md5.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. /* MD5 checksum routines used for authentication. Not covered by GPL, but
  2. in the public domain as per the copyright below */
  3. #include "asterisk/endian.h"
  4. # if __BYTE_ORDER == __BIG_ENDIAN || BYTE_ORDER == BIG_ENDIAN
  5. # define HIGHFIRST 1
  6. # endif
  7. /*
  8. * This code implements the MD5 message-digest algorithm.
  9. * The algorithm is due to Ron Rivest. This code was
  10. * written by Colin Plumb in 1993, no copyright is claimed.
  11. * This code is in the public domain; do with it what you wish.
  12. *
  13. * Equivalent code is available from RSA Data Security, Inc.
  14. * This code has been tested against that, and is equivalent,
  15. * except that you don't need to include two pages of legalese
  16. * with every copy.
  17. *
  18. * To compute the message digest of a chunk of bytes, declare an
  19. * MD5Context structure, pass it to MD5Init, call MD5Update as
  20. * needed on buffers full of bytes, and then call MD5Final, which
  21. * will fill a supplied 16-byte array with the digest.
  22. */
  23. #include <string.h> /* for memcpy() */
  24. #include <asterisk/md5.h>
  25. #ifndef HIGHFIRST
  26. #define byteReverse(buf, len) /* Nothing */
  27. #else
  28. void byteReverse(unsigned char *buf, unsigned longs);
  29. #ifndef ASM_MD5
  30. /*
  31. * Note: this code is harmless on little-endian machines.
  32. */
  33. void byteReverse(unsigned char *buf, unsigned longs)
  34. {
  35. uint32_t t;
  36. do {
  37. t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
  38. ((unsigned) buf[1] << 8 | buf[0]);
  39. *(uint32_t *) buf = t;
  40. buf += 4;
  41. } while (--longs);
  42. }
  43. #endif
  44. #endif
  45. /*
  46. * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
  47. * initialization constants.
  48. */
  49. void MD5Init(struct MD5Context *ctx)
  50. {
  51. ctx->buf[0] = 0x67452301;
  52. ctx->buf[1] = 0xefcdab89;
  53. ctx->buf[2] = 0x98badcfe;
  54. ctx->buf[3] = 0x10325476;
  55. ctx->bits[0] = 0;
  56. ctx->bits[1] = 0;
  57. }
  58. /*
  59. * Update context to reflect the concatenation of another buffer full
  60. * of bytes.
  61. */
  62. void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
  63. {
  64. uint32_t t;
  65. /* Update bitcount */
  66. t = ctx->bits[0];
  67. if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
  68. ctx->bits[1]++; /* Carry from low to high */
  69. ctx->bits[1] += len >> 29;
  70. t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
  71. /* Handle any leading odd-sized chunks */
  72. if (t) {
  73. unsigned char *p = (unsigned char *) ctx->in + t;
  74. t = 64 - t;
  75. if (len < t) {
  76. memcpy(p, buf, len);
  77. return;
  78. }
  79. memcpy(p, buf, t);
  80. byteReverse(ctx->in, 16);
  81. MD5Transform(ctx->buf, (uint32_t *) ctx->in);
  82. buf += t;
  83. len -= t;
  84. }
  85. /* Process data in 64-byte chunks */
  86. while (len >= 64) {
  87. memcpy(ctx->in, buf, 64);
  88. byteReverse(ctx->in, 16);
  89. MD5Transform(ctx->buf, (uint32_t *) ctx->in);
  90. buf += 64;
  91. len -= 64;
  92. }
  93. /* Handle any remaining bytes of data. */
  94. memcpy(ctx->in, buf, len);
  95. }
  96. /*
  97. * Final wrapup - pad to 64-byte boundary with the bit pattern
  98. * 1 0* (64-bit count of bits processed, MSB-first)
  99. */
  100. void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
  101. {
  102. unsigned count;
  103. unsigned char *p;
  104. /* Compute number of bytes mod 64 */
  105. count = (ctx->bits[0] >> 3) & 0x3F;
  106. /* Set the first char of padding to 0x80. This is safe since there is
  107. always at least one byte free */
  108. p = ctx->in + count;
  109. *p++ = 0x80;
  110. /* Bytes of padding needed to make 64 bytes */
  111. count = 64 - 1 - count;
  112. /* Pad out to 56 mod 64 */
  113. if (count < 8) {
  114. /* Two lots of padding: Pad the first block to 64 bytes */
  115. memset(p, 0, count);
  116. byteReverse(ctx->in, 16);
  117. MD5Transform(ctx->buf, (uint32_t *) ctx->in);
  118. /* Now fill the next block with 56 bytes */
  119. memset(ctx->in, 0, 56);
  120. } else {
  121. /* Pad block to 56 bytes */
  122. memset(p, 0, count - 8);
  123. }
  124. byteReverse(ctx->in, 14);
  125. /* Append length in bits and transform */
  126. ((uint32_t *) ctx->in)[14] = ctx->bits[0];
  127. ((uint32_t *) ctx->in)[15] = ctx->bits[1];
  128. MD5Transform(ctx->buf, (uint32_t *) ctx->in);
  129. byteReverse((unsigned char *) ctx->buf, 4);
  130. memcpy(digest, ctx->buf, 16);
  131. memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
  132. }
  133. #ifndef ASM_MD5
  134. /* The four core functions - F1 is optimized somewhat */
  135. /* #define F1(x, y, z) (x & y | ~x & z) */
  136. #define F1(x, y, z) (z ^ (x & (y ^ z)))
  137. #define F2(x, y, z) F1(z, x, y)
  138. #define F3(x, y, z) (x ^ y ^ z)
  139. #define F4(x, y, z) (y ^ (x | ~z))
  140. /* This is the central step in the MD5 algorithm. */
  141. #define MD5STEP(f, w, x, y, z, data, s) \
  142. ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
  143. /*
  144. * The core of the MD5 algorithm, this alters an existing MD5 hash to
  145. * reflect the addition of 16 longwords of new data. MD5Update blocks
  146. * the data and converts bytes into longwords for this routine.
  147. */
  148. void MD5Transform(uint32_t buf[4], uint32_t const in[16])
  149. {
  150. register uint32_t a, b, c, d;
  151. a = buf[0];
  152. b = buf[1];
  153. c = buf[2];
  154. d = buf[3];
  155. MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
  156. MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
  157. MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
  158. MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
  159. MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
  160. MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
  161. MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
  162. MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
  163. MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
  164. MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
  165. MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  166. MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  167. MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  168. MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  169. MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  170. MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
  171. MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
  172. MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
  173. MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  174. MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
  175. MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
  176. MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  177. MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  178. MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
  179. MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
  180. MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  181. MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
  182. MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
  183. MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  184. MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
  185. MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
  186. MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
  187. MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
  188. MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
  189. MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  190. MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  191. MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
  192. MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
  193. MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
  194. MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  195. MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  196. MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
  197. MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
  198. MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
  199. MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
  200. MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  201. MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  202. MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
  203. MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
  204. MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
  205. MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  206. MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
  207. MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  208. MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
  209. MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  210. MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
  211. MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
  212. MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  213. MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
  214. MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  215. MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
  216. MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  217. MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
  218. MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
  219. buf[0] += a;
  220. buf[1] += b;
  221. buf[2] += c;
  222. buf[3] += d;
  223. }
  224. #endif