic
- (case-lambda
- ((a b) (%f a b))
- ((a b . c)
- (let lp ((res (%f a b)) (a b) (c c))
- (match c
- (() res)
- ((b . c)
- (lp (and (%f a b) res) b c)))))))
- (define-syntax f
- (lambda (stx)
- (syntax-case stx ()
- ((_ x y . z) #'(%f x y . z))
- (f (identifier? #'f) #'%generic))))))
- (define-comparison-expansion < %<)
- (define-comparison-expansion <= %<=)
- (define-comparison-expansion = %=)
- (define-comparison-expansion >= %>=)
- (define-comparison-expansion > %>)
- (define (number? x) (%number? x))
- (define (complex? x) (%complex? x))
- (define (real? x) (%real? x))
- (define (rational? x) (%rational? x))
- (define (integer? x) (%integer? x))
- (define (exact-integer? x) (%exact-integer? x))
- (define (exact? x) (%exact? x))
- (define (inexact? x) (%inexact? x))
- (define (abs x) (%abs x))
- (define (floor x) (%floor x))
- (define (ceiling x) (%ceiling x))
- (define (round x) (%floor (+ x 0.5)))
- (define (truncate x)
- (check-type x real? 'truncate)
- (if (exact? x)
- (if (integer? x)
- x
- (truncate-quotient (numerator x) (denominator x)))
- (%inline-wasm
- '(func (param $x f64) (result f64)
- (f64.trunc (local.get $x)))
- x)))
- ;; Unlike R7RS, these only operate on real numbers.
- (define (infinite? x)
- (or (= x +inf.0) (= x -inf.0)))
- (define (nan? x)
- (not (= x x)))
- (define (finite? x)
- (and (not (infinite? x)) (not (nan? x))))
- (define (inexact x) (%inexact x))
- (define (exact x)
- (cond
- ((exact? x) x)
- (else
- (check-type x finite? 'exact)
- (%inline-wasm
- '(func (param $x f64)
- (result (ref eq))
- (call $f64->exact (local.get $x)))
- x))))
- (define (quotient x y) (%quotient x y))
- (define (remainder x y) (%remainder x y))
- (define (modulo x y) (%modulo x y))
- (define (even? x) (zero? (logand x 1)))
- (define (odd? x) (not (even? x)))
- (define (numerator x)
- (cond
- ((exact-integer? x) x)
- ((exact? x)
- (%inline-wasm
- '(func (param $x (ref $fraction))
- (result (ref eq))
- (struct.get $fraction $num (local.get $x)))
- x))
- (else (inexact (numerator (exact x))))))
- (define (denominator x)
- (cond
- ((exact-integer? x) 1)
- ((exact? x)
- (%inline-wasm
- '(func (param $x (ref $fraction))
- (result (ref eq))
- (struct.get $fraction $denom (local.get $x)))
- x))
- (else (inexact (denominator (exact x))))))
- (define (exact-integer-sqrt n)
- ;; FIXME: There's a compiler bug that makes this procedure return
- ;; junk when this exact-integer? check is enabled.
- ;;
- (check-type n exact-integer? 'exact-integer-sqrt)
- (assert (>= n 0) 'exact-integer-sqrt)
- (let loop ((x n) (y (quotient (+ n 1) 2)))
- (if (< y x)
- (loop y (quotient (+ y (quotient n y)) 2))
- (values x (- n (* x x))))))
- (define (floor/ x y)
- (values (floor-quotient x y) (floor-remainder x y)))
- ;; Adapted from the SRFI-141 reference implementation
- (define (floor-quotient x y)
- (check-type x integer? 'floor-quotient)
- (check-type y integer? 'floor-quotient)
- (cond
- ((and (negative? x) (negative? y))
- (quotient (- x) (- y)))
- ((negative? x)
- (let ((x (- x)))
- (call-with-values (lambda () (truncate/ x y))
- (lambda (q r)
- (if (zero? r)
- (- q)
- (1- (- q)))))))
- ((negative? y)
- (let ((y (- y)))
- (call-with-values (lambda () (truncate/ x y))
- (lambda (q r)
- (if (zero? r)
- (- q)
- (1- (- q)))))))
- (else (quotient x y))))
- (define (floor-remainder x y) (modulo x y))
- (define (truncate/ x y)
- (values (truncate-quotient x y)
- (truncate-remainder x y)))
- (define (truncate-quotient x y) (quotient x y))
- (define (truncate-remainder x y) (remainder x y))
- (define (%binary-gcd x y)
- (check-type x integer? 'gcd)
- (check-type y integer? 'gcd)
- (let ((result
- (%inline-wasm
- '(func (param $x (ref eq)) (param $y (ref eq))
- (result (ref eq))
- (call $gcd (local.get $x) (local.get $y)))
- (exact x)
- (exact y))))
- (if (or (inexact? x) (inexact? y))
- (inexact result)
- result)))
- (define-syntax %gcd
- (syntax-rules ()
- ((_) 0)
- ((_ x) x)
- ((_ x y) (%binary-gcd x y))))
- (define (%binary-lcm x y)
- (check-type x integer? 'lcm)
- (check-type y integer? 'lcm)
- (let* ((exact-x (exact x))
- (exact-y (exact y))
- (result (if (and (eqv? exact-x 0) (eqv? exact-y 0))
- 0
- (quotient (abs (* exact-x exact-y))
- (gcd exact-x exact-y)))))
- (if (or (inexact? x) (inexact? y))
- (inexact result)
- result)))
- (define-syntax %lcm
- (syntax-rules ()
- ((_) 1)
- ((_ x) x)
- ((_ x y) (%binary-lcm x y))))
- (define-syntax-rule (define-associative-eta-expansion f %f)
- (define f
- (case-lambda
- (() (%f))
- ((x) (%f x))
- ((x y) (%f x y))
- ((x y . z) (apply f (%f x y) z)))))
- (define-associative-eta-expansion gcd %gcd)
- (define-associative-eta-expansion lcm %lcm)
- (define max
- (case-lambda
- ((x) x)
- ((x y) (if (> x y) x y))
- ((x y . z) (apply max (max x y) z))))
- (define min
- (case-lambda
- ((x) x)
- ((x y) (if (< x y) x y))
- ((x y . z) (apply min (min x y) z))))
- (define (negative? x) (< x 0))
- (define (positive? x) (> x 0))
- (define (zero? x) (= x 0))
- (define (sin x) (%sin x))
- (define (cos x) (%cos x))
- (define (tan x) (%tan x))
- (define (asin x) (%asin x))
- (define (acos x) (%acos x))
- (define atan
- (case-lambda
- ((x) (%atan x))
- ((x y) (%atan x y))))
- (define (sqrt x) (%sqrt x))
- (define* (log x #:optional y)
- (define (%log x)
- (%inline-wasm
- '(func (param $x (ref eq)) (result (ref eq))
- (call $log (local.get $x)))
- x))
- (if y
- (/ (%log x)
- (%log y))
- (%log x)))
- (define (exp x)
- (define (%exp x)
- (%inline-wasm
- '(func (param $x (ref eq)) (result (ref eq))
- (call $exp (local.get $x)))
- x))
- (%exp x))
- ;; Adapted from the comments for scm_rationalize in libguile's numbers.c
- (define (rationalize x y)
- (check-type x rational? 'rationalize)
- (check-type y rational? 'rationalize)
- (define (exact-rationalize x eps)
- (let ((n1 (if (negative? x) -1 1))
- (x (abs x))
- (eps (abs eps)))
- (let ((lo (- x eps))
- (hi (+ x eps)))
- (if (<= lo 0)
- 0
- (let loop ((nlo (numerator lo)) (dlo (denominator lo))
- (nhi (numerator hi)) (dhi (denominator hi))
- (n1 n1) (d1 0) (n2 0) (d2 1))
- (let-values (((qlo rlo) (floor/ nlo dlo))
- ((qhi rhi) (floor/ nhi dhi)))
- (let ((n0 (+ n2 (* n1 qlo)))
- (d0 (+ d2 (* d1 qlo))))
- (cond ((zero? rlo) (/ n0 d0))
- ((< qlo qhi) (/ (+ n0 n1) (+ d0 d1)))
- (else (loop dhi rhi dlo rlo n0 d0 n1 d1))))))))))
- (if (and (exact? x) (exact? y))
- (exact-rationalize x y)
- (inexact (exact-rationalize (exact x) (exact y)))))
- (define (square x) (* x x))
- (define (expt x y)
- (check-type x number? 'expt)
- (check-type y number? 'expt)
- (cond
- ((eqv? x 0)
- (cond ((zero? y) (if (exact? y) 1 1.0))
- ((positive? y) (if (exact? y) 0 0.0))
- (else +nan.0)))
- ((eqv? x 0.0)
- (cond ((zero? y) 1.0)
- ((positive? y) 0.0)
- (else +nan.0)))
- ((exact-integer? y)
- (if (< y 0)
- (/ 1 (expt x (abs y)))
- (let lp ((y y)
- (result 1))
- (if (= y 0)
- result
- (lp (1- y) (* x result))))))
- (else (exp (* y (log x))))))
- ;; (scheme complex)
- ;; Adapted from Guile's numbers.c
- (define (make-rectangular real imag)
- (check-type real real? 'make-rectangular)
- (check-type imag real? 'make-rectangular)
- (if (eq? imag 0)
- real
- (%inline-wasm
- '(func (param $real f64) (param $imag f64) (result (ref eq))
- (struct.new $complex
- (i32.const 0)
- (local.get $real)
- (local.get $imag)))
- (inexact real) (inexact imag))))
- (define (make-polar mag ang)
- (check-type mag real? 'make-polar)
- (check-type ang real? 'make-polar)
- (cond
- ((eq? mag 0) 0)
- ((eq? ang 0) mag)
- (else
- (%inline-wasm
- '(func (param $mag f64) (param $ang f64) (result (ref eq))
- (local $f0 f64) (local $f1 f64)
- (local.set $f0 (call $fcos (local.get $ang)))
- (local.set $f1 (call $fsin (local.get $ang)))
- ;; If sin/cos are NaN and magnitude is 0, return a complex
- ;; zero.
- (if (ref eq)
- (i32.and (call $f64-is-nan (local.get $f0))
- (call $f64-is-nan (local.get $f1))
- (f64.eq (local.get $mag) (f64.const 0.0)))
- (then (struct.new $complex
- (i32.const 0)
- (f64.const 0.0)
- (f64.const 0.0)))
- (else (struct.new $complex
- (i32.const 0)
- (f64.mul (local.get $mag) (local.get $f0))
- (f64.mul (local.get $mag) (local.get $f1))))))
- (inexact mag) (inexact ang)))))
- (define (magnitude z)
- (cond
- ((real? z) (abs z))
- (else
- (check-type z complex? 'magnitude)
- (let ((r (real-part z))
- (i (imag-part z)))
- (sqrt (+ (* r r) (* i i)))))))
- (define (angle z)
- (cond
- ((real? z)
- (if (negative? z)
- (atan 0.0 -1.0)
- 0.0))
- (else
- (check-type z complex? 'angle)
- (atan (imag-part z) (real-part z)))))
- (define (real-part z)
- (cond
- ((real? z) z)
- (else
- (check-type z complex? 'real-part)
- (%inline-wasm
- '(func (param $z (ref $complex)) (result f64)
- (struct.get $complex $real (local.get $z)))
- z))))
- (define (imag-part z)
- (cond
- ((real? z) 0.0)
- (else
- (check-type z complex? 'real-part)
- (%inline-wasm
- '(func (param $z (ref $complex)) (result f64)
- (struct.get $complex $imag (local.get $z)))
- z))))
- )
|