pciradio.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892
  1. /*
  2. * PCI RADIO Card DAHDI Telephony PCI Quad Radio Interface driver
  3. *
  4. * Written by Jim Dixon <jim@lambdatel.com>
  5. * Based on previous work by Mark Spencer <markster@digium.com>
  6. * Based on previous works, designs, and archetectures conceived and
  7. * written by Jim Dixon <jim@lambdatel.com>.
  8. *
  9. * Copyright (C) 2001-2007 Jim Dixon / Zapata Telephony.
  10. *
  11. * All rights reserved.
  12. *
  13. *
  14. */
  15. /*
  16. * See http://www.asterisk.org for more information about
  17. * the Asterisk project. Please do not directly contact
  18. * any of the maintainers of this project for assistance;
  19. * the project provides a web site, mailing lists and IRC
  20. * channels for your use.
  21. *
  22. * This program is free software, distributed under the terms of
  23. * the GNU General Public License Version 2 as published by the
  24. * Free Software Foundation. See the LICENSE file included with
  25. * this program for more details.
  26. */
  27. /*
  28. The PCI Radio Interface card interfaces up to 4 two-way radios (either
  29. a base/mobile radio or repeater system) to DAHDI channels. The driver
  30. may work either independent of an application, or with it, through
  31. the driver;s ioctl() interface. This file gives you access to specify
  32. load-time parameters for Radio channels, so that the driver may run
  33. by itself, and just act like a generic DAHDI radio interface.
  34. */
  35. /* Latency tests:
  36. Without driver: 308496
  37. With driver: 303826 (1.5 %)
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/errno.h>
  41. #include <linux/module.h>
  42. #include <linux/init.h>
  43. #include <linux/pci.h>
  44. #include <linux/interrupt.h>
  45. #include <linux/moduleparam.h>
  46. #include <linux/sched.h>
  47. #include <linux/slab.h>
  48. #include <linux/delay.h>
  49. #include <asm/io.h>
  50. #include <asm/delay.h>
  51. #include <dahdi/kernel.h>
  52. #define RAD_MAX_IFACES 128
  53. #define NUM_CODES 15
  54. #define SERIAL_BUFLEN 128
  55. #define SRX_TIMEOUT 300
  56. #define RAD_CNTL 0x00
  57. #define RAD_OPER 0x01
  58. #define RAD_AUXC 0x02
  59. #define RAD_AUXD 0x03
  60. #define XPGM 4
  61. #define XCS 2
  62. #define RAD_MASK0 0x04
  63. #define RAD_MASK1 0x05
  64. #define RAD_INTSTAT 0x06
  65. #define RAD_AUXR 0x07
  66. #define XINIT 8
  67. #define XDONE 0x10
  68. #define RAD_DMAWS 0x08
  69. #define RAD_DMAWI 0x0c
  70. #define RAD_DMAWE 0x10
  71. #define RAD_DMARS 0x18
  72. #define RAD_DMARI 0x1c
  73. #define RAD_DMARE 0x20
  74. #define RAD_AUXFUNC 0x2b
  75. #define RAD_SERCTL 0x2d
  76. #define RAD_FSCDELAY 0x2f
  77. #define RAD_REGBASE 0xc0
  78. #define RAD_CTCSSMASK 0xf
  79. #define RAD_CTCSSOTHER 0xf
  80. #define RAD_CTCSSVALID 0x10
  81. #define NUM_CHANS 4
  82. #define RAD_GOTRX_DEBOUNCE_TIME 75
  83. #define RAD_CTCSS_ACQUIRE_TIME 10
  84. #define RAD_CTCSS_TALKOFF_TIME 1000
  85. #define DAHDI_RADPAR_CTCSSACQUIRETIME 18 /* DEBUG only, this belongs in dahdi.h */
  86. #define DAHDI_RADPAR_CTCSSTALKOFFTIME 19 /* DEBUG only, this belongs in dahdi.h */
  87. /*
  88. * MX828 Commands
  89. */
  90. #define MX828_GEN_RESET 0x01 /* W */
  91. #define MX828_SAUDIO_CTRL 0x80 /* W */
  92. #define MX828_SAUDIO_STATUS 0x81 /* R */
  93. #define MX828_SAUDIO_SETUP 0x82 /* W */
  94. #define MX828_TX_TONE 0x83 /* W16 */
  95. #define MX828_RX_TONE 0x84 /* W16 */
  96. #define MX828_DCS3 0x85 /* W */
  97. #define MX828_DCS2 0x86 /* W */
  98. #define MX828_DCS1 0x87 /* W */
  99. #define MX828_GEN_CTRL 0x88 /* W */
  100. #define MX828_GPT 0x8B /* W */
  101. #define MX828_IRQ_MASK 0x8E /* W */
  102. #define MX828_SELCALL 0x8D /* W16 */
  103. #define MX828_AUD_CTRL 0x8A /* W16 */
  104. #define MX828_IRQ_FLAG 0x8F /* R */
  105. struct encdec
  106. {
  107. unsigned char state; /* 0 = idle */
  108. int chan;
  109. unsigned char req[NUM_CHANS];
  110. unsigned char dcsrx[NUM_CHANS];
  111. unsigned char ctrx[NUM_CHANS];
  112. unsigned char dcstx[NUM_CHANS];
  113. unsigned char cttx[NUM_CHANS];
  114. unsigned char saudio_ctrl[NUM_CHANS];
  115. unsigned char saudio_setup[NUM_CHANS];
  116. unsigned char txcode[NUM_CHANS];
  117. unsigned long lastcmd;
  118. int myindex[NUM_CHANS];
  119. unsigned long waittime;
  120. unsigned char retstate;
  121. } ;
  122. struct pciradio {
  123. struct pci_dev *dev;
  124. struct dahdi_device *ddev;
  125. struct dahdi_span span;
  126. unsigned char ios;
  127. int usecount;
  128. unsigned int intcount;
  129. int dead;
  130. int pos;
  131. int freeregion;
  132. int nchans;
  133. spinlock_t lock;
  134. int remote_locked;
  135. unsigned char rxbuf[SERIAL_BUFLEN];
  136. unsigned short rxindex;
  137. unsigned long srxtimer;
  138. unsigned char txbuf[SERIAL_BUFLEN];
  139. unsigned short txindex;
  140. unsigned short txlen;
  141. unsigned char pasave;
  142. unsigned char pfsave;
  143. volatile unsigned long ioaddr;
  144. dma_addr_t readdma;
  145. dma_addr_t writedma;
  146. volatile unsigned int *writechunk; /* Double-word aligned write memory */
  147. volatile unsigned int *readchunk; /* Double-word aligned read memory */
  148. unsigned char saudio_status[NUM_CHANS];
  149. char gotcor[NUM_CHANS];
  150. char gotct[NUM_CHANS];
  151. char newctcssstate[NUM_CHANS];
  152. char ctcssstate[NUM_CHANS];
  153. char gotrx[NUM_CHANS];
  154. char gotrx1[NUM_CHANS];
  155. char gottx[NUM_CHANS];
  156. char lasttx[NUM_CHANS];
  157. int gotrxtimer[NUM_CHANS];
  158. int ctcsstimer[NUM_CHANS];
  159. int debouncetime[NUM_CHANS];
  160. int ctcssacquiretime[NUM_CHANS];
  161. int ctcsstalkofftime[NUM_CHANS];
  162. int bursttime[NUM_CHANS];
  163. int bursttimer[NUM_CHANS];
  164. unsigned char remmode[NUM_CHANS];
  165. unsigned short present_code[NUM_CHANS];
  166. unsigned short last_code[NUM_CHANS];
  167. unsigned short rxcode[NUM_CHANS][NUM_CODES + 1];
  168. unsigned short rxclass[NUM_CHANS][NUM_CODES + 1];
  169. unsigned short txcode[NUM_CHANS][NUM_CODES + 1];;
  170. unsigned char radmode[NUM_CHANS];
  171. #define RADMODE_INVERTCOR 1
  172. #define RADMODE_IGNORECOR 2
  173. #define RADMODE_EXTTONE 4
  174. #define RADMODE_EXTINVERT 8
  175. #define RADMODE_IGNORECT 16
  176. #define RADMODE_NOENCODE 32
  177. unsigned char corthresh[NUM_CHANS];
  178. struct dahdi_chan _chans[NUM_CHANS];
  179. struct dahdi_chan *chans;
  180. unsigned char mx828_addr;
  181. struct encdec encdec;
  182. unsigned long lastremcmd;
  183. };
  184. static struct pciradio *ifaces[RAD_MAX_IFACES];
  185. static void pciradio_release(struct pciradio *rad);
  186. static int debug = 0;
  187. struct tonedef {
  188. int code;
  189. unsigned char b1;
  190. unsigned char b2;
  191. } ;
  192. #include "radfw.h"
  193. static struct tonedef cttable_tx [] = {
  194. {0,0,0},
  195. {670,0xE,0xB1},
  196. {693,0xE,0x34},
  197. {719,0xD,0xB1},
  198. {744,0xD,0x3B},
  199. {770,0xC,0xC9},
  200. {797,0xC,0x5A},
  201. {825,0xB,0xEF},
  202. {854,0xB,0x87},
  203. {885,0xB,0x1F},
  204. {915,0xA,0xC2},
  205. {948,0xA,0x62},
  206. {974,0xA,0x1B},
  207. {1000,0x9,0xD8},
  208. {1035,0x9,0x83},
  209. {1072,0x9,0x2F},
  210. {1109,0x8,0xE0},
  211. {1148,0x8,0x93},
  212. {1188,0x8,0x49},
  213. {1230,0x8,0x1},
  214. {1273,0x7,0xBC},
  215. {1318,0x7,0x78},
  216. {1365,0x7,0x36},
  217. {1413,0x6,0xF7},
  218. {1462,0x6,0xBC},
  219. {1514,0x6,0x80},
  220. {1567,0x6,0x48},
  221. {1598,0x6,0x29},
  222. {1622,0x6,0x12},
  223. {1679,0x5,0xDD},
  224. {1738,0x5,0xAA},
  225. {1799,0x5,0x79},
  226. {1835,0x5,0x5D},
  227. {1862,0x5,0x49},
  228. {1899,0x5,0x2F},
  229. {1928,0x5,0x1B},
  230. {1966,0x5,0x2},
  231. {1995,0x4,0xEF},
  232. {2035,0x4,0xD6},
  233. {2065,0x4,0xC4},
  234. {2107,0x4,0xAC},
  235. {2181,0x4,0x83},
  236. {2257,0x4,0x5D},
  237. {2291,0x4,0x4C},
  238. {2336,0x4,0x37},
  239. {2418,0x4,0x12},
  240. {2503,0x3,0xEF},
  241. {2541,0x3,0xE0},
  242. {0,0,0}
  243. } ;
  244. static struct tonedef cttable_rx [] = {
  245. {0,0,0},
  246. {670,0x3,0xD8},
  247. {693,0x4,0x9},
  248. {719,0x4,0x1B},
  249. {744,0x4,0x4E},
  250. {770,0x4,0x83},
  251. {797,0x4,0x94},
  252. {825,0x4,0xCB},
  253. {854,0x5,0x2},
  254. {885,0x5,0x14},
  255. {915,0x5,0x4C},
  256. {948,0x5,0x87},
  257. {974,0x5,0x94},
  258. {1000,0x5,0xCB},
  259. {1035,0x6,0x7},
  260. {1072,0x6,0x45},
  261. {1109,0x6,0x82},
  262. {1148,0x6,0xC0},
  263. {1188,0x6,0xD1},
  264. {1230,0x7,0x10},
  265. {1273,0x7,0x50},
  266. {1318,0x7,0xC0},
  267. {1365,0x8,0x2},
  268. {1413,0x8,0x44},
  269. {1462,0x8,0x86},
  270. {1514,0x8,0xC9},
  271. {1567,0x9,0xC},
  272. {1598,0x9,0x48},
  273. {1622,0x9,0x82},
  274. {1679,0x9,0xC6},
  275. {1738,0xA,0xB},
  276. {1799,0xA,0x84},
  277. {1835,0xA,0xC2},
  278. {1862,0xA,0xC9},
  279. {1899,0xB,0x8},
  280. {1928,0xB,0x44},
  281. {1966,0xB,0x83},
  282. {1995,0xB,0x8A},
  283. {2035,0xB,0xC9},
  284. {2065,0xC,0x6},
  285. {2107,0xC,0x46},
  286. {2181,0xC,0xC3},
  287. {2257,0xD,0x41},
  288. {2291,0xD,0x48},
  289. {2336,0xD,0x89},
  290. {2418,0xE,0x8},
  291. {2503,0xE,0x88},
  292. {2541,0xE,0xC7},
  293. {0,0,0}
  294. };
  295. static struct {
  296. int code;
  297. char b3;
  298. char b2;
  299. char b1;
  300. } dcstable[] = {
  301. {0,0,0,0},
  302. {23,0x76,0x38,0x13},
  303. {25,0x6B,0x78,0x15},
  304. {26,0x65,0xD8,0x16},
  305. {31,0x51,0xF8,0x19},
  306. {32,0x5F,0x58,0x1A},
  307. {43,0x5B,0x68,0x23},
  308. {47,0x0F,0xD8,0x27},
  309. {51,0x7C,0xA8,0x29},
  310. {54,0x6F,0x48,0x2C},
  311. {65,0x5D,0x18,0x35},
  312. {71,0x67,0x98,0x39},
  313. {72,0x69,0x38,0x3A},
  314. {73,0x2E,0x68,0x3B},
  315. {74,0x74,0x78,0x3C},
  316. {114,0x35,0xE8,0x4C},
  317. {115,0x72,0xB8,0x4D},
  318. {116,0x7C,0x18,0x4E},
  319. {125,0x07,0xB8,0x55},
  320. {131,0x3D,0x38,0x59},
  321. {132,0x33,0x98,0x5A},
  322. {134,0x2E,0xD8,0x5C},
  323. {143,0x37,0xA8,0x63},
  324. {152,0x1E,0xC8,0x6A},
  325. {155,0x44,0xD8,0x6D},
  326. {156,0x4A,0x78,0x6E},
  327. {162,0x6B,0xC8,0x72},
  328. {165,0x31,0xD8,0x75},
  329. {172,0x05,0xF8,0x7A},
  330. {174,0x18,0xB8,0x7C},
  331. {205,0x6E,0x98,0x85},
  332. {223,0x68,0xE8,0x93},
  333. {226,0x7B,0x08,0x96},
  334. {243,0x45,0xB8,0xA3},
  335. {244,0x1F,0xA8,0xA4},
  336. {245,0x58,0xF8,0xA5},
  337. {251,0x62,0x78,0xA9},
  338. {261,0x17,0x78,0xB1},
  339. {263,0x5E,0x88,0xB3},
  340. {265,0x43,0xC8,0xB5},
  341. {271,0x79,0x48,0xB9},
  342. {306,0x0C,0xF8,0xC6},
  343. {311,0x38,0xD8,0xC9},
  344. {315,0x6C,0x68,0xCD},
  345. {331,0x23,0xE8,0xD9},
  346. {343,0x29,0x78,0xE3},
  347. {346,0x3A,0x98,0xE6},
  348. {351,0x0E,0xB8,0xE9},
  349. {364,0x68,0x58,0xF4},
  350. {365,0x2F,0x08,0xF5},
  351. {371,0x15,0x88,0xF9},
  352. {411,0x77,0x69,0x09},
  353. {412,0x79,0xC9,0x0A},
  354. {413,0x3E,0x99,0x0B},
  355. {423,0x4B,0x99,0x13},
  356. {431,0x6C,0x59,0x19},
  357. {432,0x62,0xF9,0x1A},
  358. {445,0x7B,0x89,0x25},
  359. {464,0x27,0xE9,0x34},
  360. {465,0x60,0xB9,0x35},
  361. {466,0x6E,0x19,0x36},
  362. {503,0x3C,0x69,0x43},
  363. {506,0x2F,0x89,0x46},
  364. {516,0x41,0xB9,0x4E},
  365. {532,0x0E,0x39,0x5A},
  366. {546,0x19,0xE9,0x66},
  367. {565,0x0C,0x79,0x75},
  368. {606,0x5D,0x99,0x86},
  369. {612,0x67,0x19,0x8A},
  370. {624,0x0F,0x59,0x94},
  371. {627,0x01,0xF9,0x97},
  372. {631,0x72,0x89,0x99},
  373. {632,0x7C,0x29,0x9A},
  374. {654,0x4C,0x39,0xAC},
  375. {662,0x24,0x79,0xB2},
  376. {664,0x39,0x39,0xB4},
  377. {703,0x22,0xB9,0xC3},
  378. {712,0x0B,0xD9,0xCA},
  379. {723,0x39,0x89,0xD3},
  380. {731,0x1E,0x49,0xD9},
  381. {732,0x10,0xE9,0xDA},
  382. {734,0x0D,0xA9,0xDC},
  383. {743,0x14,0xD9,0xE3},
  384. {754,0x20,0xF9,0xEC},
  385. {0,0,0,0}
  386. };
  387. static int gettxtone(int code)
  388. {
  389. int i;
  390. if (!code) return(0);
  391. for(i = 0; cttable_tx[i].code || (!i); i++)
  392. {
  393. if (cttable_tx[i].code == code)
  394. {
  395. return (i);
  396. }
  397. }
  398. return(-1);
  399. }
  400. static int getrxtone(int code)
  401. {
  402. int i;
  403. if (!code) return(0);
  404. for(i = 0; cttable_rx[i].code || (!i); i++)
  405. {
  406. if (cttable_rx[i].code == code)
  407. {
  408. return (i);
  409. }
  410. }
  411. return(-1);
  412. }
  413. static int getdcstone(int code)
  414. {
  415. int i;
  416. if (!code) return(0);
  417. for(i = 0; dcstable[i].code || (!i); i++)
  418. {
  419. if (dcstable[i].code == code)
  420. {
  421. return (i);
  422. }
  423. }
  424. return(-1);
  425. }
  426. static void __pciradio_setcreg(struct pciradio *rad, unsigned char reg, unsigned char val)
  427. {
  428. outb(val, rad->ioaddr + RAD_REGBASE + ((reg & 0xf) << 2));
  429. }
  430. static unsigned char __pciradio_getcreg(struct pciradio *rad, unsigned char reg)
  431. {
  432. return inb(rad->ioaddr + RAD_REGBASE + ((reg & 0xf) << 2));
  433. }
  434. static void rbi_out(struct pciradio *rad, int n, unsigned char *rbicmd)
  435. {
  436. unsigned long flags;
  437. int x;
  438. for(;;)
  439. {
  440. spin_lock_irqsave(&rad->lock,flags);
  441. x = rad->remote_locked || (__pciradio_getcreg(rad,0xc) & 2);
  442. if (!x) rad->remote_locked = 1;
  443. spin_unlock_irqrestore(&rad->lock,flags);
  444. if (x)
  445. msleep_interruptible(20);
  446. else break;
  447. }
  448. spin_lock_irqsave(&rad->lock,flags);
  449. /* enable and address RBI serializer */
  450. __pciradio_setcreg(rad,0xf,rad->pfsave | (n << 4) | 0x40);
  451. /* output commands */
  452. for(x = 0; x < 5; x++) __pciradio_setcreg(rad,0xc,rbicmd[x]);
  453. /* output it */
  454. __pciradio_setcreg(rad,0xb,1);
  455. rad->remote_locked = 0;
  456. spin_unlock_irqrestore(&rad->lock,flags);
  457. return;
  458. }
  459. /*
  460. * Output a command to the MX828 over the serial bus
  461. */
  462. static void mx828_command(struct pciradio *rad,int channel, unsigned char command, unsigned char *byte1, unsigned char *byte2)
  463. {
  464. if(channel > 3)
  465. return;
  466. rad->mx828_addr = channel;
  467. __pciradio_setcreg(rad,0,channel);
  468. if (byte1) __pciradio_setcreg(rad,1,*byte1);
  469. if (byte2) __pciradio_setcreg(rad,2,*byte2);
  470. __pciradio_setcreg(rad,3,command);
  471. }
  472. static void mx828_command_wait(struct pciradio *rad,int channel, unsigned char command, unsigned char *byte1, unsigned char *byte2)
  473. {
  474. unsigned long flags;
  475. spin_lock_irqsave(&rad->lock,flags);
  476. while(rad->encdec.state)
  477. {
  478. spin_unlock_irqrestore(&rad->lock,flags);
  479. msleep_interruptible(20);
  480. spin_lock_irqsave(&rad->lock,flags);
  481. }
  482. rad->encdec.lastcmd = jiffies + 1000;
  483. spin_unlock_irqrestore(&rad->lock,flags);
  484. while(__pciradio_getcreg(rad,0xc) & 1);
  485. rad->encdec.lastcmd = jiffies + 1000;
  486. spin_lock_irqsave(&rad->lock,flags);
  487. rad->encdec.lastcmd = jiffies + 1000;
  488. mx828_command(rad,channel,command,byte1,byte2);
  489. spin_unlock_irqrestore(&rad->lock,flags);
  490. rad->encdec.lastcmd = jiffies + 1000;
  491. while(__pciradio_getcreg(rad,0xc) & 1);
  492. rad->encdec.lastcmd = jiffies;
  493. }
  494. static void _do_encdec(struct pciradio *rad)
  495. {
  496. int i,n;
  497. unsigned char byte1 = 0,byte2 = 0;
  498. /* return doing nothing if busy */
  499. if ((rad->encdec.lastcmd + 2) > jiffies) return;
  500. if (__pciradio_getcreg(rad,0xc) & 1) return;
  501. n = 0;
  502. byte2 = 0;
  503. switch(rad->encdec.state)
  504. {
  505. case 0:
  506. for(i = 0; i < rad->nchans; i++)
  507. {
  508. n = (unsigned)(i - rad->intcount) % rad->nchans;
  509. if (rad->encdec.req[n]) break;
  510. }
  511. if (i >= rad->nchans) return;
  512. rad->encdec.req[n] = 0;
  513. rad->encdec.dcsrx[n] = 0;
  514. rad->encdec.ctrx[n] = 0;
  515. rad->encdec.dcstx[n] = 0;
  516. rad->encdec.cttx[n] = 0;
  517. rad->encdec.myindex[n] = 0;
  518. rad->encdec.req[n] = 0;
  519. rad->encdec.chan = n;
  520. /* if something in code 0 for rx, is DCS */
  521. if (rad->rxcode[n][0]) rad->encdec.dcsrx[n] = 1;
  522. else { /* otherwise, if something in other codes, is CT rx */
  523. for(i = 1; i <= NUM_CODES; i++)
  524. {
  525. if (rad->rxcode[n][1]) rad->encdec.ctrx[n] = 1;
  526. }
  527. }
  528. /* get index for tx code. Will be 0 if not receiving a CT */
  529. rad->encdec.myindex[n] = 0;
  530. if (rad->gotrx[n] && rad->encdec.ctrx[n] && (rad->present_code[n]))
  531. rad->encdec.myindex[n] = rad->present_code[n];
  532. /* get actual tx code from array */
  533. rad->encdec.txcode[n] = rad->txcode[n][rad->encdec.myindex[n]];
  534. if (rad->encdec.txcode[n] & 0x8000) rad->encdec.dcstx[n] = 1;
  535. else if (rad->encdec.txcode[n]) rad->encdec.cttx[n] = 1;
  536. if (rad->radmode[n] & RADMODE_NOENCODE)
  537. rad->encdec.dcstx[n] = rad->encdec.cttx[n] = 0;
  538. if ((!rad->gottx[n]) || rad->bursttimer[n])
  539. rad->encdec.dcstx[n] = rad->encdec.cttx[n] = 0;
  540. rad->encdec.saudio_ctrl[n] = 0;
  541. rad->encdec.saudio_setup[n] = 0;
  542. rad->encdec.state = 1;
  543. break;
  544. case 1:
  545. if (rad->encdec.dcstx[rad->encdec.chan] && (!rad->encdec.dcsrx[rad->encdec.chan])) /* if to transmit DCS */
  546. {
  547. rad->encdec.saudio_setup[rad->encdec.chan] |= 3;
  548. rad->encdec.saudio_ctrl[rad->encdec.chan] |= 0x80;
  549. byte1 = dcstable[rad->encdec.txcode[rad->encdec.chan] & 0x7fff].b1;
  550. mx828_command(rad,rad->encdec.chan, MX828_DCS1, &byte1, &byte2 );
  551. rad->encdec.state = 2;
  552. break;
  553. }
  554. rad->encdec.state = 4;
  555. break;
  556. case 2:
  557. byte1 = dcstable[rad->encdec.txcode[rad->encdec.chan] & 0x7fff].b2;
  558. mx828_command(rad,rad->encdec.chan, MX828_DCS2, &byte1, &byte2 );
  559. rad->encdec.state = 3;
  560. break;
  561. case 3:
  562. byte1 = dcstable[rad->encdec.txcode[rad->encdec.chan] & 0x7fff].b3;
  563. mx828_command(rad,rad->encdec.chan, MX828_DCS3, &byte1, &byte2 );
  564. rad->encdec.state = 4;
  565. break;
  566. case 4:
  567. if (rad->encdec.cttx[rad->encdec.chan])
  568. {
  569. rad->encdec.saudio_ctrl[rad->encdec.chan] |= 0x80;
  570. byte1 = cttable_tx[rad->encdec.txcode[rad->encdec.chan]].b1;
  571. byte2 = cttable_tx[rad->encdec.txcode[rad->encdec.chan]].b2;
  572. mx828_command(rad,rad->encdec.chan, MX828_TX_TONE, &byte1, &byte2 );
  573. }
  574. rad->encdec.state = 5;
  575. break;
  576. case 5:
  577. if (rad->encdec.dcsrx[rad->encdec.chan])
  578. {
  579. rad->encdec.saudio_setup[rad->encdec.chan] |= 1;
  580. rad->encdec.saudio_ctrl[rad->encdec.chan] |= 0x41;
  581. byte1 = dcstable[rad->rxcode[rad->encdec.chan][0]].b1;
  582. mx828_command(rad,rad->encdec.chan, MX828_DCS1, &byte1, &byte2 );
  583. rad->encdec.state = 6;
  584. break;
  585. }
  586. rad->encdec.state = 8;
  587. break;
  588. case 6:
  589. byte1 = dcstable[rad->rxcode[rad->encdec.chan][0]].b2;
  590. mx828_command(rad,rad->encdec.chan, MX828_DCS2, &byte1, &byte2 );
  591. rad->encdec.state = 7;
  592. break;
  593. case 7:
  594. byte1 = dcstable[rad->rxcode[rad->encdec.chan][0]].b3;
  595. mx828_command(rad,rad->encdec.chan, MX828_DCS3, &byte1, &byte2 );
  596. rad->encdec.state = 8;
  597. break;
  598. case 8:
  599. if (rad->encdec.ctrx[rad->encdec.chan])
  600. {
  601. rad->encdec.saudio_setup[rad->encdec.chan] |= 0x80;
  602. rad->encdec.saudio_ctrl[rad->encdec.chan] |= 0x60;
  603. }
  604. byte1 = rad->encdec.saudio_setup[rad->encdec.chan];
  605. mx828_command(rad,rad->encdec.chan, MX828_SAUDIO_SETUP, &byte1, &byte2 );
  606. rad->encdec.state = 9;
  607. break;
  608. case 9:
  609. byte1 = rad->encdec.saudio_ctrl[rad->encdec.chan];
  610. mx828_command(rad,rad->encdec.chan, MX828_SAUDIO_CTRL, &byte1, &byte2 );
  611. rad->encdec.state = 10;
  612. break;
  613. case 10:
  614. rad->encdec.chan = 0;
  615. rad->encdec.state = 0;
  616. break;
  617. }
  618. }
  619. static inline void pciradio_transmitprep(struct pciradio *rad, unsigned char ints)
  620. {
  621. volatile unsigned int *writechunk;
  622. int x;
  623. if (ints & 0x01)
  624. /* Write is at interrupt address. Start writing from normal offset */
  625. writechunk = rad->writechunk;
  626. else
  627. writechunk = rad->writechunk + DAHDI_CHUNKSIZE;
  628. /* Calculate Transmission */
  629. dahdi_transmit(&rad->span);
  630. for (x=0;x<DAHDI_CHUNKSIZE;x++) {
  631. /* Send a sample, as a 32-bit word */
  632. writechunk[x] = 0;
  633. writechunk[x] |= (rad->chans[0].writechunk[x] << 24);
  634. writechunk[x] |= (rad->chans[1].writechunk[x] << 16);
  635. writechunk[x] |= (rad->chans[2].writechunk[x] << 8);
  636. writechunk[x] |= (rad->chans[3].writechunk[x]);
  637. }
  638. }
  639. static inline void pciradio_receiveprep(struct pciradio *rad, unsigned char ints)
  640. {
  641. volatile unsigned int *readchunk;
  642. int x;
  643. if (ints & 0x08)
  644. readchunk = rad->readchunk + DAHDI_CHUNKSIZE;
  645. else
  646. /* Read is at interrupt address. Valid data is available at normal offset */
  647. readchunk = rad->readchunk;
  648. for (x=0;x<DAHDI_CHUNKSIZE;x++) {
  649. rad->chans[0].readchunk[x] = (readchunk[x] >> 24) & 0xff;
  650. rad->chans[1].readchunk[x] = (readchunk[x] >> 16) & 0xff;
  651. rad->chans[2].readchunk[x] = (readchunk[x] >> 8) & 0xff;
  652. rad->chans[3].readchunk[x] = (readchunk[x]) & 0xff;
  653. }
  654. for (x=0;x<rad->nchans;x++) {
  655. dahdi_ec_chunk(&rad->chans[x], rad->chans[x].readchunk, rad->chans[x].writechunk);
  656. }
  657. dahdi_receive(&rad->span);
  658. }
  659. static void pciradio_stop_dma(struct pciradio *rad);
  660. static void pciradio_reset_serial(struct pciradio *rad);
  661. static void pciradio_restart_dma(struct pciradio *rad);
  662. #ifdef LEAVE_THIS_COMMENTED_OUT
  663. static irqreturn_t pciradio_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  664. #endif
  665. DAHDI_IRQ_HANDLER(pciradio_interrupt)
  666. {
  667. struct pciradio *rad = dev_id;
  668. unsigned char ints,byte1,byte2,gotcor,gotctcss,gotslowctcss,ctcss;
  669. int i,x,gotrx;
  670. ints = inb(rad->ioaddr + RAD_INTSTAT);
  671. outb(ints, rad->ioaddr + RAD_INTSTAT);
  672. if (!ints)
  673. return IRQ_NONE;
  674. if (ints & 0x10) {
  675. /* Stop DMA, wait for watchdog */
  676. printk(KERN_INFO "RADIO PCI Master abort\n");
  677. pciradio_stop_dma(rad);
  678. return IRQ_RETVAL(1);
  679. }
  680. if (ints & 0x20) {
  681. printk(KERN_INFO "RADIO PCI Target abort\n");
  682. return IRQ_RETVAL(1);
  683. }
  684. if (ints & 0x0f) {
  685. rad->intcount++;
  686. x = rad->intcount % rad->nchans;
  687. /* freeze */
  688. __pciradio_setcreg(rad,0,rad->mx828_addr | 4);
  689. /* read SAUDIO_STATUS for the proper channel */
  690. byte1 = rad->saudio_status[x] = __pciradio_getcreg(rad,x);
  691. /* thaw */
  692. __pciradio_setcreg(rad,0,rad->mx828_addr);
  693. /* get COR input */
  694. byte2 = __pciradio_getcreg(rad,9);
  695. /* get bit for this channel */
  696. gotcor = byte2 & (1 << x);
  697. if (rad->radmode[x] & RADMODE_INVERTCOR) gotcor = !gotcor;
  698. rad->gotcor[x] = gotcor;
  699. if (rad->radmode[x] & RADMODE_IGNORECOR) gotcor = 1;
  700. gotslowctcss = 0;
  701. if ((byte1 & RAD_CTCSSVALID) &&
  702. ((byte1 & RAD_CTCSSMASK) != RAD_CTCSSOTHER)) gotslowctcss = 1;
  703. gotctcss = 1;
  704. ctcss = 0;
  705. /* set ctcss to 1 if decoding ctcss */
  706. if (!rad->rxcode[x][0])
  707. {
  708. for(i = 1; i <= NUM_CODES; i++)
  709. {
  710. if (rad->rxcode[x][i])
  711. {
  712. ctcss = 1;
  713. break;
  714. }
  715. }
  716. }
  717. if (ctcss)
  718. {
  719. if ((!(byte1 & 0x40)) ||
  720. ((!rad->gotrx[x]) && (!gotslowctcss))) gotctcss = 0;
  721. }
  722. rad->present_code[x] = 0;
  723. if (rad->rxcode[x][0])
  724. {
  725. if (byte1 & 0x80) gotctcss = gotslowctcss = 1; else gotctcss = 0;
  726. } else if (gotslowctcss) rad->present_code[x] = (byte1 & RAD_CTCSSMASK) + 1;
  727. if (rad->radmode[x] & RADMODE_EXTTONE)
  728. {
  729. unsigned mask = 1 << (x + 4); /* they're on the UIOB's */
  730. unsigned char byteuio;
  731. /* set UIOB as input */
  732. byteuio = __pciradio_getcreg(rad,0xe);
  733. byteuio |= mask;
  734. __pciradio_setcreg(rad,0xe,byteuio);
  735. /* get UIO input */
  736. byteuio = __pciradio_getcreg(rad,8);
  737. if (rad->radmode[x] & RADMODE_EXTINVERT)
  738. gotctcss = gotslowctcss = ((byteuio & mask) == 0);
  739. else
  740. gotctcss = gotslowctcss = ((byteuio & mask) != 0);
  741. }
  742. rad->gotct[x] = gotslowctcss;
  743. if ((rad->radmode[x] & RADMODE_IGNORECT) ||
  744. ((!(rad->radmode[x] & RADMODE_EXTTONE)) && (!ctcss)))
  745. {
  746. gotctcss = 1;
  747. gotslowctcss = 1;
  748. rad->present_code[x] = 0;
  749. }
  750. if(rad->newctcssstate[x] != gotctcss){
  751. rad->newctcssstate[x] = gotctcss;
  752. if(rad->newctcssstate[x])
  753. rad->ctcsstimer[x]=rad->ctcssacquiretime[x];
  754. else
  755. rad->ctcsstimer[x]=rad->ctcsstalkofftime[x];
  756. }
  757. else{
  758. if(!rad->ctcsstimer[x])
  759. rad->ctcssstate[x] = rad->newctcssstate[x];
  760. else
  761. rad->ctcsstimer[x]--;
  762. }
  763. gotrx = gotcor && rad->ctcssstate[x];
  764. if (gotrx != rad->gotrx[x])
  765. {
  766. rad->gotrxtimer[x] = rad->debouncetime[x];
  767. }
  768. rad->gotrx[x] = gotrx;
  769. if (rad->present_code[x] != rad->last_code[x])
  770. {
  771. rad->encdec.req[x] = 1;
  772. rad->last_code[x] = rad->present_code[x];
  773. }
  774. _do_encdec(rad);
  775. for(x = 0; x < rad->nchans; x++)
  776. {
  777. unsigned char mask = 1 << x;
  778. if (rad->gottx[x] != rad->lasttx[x])
  779. {
  780. if (rad->gottx[x])
  781. {
  782. rad->bursttimer[x] = 0;
  783. rad->pasave |= mask;
  784. __pciradio_setcreg(rad, 0xa, rad->pasave);
  785. }
  786. else
  787. {
  788. if (!rad->bursttime[x])
  789. {
  790. rad->pasave &= ~mask;
  791. __pciradio_setcreg(rad, 0xa, rad->pasave);
  792. }
  793. else
  794. {
  795. rad->bursttimer[x] = rad->bursttime[x];
  796. }
  797. }
  798. rad->encdec.req[x] = 1;
  799. rad->lasttx[x] = rad->gottx[x];
  800. }
  801. if (rad->bursttimer[x])
  802. {
  803. /* if just getting to zero */
  804. if (!(--rad->bursttimer[x]))
  805. {
  806. rad->pasave &= ~mask;
  807. __pciradio_setcreg(rad, 0xa, rad->pasave);
  808. }
  809. }
  810. /* if timer active */
  811. if (rad->gotrxtimer[x])
  812. {
  813. /* if just getting to zero */
  814. if (!(--rad->gotrxtimer[x]))
  815. {
  816. mask = 1 << (x + 4);
  817. rad->pasave &= ~mask;
  818. if (gotctcss) rad->pasave |= mask;
  819. __pciradio_setcreg(rad, 0xa, rad->pasave);
  820. if (rad->gotrx[x] != rad->gotrx1[x])
  821. {
  822. if (rad->gotrx[x]) {
  823. if (debug)
  824. {
  825. if (rad->present_code[x])
  826. printk(KERN_DEBUG "Chan %d got rx (ctcss code %d)\n",x + 1,
  827. cttable_rx[rad->rxcode[x][rad->present_code[x]]].code);
  828. else
  829. printk(KERN_DEBUG "Chan %d got rx\n",x + 1);
  830. }
  831. dahdi_hooksig(&rad->chans[x],DAHDI_RXSIG_OFFHOOK);
  832. } else {
  833. if (debug) printk(KERN_DEBUG "Chan %d lost rx\n",x + 1);
  834. dahdi_hooksig(&rad->chans[x],DAHDI_RXSIG_ONHOOK);
  835. }
  836. rad->encdec.req[x] = 1;
  837. }
  838. rad->gotrx1[x] = rad->gotrx[x];
  839. }
  840. }
  841. }
  842. /* process serial if any */
  843. /* send byte if there is one in buffer to send */
  844. if (rad->txlen && (rad->txlen != rad->txindex))
  845. {
  846. /* if tx not busy */
  847. if (!(__pciradio_getcreg(rad,9) & 0x80))
  848. {
  849. __pciradio_setcreg(rad, 4, rad->txbuf[rad->txindex++]);
  850. }
  851. }
  852. rad->srxtimer++;
  853. /* if something in rx to read */
  854. while(__pciradio_getcreg(rad,9) & 0x10)
  855. {
  856. unsigned char c = __pciradio_getcreg(rad,4);
  857. rad->srxtimer = 0;
  858. if (rad->rxindex < RAD_SERIAL_BUFLEN)
  859. {
  860. rad->rxbuf[rad->rxindex++] = c;
  861. }
  862. udelay(1);
  863. }
  864. pciradio_receiveprep(rad, ints);
  865. pciradio_transmitprep(rad, ints);
  866. i = 0;
  867. for(x = 0; x < 4; x++)
  868. {
  869. if (rad->gottx[x]) i |= (1 << (x * 2));
  870. if (rad->gotrx[x]) i |= (2 << (x * 2));
  871. }
  872. /* output LED's */
  873. __pciradio_setcreg(rad, 9, i);
  874. }
  875. return IRQ_RETVAL(1);
  876. }
  877. static int pciradio_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
  878. {
  879. int i,mycode;
  880. unsigned long flags;
  881. unsigned char byte1,byte2,mask;
  882. union {
  883. struct dahdi_radio_stat s;
  884. struct dahdi_radio_param p;
  885. } stack;
  886. struct pciradio *rad = chan->pvt;
  887. switch (cmd) {
  888. case DAHDI_RADIO_GETPARAM:
  889. if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p))) return -EFAULT;
  890. spin_lock_irqsave(&rad->lock,flags);
  891. stack.p.data = 0; /* start with 0 value in output */
  892. switch(stack.p.radpar) {
  893. case DAHDI_RADPAR_INVERTCOR:
  894. if (rad->radmode[chan->chanpos - 1] & RADMODE_INVERTCOR)
  895. stack.p.data = 1;
  896. break;
  897. case DAHDI_RADPAR_IGNORECOR:
  898. if (rad->radmode[chan->chanpos - 1] & RADMODE_IGNORECOR)
  899. stack.p.data = 1;
  900. break;
  901. case DAHDI_RADPAR_IGNORECT:
  902. if (rad->radmode[chan->chanpos - 1] & RADMODE_IGNORECT)
  903. stack.p.data = 1;
  904. break;
  905. case DAHDI_RADPAR_NOENCODE:
  906. if (rad->radmode[chan->chanpos - 1] & RADMODE_NOENCODE)
  907. stack.p.data = 1;
  908. break;
  909. case DAHDI_RADPAR_CORTHRESH:
  910. stack.p.data = rad->corthresh[chan->chanpos - 1] & 7;
  911. break;
  912. case DAHDI_RADPAR_EXTRXTONE:
  913. if (rad->radmode[chan->chanpos - 1] & RADMODE_EXTTONE)
  914. {
  915. stack.p.data = 1;
  916. if (rad->radmode[chan->chanpos - 1] & RADMODE_EXTINVERT)
  917. {
  918. stack.p.data = 2;
  919. }
  920. }
  921. break;
  922. case DAHDI_RADPAR_NUMTONES:
  923. stack.p.data = NUM_CODES;
  924. break;
  925. case DAHDI_RADPAR_RXTONE:
  926. if ((stack.p.index < 1) || (stack.p.index > NUM_CODES)) {
  927. spin_unlock_irqrestore(&rad->lock,flags);
  928. return -EINVAL;
  929. }
  930. stack.p.data =
  931. cttable_rx[rad->rxcode[chan->chanpos - 1][stack.p.index] & 0x7fff].code;
  932. break;
  933. case DAHDI_RADPAR_RXTONECLASS:
  934. if ((stack.p.index < 1) || (stack.p.index > NUM_CODES)) {
  935. spin_unlock_irqrestore(&rad->lock,flags);
  936. return -EINVAL;
  937. }
  938. stack.p.data = rad->rxclass[chan->chanpos - 1][stack.p.index] & 0xffff;
  939. break;
  940. case DAHDI_RADPAR_TXTONE:
  941. if (stack.p.index > NUM_CODES) {
  942. spin_unlock_irqrestore(&rad->lock,flags);
  943. return -EINVAL;
  944. }
  945. stack.p.data = cttable_tx[rad->txcode[chan->chanpos - 1][stack.p.index] & 0x7fff].code;
  946. /* if a DCS tone, return as such */
  947. if (rad->txcode[chan->chanpos - 1][stack.p.index] & 0x8000)
  948. stack.p.data |= 0x8000;
  949. break;
  950. case DAHDI_RADPAR_DEBOUNCETIME:
  951. stack.p.data = rad->debouncetime[chan->chanpos - 1];
  952. break;
  953. case DAHDI_RADPAR_CTCSSACQUIRETIME:
  954. stack.p.data = rad->ctcssacquiretime[chan->chanpos - 1];
  955. break;
  956. case DAHDI_RADPAR_CTCSSTALKOFFTIME:
  957. stack.p.data = rad->ctcsstalkofftime[chan->chanpos - 1];
  958. break;
  959. case DAHDI_RADPAR_BURSTTIME:
  960. stack.p.data = rad->bursttime[chan->chanpos - 1];
  961. break;
  962. case DAHDI_RADPAR_UIODATA:
  963. stack.p.data = 0;
  964. byte1 = __pciradio_getcreg(rad,8);
  965. if (byte1 & (1 << (chan->chanpos - 1))) stack.p.data |= 1;
  966. if (byte1 & (1 << (chan->chanpos + 3))) stack.p.data |= 2;
  967. break;
  968. case DAHDI_RADPAR_UIOMODE:
  969. stack.p.data = 0;
  970. byte1 = __pciradio_getcreg(rad,0xe);
  971. if (byte1 & (1 << (chan->chanpos - 1))) stack.p.data |= 1;
  972. if (byte1 & (1 << (chan->chanpos + 3))) stack.p.data |= 2;
  973. break;
  974. case DAHDI_RADPAR_REMMODE:
  975. stack.p.data = rad->remmode[chan->chanpos - 1];
  976. break;
  977. default:
  978. spin_unlock_irqrestore(&rad->lock,flags);
  979. return -EINVAL;
  980. }
  981. spin_unlock_irqrestore(&rad->lock,flags);
  982. if (copy_to_user((__user void *) data, &stack.p, sizeof(stack.p))) return -EFAULT;
  983. break;
  984. case DAHDI_RADIO_SETPARAM:
  985. if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p))) return -EFAULT;
  986. spin_lock_irqsave(&rad->lock,flags);
  987. switch(stack.p.radpar) {
  988. case DAHDI_RADPAR_INVERTCOR:
  989. if (stack.p.data)
  990. rad->radmode[chan->chanpos - 1] |= RADMODE_INVERTCOR;
  991. else
  992. rad->radmode[chan->chanpos - 1] &= ~RADMODE_INVERTCOR;
  993. break;
  994. case DAHDI_RADPAR_IGNORECOR:
  995. if (stack.p.data)
  996. rad->radmode[chan->chanpos - 1] |= RADMODE_IGNORECOR;
  997. else
  998. rad->radmode[chan->chanpos - 1] &= ~RADMODE_IGNORECOR;
  999. break;
  1000. case DAHDI_RADPAR_IGNORECT:
  1001. if (stack.p.data)
  1002. rad->radmode[chan->chanpos - 1] |= RADMODE_IGNORECT;
  1003. else
  1004. rad->radmode[chan->chanpos - 1] &= ~RADMODE_IGNORECT;
  1005. break;
  1006. case DAHDI_RADPAR_NOENCODE:
  1007. if (stack.p.data)
  1008. rad->radmode[chan->chanpos - 1] |= RADMODE_NOENCODE;
  1009. else
  1010. rad->radmode[chan->chanpos - 1] &= ~RADMODE_NOENCODE;
  1011. break;
  1012. case DAHDI_RADPAR_CORTHRESH:
  1013. if ((stack.p.data < 0) || (stack.p.data > 7)) {
  1014. spin_unlock_irqrestore(&rad->lock,flags);
  1015. return -EINVAL;
  1016. }
  1017. rad->corthresh[chan->chanpos - 1] = stack.p.data;
  1018. byte1 = 0xc0 | (rad->corthresh[chan->chanpos - 1] << 2);
  1019. spin_unlock_irqrestore(&rad->lock,flags);
  1020. mx828_command_wait(rad,chan->chanpos - 1, MX828_GEN_CTRL, &byte1, &byte2);
  1021. spin_lock_irqsave(&rad->lock,flags);
  1022. break;
  1023. case DAHDI_RADPAR_EXTRXTONE:
  1024. if (stack.p.data)
  1025. rad->radmode[chan->chanpos - 1] |= RADMODE_EXTTONE;
  1026. else
  1027. rad->radmode[chan->chanpos - 1] &= ~RADMODE_EXTTONE;
  1028. if (stack.p.data > 1)
  1029. rad->radmode[chan->chanpos - 1] |= RADMODE_EXTINVERT;
  1030. else
  1031. rad->radmode[chan->chanpos - 1] &= ~RADMODE_EXTINVERT;
  1032. break;
  1033. case DAHDI_RADPAR_INITTONE:
  1034. for(i = 0; i <= NUM_CODES; i++)
  1035. {
  1036. rad->rxcode[chan->chanpos - 1][i] = 0;
  1037. rad->rxclass[chan->chanpos - 1][i] = 0;
  1038. rad->txcode[chan->chanpos - 1][i] = 0;
  1039. }
  1040. spin_unlock_irqrestore(&rad->lock,flags);
  1041. for(i = 0; i < NUM_CODES; i++)
  1042. {
  1043. /* set to no encode/decode */
  1044. byte1 = 0;
  1045. mx828_command_wait(rad,chan->chanpos - 1, MX828_SAUDIO_CTRL, &byte1, &byte2 );
  1046. /* set rx tone to none */
  1047. byte1 = i << 4;
  1048. byte2 = 0;
  1049. mx828_command_wait(rad,chan->chanpos - 1, MX828_RX_TONE, &byte1, &byte2 );
  1050. }
  1051. spin_lock_irqsave(&rad->lock,flags);
  1052. break;
  1053. case DAHDI_RADPAR_RXTONE:
  1054. if (!stack.p.index) /* if RX DCS mode */
  1055. {
  1056. if ((stack.p.data < 0) || (stack.p.data > 777)) {
  1057. spin_unlock_irqrestore(&rad->lock,flags);
  1058. return -EINVAL;
  1059. }
  1060. mycode = getdcstone(stack.p.data);
  1061. if (mycode < 0) {
  1062. spin_unlock_irqrestore(&rad->lock,flags);
  1063. return -EINVAL;
  1064. }
  1065. rad->rxcode[chan->chanpos - 1][0] = mycode;
  1066. rad->encdec.req[chan->chanpos - 1] = 1;
  1067. break;
  1068. }
  1069. if ((stack.p.index < 1) || (stack.p.index > NUM_CODES)) {
  1070. spin_unlock_irqrestore(&rad->lock,flags);
  1071. return -EINVAL;
  1072. }
  1073. mycode = getrxtone(stack.p.data);
  1074. if (mycode < 0) {
  1075. spin_unlock_irqrestore(&rad->lock,flags);
  1076. return -EINVAL;
  1077. }
  1078. rad->rxcode[chan->chanpos - 1][stack.p.index] = mycode;
  1079. byte1 = cttable_rx[mycode].b1 | ((stack.p.index - 1) << 4);
  1080. byte2 = cttable_rx[mycode].b2;
  1081. spin_unlock_irqrestore(&rad->lock,flags);
  1082. mx828_command_wait(rad,chan->chanpos - 1, MX828_RX_TONE, &byte1, &byte2 );
  1083. spin_lock_irqsave(&rad->lock,flags);
  1084. /* zot out DCS one if there */
  1085. rad->rxcode[chan->chanpos - 1][0] = 0;
  1086. rad->encdec.req[chan->chanpos - 1] = 1;
  1087. break;
  1088. case DAHDI_RADPAR_RXTONECLASS:
  1089. if ((stack.p.index < 1) || (stack.p.index > NUM_CODES)) {
  1090. spin_unlock_irqrestore(&rad->lock,flags);
  1091. return -EINVAL;
  1092. }
  1093. rad->rxclass[chan->chanpos - 1][stack.p.index] = stack.p.data & 0xffff;
  1094. break;
  1095. case DAHDI_RADPAR_TXTONE:
  1096. if (stack.p.index > NUM_CODES) {
  1097. spin_unlock_irqrestore(&rad->lock,flags);
  1098. return -EINVAL;
  1099. }
  1100. if (stack.p.data & 0x8000) /* if dcs */
  1101. mycode = getdcstone(stack.p.data & 0x7fff);
  1102. else
  1103. mycode = gettxtone(stack.p.data);
  1104. if (mycode < 0) {
  1105. spin_unlock_irqrestore(&rad->lock,flags);
  1106. return -EINVAL;
  1107. }
  1108. if (stack.p.data & 0x8000) mycode |= 0x8000;
  1109. rad->txcode[chan->chanpos - 1][stack.p.index] = mycode;
  1110. rad->encdec.req[chan->chanpos - 1] = 1;
  1111. break;
  1112. case DAHDI_RADPAR_DEBOUNCETIME:
  1113. rad->debouncetime[chan->chanpos - 1] = stack.p.data;
  1114. break;
  1115. case DAHDI_RADPAR_CTCSSACQUIRETIME:
  1116. rad->ctcssacquiretime[chan->chanpos - 1] = stack.p.data;
  1117. break;
  1118. case DAHDI_RADPAR_CTCSSTALKOFFTIME:
  1119. rad->ctcsstalkofftime[chan->chanpos - 1] = stack.p.data;
  1120. break;
  1121. case DAHDI_RADPAR_BURSTTIME:
  1122. rad->bursttime[chan->chanpos - 1] = stack.p.data;
  1123. break;
  1124. case DAHDI_RADPAR_UIODATA:
  1125. byte1 = __pciradio_getcreg(rad,8);
  1126. byte1 &= ~(1 << (chan->chanpos - 1));
  1127. byte1 &= ~(1 << (chan->chanpos + 3));
  1128. if (stack.p.data & 1) byte1 |= (1 << (chan->chanpos - 1));
  1129. if (stack.p.data & 2) byte1 |= (1 << (chan->chanpos + 3));
  1130. __pciradio_setcreg(rad,8,byte1);
  1131. break;
  1132. case DAHDI_RADPAR_UIOMODE:
  1133. byte1 = __pciradio_getcreg(rad,0xe);
  1134. byte1 &= ~(1 << (chan->chanpos - 1));
  1135. byte1 &= ~(1 << (chan->chanpos + 3));
  1136. if (stack.p.data & 1) byte1 |= (1 << (chan->chanpos - 1));
  1137. if (stack.p.data & 2) byte1 |= (1 << (chan->chanpos + 3));
  1138. __pciradio_setcreg(rad,0xe,byte1);
  1139. break;
  1140. case DAHDI_RADPAR_REMMODE:
  1141. rad->remmode[chan->chanpos - 1] = stack.p.data;
  1142. break;
  1143. case DAHDI_RADPAR_REMCOMMAND:
  1144. /* if no remote mode, return an error */
  1145. if (rad->remmode[chan->chanpos - 1] == DAHDI_RADPAR_REM_NONE)
  1146. {
  1147. spin_unlock_irqrestore(&rad->lock,flags);
  1148. return -EINVAL;
  1149. }
  1150. i = 0;
  1151. if (rad->remmode[chan->chanpos - 1] == DAHDI_RADPAR_REM_RBI1)
  1152. {
  1153. /* set UIOA and UIOB for output */
  1154. byte1 = __pciradio_getcreg(rad,0xe);
  1155. mask = (1 << (chan->chanpos - 1)) |
  1156. (1 << (chan->chanpos + 3));
  1157. byte2 = byte1 & (~mask);
  1158. i = (byte2 != byte1);
  1159. __pciradio_setcreg(rad,0xe,byte2);
  1160. byte1 = __pciradio_getcreg(rad,8);
  1161. mask = 1 << (chan->chanpos - 1);
  1162. byte2 = byte1 | mask;
  1163. i = (byte2 != byte1);
  1164. __pciradio_setcreg(rad,8,byte2);
  1165. spin_unlock_irqrestore(&rad->lock,flags);
  1166. if (i || (jiffies < rad->lastremcmd + 10))
  1167. msleep_interruptible(100);
  1168. rad->lastremcmd = jiffies;
  1169. rbi_out(rad,chan->chanpos - 1,(unsigned char *)&stack.p.data);
  1170. spin_lock_irqsave(&rad->lock,flags);
  1171. break;
  1172. }
  1173. spin_unlock_irqrestore(&rad->lock,flags);
  1174. for(;;)
  1175. {
  1176. int x;
  1177. spin_lock_irqsave(&rad->lock,flags);
  1178. x = rad->remote_locked || (__pciradio_getcreg(rad,0xc) & 2);
  1179. if (!x) rad->remote_locked = 1;
  1180. spin_unlock_irqrestore(&rad->lock,flags);
  1181. if (x)
  1182. msleep_interruptible(20);
  1183. else break;
  1184. }
  1185. spin_lock_irqsave(&rad->lock,flags);
  1186. /* set UIOA for input and UIOB for output */
  1187. byte1 = __pciradio_getcreg(rad,0xe);
  1188. mask = 1 << (chan->chanpos + 3); /* B an output */
  1189. byte2 = byte1 & (~mask);
  1190. byte2 |= 1 << (chan->chanpos - 1); /* A in input */
  1191. __pciradio_setcreg(rad,0xe,byte2);
  1192. byte1 = __pciradio_getcreg(rad,8);
  1193. byte2 = byte1 | mask;
  1194. byte2 |= 1 << (chan->chanpos - 1);
  1195. byte2 |= 1 << (chan->chanpos + 3);
  1196. __pciradio_setcreg(rad,8,byte2);
  1197. spin_unlock_irqrestore(&rad->lock,flags);
  1198. if (byte1 != byte2)
  1199. msleep_interruptible(30);
  1200. while (jiffies < rad->lastremcmd + 10)
  1201. msleep_interruptible(100);
  1202. rad->lastremcmd = jiffies;
  1203. for(;;)
  1204. {
  1205. if (!(__pciradio_getcreg(rad,0xc) & 2)) break;
  1206. msleep_interruptible(20);
  1207. }
  1208. spin_lock_irqsave(&rad->lock,flags);
  1209. /* enable and address async serializer */
  1210. __pciradio_setcreg(rad,0xf,rad->pfsave | ((chan->chanpos - 1) << 4) | 0x80);
  1211. /* copy tx buffer */
  1212. memcpy(rad->txbuf,stack.p.buf,stack.p.index);
  1213. rad->txlen = stack.p.index;
  1214. rad->txindex = 0;
  1215. rad->rxindex = 0;
  1216. rad->srxtimer = 0;
  1217. memset(stack.p.buf,0,SERIAL_BUFLEN);
  1218. stack.p.index = 0;
  1219. if (stack.p.data) for(;;)
  1220. {
  1221. rad->rxbuf[rad->rxindex] = 0;
  1222. if ((rad->rxindex < stack.p.data) &&
  1223. (rad->srxtimer < SRX_TIMEOUT) &&
  1224. ((rad->remmode[chan->chanpos - 1] == DAHDI_RADPAR_REM_SERIAL) ||
  1225. (!strchr((char *)rad->rxbuf,'\r'))))
  1226. {
  1227. spin_unlock_irqrestore(&rad->lock,flags);
  1228. msleep_interruptible(20);
  1229. spin_lock_irqsave(&rad->lock,flags);
  1230. continue;
  1231. }
  1232. memset(stack.p.buf,0,SERIAL_BUFLEN);
  1233. if (stack.p.data && (rad->rxindex > stack.p.data))
  1234. rad->rxindex = stack.p.data;
  1235. if (rad->rxindex)
  1236. memcpy(stack.p.buf,rad->rxbuf,rad->rxindex);
  1237. stack.p.index = rad->rxindex;
  1238. break;
  1239. }
  1240. /* wait for done if in SERIAL_ASCII mode, or if no Rx aftwards */
  1241. if ((rad->remmode[chan->chanpos - 1] == DAHDI_RADPAR_REM_SERIAL_ASCII) ||
  1242. (!stack.p.data))
  1243. {
  1244. /* wait for TX to be done if not already */
  1245. while(rad->txlen && (rad->txindex < rad->txlen))
  1246. {
  1247. spin_unlock_irqrestore(&rad->lock,flags);
  1248. msleep_interruptible(20);
  1249. spin_lock_irqsave(&rad->lock,flags);
  1250. }
  1251. /* disable and un-address async serializer */
  1252. __pciradio_setcreg(rad,0xf,rad->pfsave);
  1253. }
  1254. rad->remote_locked = 0;
  1255. spin_unlock_irqrestore(&rad->lock,flags);
  1256. if (rad->remmode[chan->chanpos - 1] == DAHDI_RADPAR_REM_SERIAL_ASCII)
  1257. msleep_interruptible(1000);
  1258. if (copy_to_user((__user void *) data, &stack.p, sizeof(stack.p))) return -EFAULT;
  1259. return 0;
  1260. default:
  1261. spin_unlock_irqrestore(&rad->lock,flags);
  1262. return -EINVAL;
  1263. }
  1264. spin_unlock_irqrestore(&rad->lock,flags);
  1265. break;
  1266. case DAHDI_RADIO_GETSTAT:
  1267. spin_lock_irqsave(&rad->lock,flags);
  1268. /* start with clean object */
  1269. memset(&stack.s, 0, sizeof(stack.s));
  1270. /* if we have rx */
  1271. if (rad->gotrx[chan->chanpos - 1])
  1272. {
  1273. stack.s.radstat |= DAHDI_RADSTAT_RX;
  1274. if (rad->rxcode[chan->chanpos - 1][0])
  1275. stack.s.ctcode_rx =
  1276. dcstable[rad->rxcode[chan->chanpos - 1][0]].code | 0x8000;
  1277. else {
  1278. stack.s.ctcode_rx =
  1279. cttable_rx[rad->rxcode[chan->chanpos - 1][rad->present_code[chan->chanpos - 1]]].code;
  1280. stack.s.ctclass =
  1281. rad->rxclass[chan->chanpos - 1][rad->present_code[chan->chanpos - 1]];
  1282. }
  1283. }
  1284. /* if we have tx */
  1285. if (rad->gottx[chan->chanpos - 1])
  1286. {
  1287. unsigned short x,myindex;
  1288. stack.s.radstat |= DAHDI_RADSTAT_TX;
  1289. stack.s.radstat |= DAHDI_RADSTAT_TX;
  1290. myindex = 0;
  1291. if ((!rad->rxcode[chan->chanpos - 1][0])
  1292. && (rad->present_code[chan->chanpos - 1]))
  1293. myindex = rad->present_code[chan->chanpos - 1];
  1294. x = rad->txcode[chan->chanpos - 1][myindex];
  1295. if (x & 0x8000)
  1296. stack.s.ctcode_tx = dcstable[x & 0x7fff].code | 0x8000;
  1297. else
  1298. stack.s.ctcode_tx = cttable_tx[x].code;
  1299. }
  1300. if (rad->radmode[chan->chanpos - 1] & RADMODE_IGNORECOR)
  1301. stack.s.radstat |= DAHDI_RADSTAT_IGNCOR;
  1302. if (rad->radmode[chan->chanpos - 1] & RADMODE_IGNORECT)
  1303. stack.s.radstat |= DAHDI_RADSTAT_IGNCT;
  1304. if (rad->radmode[chan->chanpos - 1] & RADMODE_NOENCODE)
  1305. stack.s.radstat |= DAHDI_RADSTAT_NOENCODE;
  1306. if (rad->gotcor[chan->chanpos - 1])
  1307. stack.s.radstat |= DAHDI_RADSTAT_RXCOR;
  1308. if (rad->gotct[chan->chanpos - 1])
  1309. stack.s.radstat |= DAHDI_RADSTAT_RXCT;
  1310. spin_unlock_irqrestore(&rad->lock,flags);
  1311. if (copy_to_user((__user void *) data, &stack.s, sizeof(stack.s))) return -EFAULT;
  1312. break;
  1313. default:
  1314. return -ENOTTY;
  1315. }
  1316. return 0;
  1317. }
  1318. static int pciradio_open(struct dahdi_chan *chan)
  1319. {
  1320. struct pciradio *rad = chan->pvt;
  1321. if (rad->dead)
  1322. return -ENODEV;
  1323. rad->usecount++;
  1324. return 0;
  1325. }
  1326. static int pciradio_watchdog(struct dahdi_span *span, int event)
  1327. {
  1328. printk(KERN_INFO "PCI RADIO: Restarting DMA\n");
  1329. pciradio_restart_dma(container_of(span, struct pciradio, span));
  1330. return 0;
  1331. }
  1332. static int pciradio_close(struct dahdi_chan *chan)
  1333. {
  1334. struct pciradio *rad = chan->pvt;
  1335. rad->usecount--;
  1336. /* If we're dead, release us now */
  1337. if (!rad->usecount && rad->dead)
  1338. pciradio_release(rad);
  1339. return 0;
  1340. }
  1341. static int pciradio_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig)
  1342. {
  1343. struct pciradio *rad = chan->pvt;
  1344. switch(txsig) {
  1345. case DAHDI_TXSIG_START:
  1346. case DAHDI_TXSIG_OFFHOOK:
  1347. rad->gottx[chan->chanpos - 1] = 1;
  1348. break;
  1349. case DAHDI_TXSIG_ONHOOK:
  1350. rad->gottx[chan->chanpos - 1] = 0;
  1351. break;
  1352. default:
  1353. printk(KERN_DEBUG "pciradio: Can't set tx state to %d\n", txsig);
  1354. break;
  1355. }
  1356. if (debug)
  1357. printk(KERN_DEBUG "pciradio: Setting Radio hook state to %d on chan %d\n", txsig, chan->chanpos);
  1358. return 0;
  1359. }
  1360. static const struct dahdi_span_ops pciradio_span_ops = {
  1361. .owner = THIS_MODULE,
  1362. .hooksig = pciradio_hooksig,
  1363. .open = pciradio_open,
  1364. .close = pciradio_close,
  1365. .ioctl = pciradio_ioctl,
  1366. .watchdog = pciradio_watchdog,
  1367. };
  1368. static int pciradio_initialize(struct pciradio *rad)
  1369. {
  1370. int x;
  1371. /* DAHDI stuff */
  1372. sprintf(rad->span.name, "PCIRADIO/%d", rad->pos);
  1373. sprintf(rad->span.desc, "Board %d", rad->pos + 1);
  1374. rad->span.deflaw = DAHDI_LAW_MULAW;
  1375. for (x=0;x<rad->nchans;x++) {
  1376. sprintf(rad->chans[x].name, "PCIRADIO/%d/%d", rad->pos, x);
  1377. rad->chans[x].sigcap = DAHDI_SIG_SF | DAHDI_SIG_EM;
  1378. rad->chans[x].chanpos = x+1;
  1379. rad->chans[x].pvt = rad;
  1380. rad->debouncetime[x] = RAD_GOTRX_DEBOUNCE_TIME;
  1381. rad->ctcssacquiretime[x] = RAD_CTCSS_ACQUIRE_TIME;
  1382. rad->ctcsstalkofftime[x] = RAD_CTCSS_TALKOFF_TIME;
  1383. }
  1384. rad->span.chans = &rad->chans;
  1385. rad->span.channels = rad->nchans;
  1386. rad->span.flags = DAHDI_FLAG_RBS;
  1387. rad->span.ops = &pciradio_span_ops;
  1388. if (dahdi_register_device(rad->ddev, &rad->dev->dev)) {
  1389. printk(KERN_NOTICE "Unable to register span with DAHDI\n");
  1390. return -1;
  1391. }
  1392. return 0;
  1393. }
  1394. static void wait_just_a_bit(int foo)
  1395. {
  1396. long newjiffies;
  1397. newjiffies = jiffies + foo;
  1398. while(jiffies < newjiffies);
  1399. }
  1400. static int pciradio_hardware_init(struct pciradio *rad)
  1401. {
  1402. unsigned char byte1,byte2;
  1403. int x;
  1404. unsigned long endjif;
  1405. /* Signal Reset */
  1406. outb(0x01, rad->ioaddr + RAD_CNTL);
  1407. /* Reset PCI Interface chip and registers (and serial) */
  1408. outb(0x06, rad->ioaddr + RAD_CNTL);
  1409. /* Setup our proper outputs */
  1410. rad->ios = 0xfe;
  1411. outb(rad->ios, rad->ioaddr + RAD_AUXD);
  1412. /* Set all to outputs except AUX 3 & 4, which are inputs */
  1413. outb(0x67, rad->ioaddr + RAD_AUXC);
  1414. /* Select alternate function for AUX0 */
  1415. outb(0x4, rad->ioaddr + RAD_AUXFUNC);
  1416. /* Wait 1/4 of a sec */
  1417. wait_just_a_bit(HZ/4);
  1418. /* attempt to load the Xilinx Chip */
  1419. /* De-assert CS+Write */
  1420. rad->ios |= XCS;
  1421. outb(rad->ios, rad->ioaddr + RAD_AUXD);
  1422. /* Assert PGM */
  1423. rad->ios &= ~XPGM;
  1424. outb(rad->ios, rad->ioaddr + RAD_AUXD);
  1425. /* wait for INIT and DONE to go low */
  1426. endjif = jiffies + 10;
  1427. while (inb(rad->ioaddr + RAD_AUXR) & (XINIT | XDONE) && (jiffies <= endjif));
  1428. if (endjif < jiffies) {
  1429. printk(KERN_DEBUG "Timeout waiting for INIT and DONE to go low\n");
  1430. return -1;
  1431. }
  1432. if (debug) printk(KERN_DEBUG "fwload: Init and done gone to low\n");
  1433. /* De-assert PGM */
  1434. rad->ios |= XPGM;
  1435. outb(rad->ios, rad->ioaddr + RAD_AUXD);
  1436. /* wait for INIT to go high (clearing done */
  1437. endjif = jiffies + 10;
  1438. while (!(inb(rad->ioaddr + RAD_AUXR) & XINIT) && (jiffies <= endjif));
  1439. if (endjif < jiffies) {
  1440. printk(KERN_DEBUG "Timeout waiting for INIT to go high\n");
  1441. return -1;
  1442. }
  1443. if (debug) printk(KERN_DEBUG "fwload: Init went high (clearing done)\nNow loading...\n");
  1444. /* Assert CS+Write */
  1445. rad->ios &= ~XCS;
  1446. outb(rad->ios, rad->ioaddr + RAD_AUXD);
  1447. for (x = 0; x < sizeof(radfw); x++)
  1448. {
  1449. /* write the byte */
  1450. outb(radfw[x],rad->ioaddr + RAD_REGBASE);
  1451. /* if DONE signal, we're done, exit */
  1452. if (inb(rad->ioaddr + RAD_AUXR) & XDONE) break;
  1453. /* if INIT drops, we're screwed, exit */
  1454. if (!(inb(rad->ioaddr + RAD_AUXR) & XINIT)) break;
  1455. }
  1456. if (debug) printk(KERN_DEBUG "fwload: Transferred %d bytes into chip\n",x);
  1457. /* Wait for FIFO to clear */
  1458. endjif = jiffies + 2;
  1459. while (jiffies < endjif); /* wait */
  1460. printk(KERN_DEBUG "Transfered %d bytes into chip\n",x);
  1461. /* De-assert CS+Write */
  1462. rad->ios |= XCS;
  1463. outb(rad->ios, rad->ioaddr + RAD_AUXD);
  1464. if (debug) printk(KERN_INFO "fwload: Loading done!\n");
  1465. /* Wait for FIFO to clear */
  1466. endjif = jiffies + 2;
  1467. while (jiffies < endjif); /* wait */
  1468. if (!(inb(rad->ioaddr + RAD_AUXR) & XINIT))
  1469. {
  1470. printk(KERN_NOTICE "Drove Init low!! CRC Error!!!\n");
  1471. return -1;
  1472. }
  1473. if (!(inb(rad->ioaddr + RAD_AUXR) & XDONE))
  1474. {
  1475. printk(KERN_INFO "Did not get DONE signal. Short file maybe??\n");
  1476. return -1;
  1477. }
  1478. wait_just_a_bit(2);
  1479. /* get the thingy started */
  1480. outb(0,rad->ioaddr + RAD_REGBASE);
  1481. outb(0,rad->ioaddr + RAD_REGBASE);
  1482. printk(KERN_INFO "Xilinx Chip successfully loaded, configured and started!!\n");
  1483. wait_just_a_bit(HZ/4);
  1484. /* Back to normal, with automatic DMA wrap around */
  1485. outb(0x30 | 0x01, rad->ioaddr + RAD_CNTL);
  1486. /* Configure serial port for MSB->LSB operation */
  1487. outb(0xc1, rad->ioaddr + RAD_SERCTL); /* DEBUG set double dlck to 0 SR */
  1488. rad->pasave = 0;
  1489. __pciradio_setcreg(rad,0xa,rad->pasave);
  1490. __pciradio_setcreg(rad,0xf,rad->pfsave);
  1491. __pciradio_setcreg(rad,8,0xff);
  1492. __pciradio_setcreg(rad,0xe,0xff);
  1493. __pciradio_setcreg(rad,9,0);
  1494. rad->pfsave = 0;
  1495. /* Delay FSC by 0 so it's properly aligned */
  1496. outb(/* 1 */ 0, rad->ioaddr + RAD_FSCDELAY);
  1497. /* Setup DMA Addresses */
  1498. outl(rad->writedma, rad->ioaddr + RAD_DMAWS); /* Write start */
  1499. outl(rad->writedma + DAHDI_CHUNKSIZE * 4 - 4, rad->ioaddr + RAD_DMAWI); /* Middle (interrupt) */
  1500. outl(rad->writedma + DAHDI_CHUNKSIZE * 8 - 4, rad->ioaddr + RAD_DMAWE); /* End */
  1501. outl(rad->readdma, rad->ioaddr + RAD_DMARS); /* Read start */
  1502. outl(rad->readdma + DAHDI_CHUNKSIZE * 4 - 4, rad->ioaddr + RAD_DMARI); /* Middle (interrupt) */
  1503. outl(rad->readdma + DAHDI_CHUNKSIZE * 8 - 4, rad->ioaddr + RAD_DMARE); /* End */
  1504. /* Clear interrupts */
  1505. outb(0xff, rad->ioaddr + RAD_INTSTAT);
  1506. /* Wait 1/4 of a second more */
  1507. wait_just_a_bit(HZ/4);
  1508. for(x = 0; x < rad->nchans; x++)
  1509. {
  1510. mx828_command_wait(rad,x, MX828_GEN_RESET, &byte1, &byte2 );
  1511. byte1 = 0x3f;
  1512. byte2 = 0x3f;
  1513. mx828_command_wait(rad,x, MX828_AUD_CTRL, &byte1, &byte2 );
  1514. byte1 = 0;
  1515. mx828_command_wait(rad,x, MX828_SAUDIO_SETUP, &byte1, &byte2 );
  1516. byte1 = 0;
  1517. mx828_command_wait(rad,x, MX828_SAUDIO_CTRL, &byte1, &byte2 );
  1518. byte1 = 0xc8; /* default COR thresh is 2 */
  1519. mx828_command_wait(rad,x, MX828_GEN_CTRL, &byte1, &byte2);
  1520. rad->corthresh[x] = 2;
  1521. }
  1522. /* Wait 1/4 of a sec */
  1523. wait_just_a_bit(HZ/4);
  1524. return 0;
  1525. }
  1526. static void pciradio_enable_interrupts(struct pciradio *rad)
  1527. {
  1528. /* Enable interrupts (we care about all of them) */
  1529. outb(0x3f, rad->ioaddr + RAD_MASK0);
  1530. /* No external interrupts */
  1531. outb(0x00, rad->ioaddr + RAD_MASK1);
  1532. }
  1533. static void pciradio_restart_dma(struct pciradio *rad)
  1534. {
  1535. /* Reset Master and serial */
  1536. outb(0x31, rad->ioaddr + RAD_CNTL);
  1537. outb(0x01, rad->ioaddr + RAD_OPER);
  1538. }
  1539. static void pciradio_start_dma(struct pciradio *rad)
  1540. {
  1541. /* Reset Master and serial */
  1542. outb(0x3f, rad->ioaddr + RAD_CNTL);
  1543. set_current_state(TASK_INTERRUPTIBLE);
  1544. schedule_timeout(1);
  1545. outb(0x31, rad->ioaddr + RAD_CNTL);
  1546. outb(0x01, rad->ioaddr + RAD_OPER);
  1547. }
  1548. static void pciradio_stop_dma(struct pciradio *rad)
  1549. {
  1550. outb(0x00, rad->ioaddr + RAD_OPER);
  1551. }
  1552. static void pciradio_reset_serial(struct pciradio *rad)
  1553. {
  1554. /* Reset serial */
  1555. outb(0x3f, rad->ioaddr + RAD_CNTL);
  1556. }
  1557. static void pciradio_disable_interrupts(struct pciradio *rad)
  1558. {
  1559. outb(0x00, rad->ioaddr + RAD_MASK0);
  1560. outb(0x00, rad->ioaddr + RAD_MASK1);
  1561. }
  1562. static int __devinit pciradio_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  1563. {
  1564. int res;
  1565. struct pciradio *rad;
  1566. int x;
  1567. static int initd_ifaces=0;
  1568. if(initd_ifaces){
  1569. memset((void *)ifaces,0,(sizeof(struct pciradio *))*RAD_MAX_IFACES);
  1570. initd_ifaces=1;
  1571. }
  1572. for (x=0;x<RAD_MAX_IFACES;x++)
  1573. if (!ifaces[x]) break;
  1574. if (x >= RAD_MAX_IFACES) {
  1575. printk(KERN_NOTICE "Too many interfaces\n");
  1576. return -EIO;
  1577. }
  1578. if (pci_enable_device(pdev)) {
  1579. res = -EIO;
  1580. } else {
  1581. rad = kmalloc(sizeof(struct pciradio), GFP_KERNEL);
  1582. if (rad) {
  1583. int i;
  1584. ifaces[x] = rad;
  1585. rad->chans = rad->_chans;
  1586. memset(rad, 0, sizeof(struct pciradio));
  1587. spin_lock_init(&rad->lock);
  1588. rad->nchans = 4;
  1589. rad->ioaddr = pci_resource_start(pdev, 0);
  1590. rad->dev = pdev;
  1591. rad->pos = x;
  1592. for(i = 0; i < rad->nchans; i++) rad->lasttx[x] = rad->gotrx1[i] = -1;
  1593. /* Keep track of whether we need to free the region */
  1594. if (request_region(rad->ioaddr, 0xff, "pciradio"))
  1595. rad->freeregion = 1;
  1596. /* Allocate enough memory for two zt chunks, receive and transmit. Each sample uses
  1597. 32 bits. Allocate an extra set just for control too */
  1598. rad->writechunk = pci_alloc_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, &rad->writedma);
  1599. if (!rad->writechunk) {
  1600. printk(KERN_NOTICE "pciradio: Unable to allocate DMA-able memory\n");
  1601. if (rad->freeregion)
  1602. release_region(rad->ioaddr, 0xff);
  1603. return -ENOMEM;
  1604. }
  1605. rad->readchunk = rad->writechunk + DAHDI_MAX_CHUNKSIZE * 2; /* in doublewords */
  1606. rad->readdma = rad->writedma + DAHDI_MAX_CHUNKSIZE * 8; /* in bytes */
  1607. if (pciradio_initialize(rad)) {
  1608. printk(KERN_INFO "pciradio: Unable to intialize\n");
  1609. /* Set Reset Low */
  1610. x=inb(rad->ioaddr + RAD_CNTL);
  1611. outb((~0x1)&x, rad->ioaddr + RAD_CNTL);
  1612. outb(x, rad->ioaddr + RAD_CNTL);
  1613. __pciradio_setcreg(rad,8,0xff);
  1614. __pciradio_setcreg(rad,0xe,0xff);
  1615. /* Free Resources */
  1616. free_irq(pdev->irq, rad);
  1617. if (rad->freeregion)
  1618. release_region(rad->ioaddr, 0xff);
  1619. pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)rad->writechunk, rad->writedma);
  1620. kfree(rad);
  1621. return -EIO;
  1622. }
  1623. /* Enable bus mastering */
  1624. pci_set_master(pdev);
  1625. /* Keep track of which device we are */
  1626. pci_set_drvdata(pdev, rad);
  1627. if (pciradio_hardware_init(rad)) {
  1628. /* Set Reset Low */
  1629. x=inb(rad->ioaddr + RAD_CNTL);
  1630. outb((~0x1)&x, rad->ioaddr + RAD_CNTL);
  1631. outb(x, rad->ioaddr + RAD_CNTL);
  1632. __pciradio_setcreg(rad,8,0xff);
  1633. __pciradio_setcreg(rad,0xe,0xff);
  1634. /* Free Resources */
  1635. free_irq(pdev->irq, rad);
  1636. if (rad->freeregion)
  1637. release_region(rad->ioaddr, 0xff);
  1638. pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)rad->writechunk, rad->writedma);
  1639. pci_set_drvdata(pdev, NULL);
  1640. dahdi_free_device(rad->ddev);
  1641. kfree(rad);
  1642. return -EIO;
  1643. }
  1644. if (request_irq(pdev->irq, pciradio_interrupt,
  1645. IRQF_SHARED, "pciradio", rad)) {
  1646. printk(KERN_NOTICE "pciradio: Unable to request IRQ %d\n", pdev->irq);
  1647. if (rad->freeregion)
  1648. release_region(rad->ioaddr, 0xff);
  1649. pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)rad->writechunk, rad->writedma);
  1650. pci_set_drvdata(pdev, NULL);
  1651. kfree(rad);
  1652. return -EIO;
  1653. }
  1654. /* Enable interrupts */
  1655. pciradio_enable_interrupts(rad);
  1656. /* Initialize Write/Buffers to all blank data */
  1657. memset((void *)rad->writechunk,0,DAHDI_MAX_CHUNKSIZE * 2 * 2 * 4);
  1658. /* Start DMA */
  1659. pciradio_start_dma(rad);
  1660. printk(KERN_INFO "Found a PCI Radio Card\n");
  1661. res = 0;
  1662. } else
  1663. res = -ENOMEM;
  1664. }
  1665. return res;
  1666. }
  1667. static void pciradio_release(struct pciradio *rad)
  1668. {
  1669. dahdi_unregister_device(rad->ddev);
  1670. if (rad->freeregion)
  1671. release_region(rad->ioaddr, 0xff);
  1672. kfree(rad);
  1673. printk(KERN_INFO "Freed a PCI RADIO card\n");
  1674. }
  1675. static void __devexit pciradio_remove_one(struct pci_dev *pdev)
  1676. {
  1677. struct pciradio *rad = pci_get_drvdata(pdev);
  1678. if (rad) {
  1679. /* Stop any DMA */
  1680. pciradio_stop_dma(rad);
  1681. pciradio_reset_serial(rad);
  1682. /* In case hardware is still there */
  1683. pciradio_disable_interrupts(rad);
  1684. /* Immediately free resources */
  1685. pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)rad->writechunk, rad->writedma);
  1686. free_irq(pdev->irq, rad);
  1687. /* Reset PCI chip and registers */
  1688. outb(0x3e, rad->ioaddr + RAD_CNTL);
  1689. /* Clear Reset Line */
  1690. outb(0x3f, rad->ioaddr + RAD_CNTL);
  1691. __pciradio_setcreg(rad,8,0xff);
  1692. __pciradio_setcreg(rad,0xe,0xff);
  1693. /* Release span, possibly delayed */
  1694. if (!rad->usecount)
  1695. pciradio_release(rad);
  1696. else
  1697. rad->dead = 1;
  1698. }
  1699. }
  1700. static DEFINE_PCI_DEVICE_TABLE(pciradio_pci_tbl) = {
  1701. { 0xe159, 0x0001, 0xe16b, PCI_ANY_ID, 0, 0, (unsigned long)"PCIRADIO" },
  1702. { 0 }
  1703. };
  1704. MODULE_DEVICE_TABLE(pci, pciradio_pci_tbl);
  1705. static struct pci_driver pciradio_driver = {
  1706. .name = "pciradio",
  1707. .probe = pciradio_init_one,
  1708. .remove = __devexit_p(pciradio_remove_one),
  1709. .id_table = pciradio_pci_tbl,
  1710. };
  1711. static int __init pciradio_init(void)
  1712. {
  1713. int res;
  1714. res = dahdi_pci_module(&pciradio_driver);
  1715. if (res)
  1716. return -ENODEV;
  1717. return 0;
  1718. }
  1719. static void __exit pciradio_cleanup(void)
  1720. {
  1721. pci_unregister_driver(&pciradio_driver);
  1722. }
  1723. module_param(debug, int, 0600);
  1724. MODULE_DESCRIPTION("DAHDI Telephony PCI Radio Card Driver");
  1725. MODULE_AUTHOR("Jim Dixon <jim@lambdatel.com>");
  1726. MODULE_LICENSE("GPL v2");
  1727. module_init(pciradio_init);
  1728. module_exit(pciradio_cleanup);