1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030 |
- /*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
- LICENSE TERMS
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
- DISCLAIMER
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
- My thanks go to Dag Arne Osvik for devising the schemes used here for key
- length derivation from the form of the key schedule
- This file contains the compilation options for AES (Rijndael) and code
- that is common across encryption, key scheduling and table generation.
- OPERATION
- These source code files implement the AES algorithm Rijndael designed by
- Joan Daemen and Vincent Rijmen. This version is designed for the standard
- block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
- and 32 bytes).
- This version is designed for flexibility and speed using operations on
- 32-bit words rather than operations on bytes. It can be compiled with
- either big or little endian internal byte order but is faster when the
- native byte order for the processor is used.
- THE CIPHER INTERFACE
- The cipher interface is implemented as an array of bytes in which lower
- AES bit sequence indexes map to higher numeric significance within bytes.
- aes_08t (an unsigned 8-bit type)
- aes_32t (an unsigned 32-bit type)
- struct aes_encrypt_ctx (structure for the cipher encryption context)
- struct aes_decrypt_ctx (structure for the cipher decryption context)
- aes_rval the function return type
- C subroutine calls:
- aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]);
- aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]);
- aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]);
- aes_rval aes_encrypt(const void *in_blk,
- void *out_blk, const aes_encrypt_ctx cx[1]);
- aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]);
- aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]);
- aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]);
- aes_rval aes_decrypt(const void *in_blk,
- void *out_blk, const aes_decrypt_ctx cx[1]);
- IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
- you call genTabs() before AES is used so that the tables are initialised.
- C++ aes class subroutines:
- Class AESencrypt for encryption
- Construtors:
- AESencrypt(void)
- AESencrypt(const void *in_key) - 128 bit key
- Members:
- void key128(const void *in_key)
- void key192(const void *in_key)
- void key256(const void *in_key)
- void encrypt(const void *in_blk, void *out_blk) const
- Class AESdecrypt for encryption
- Construtors:
- AESdecrypt(void)
- AESdecrypt(const void *in_key) - 128 bit key
- Members:
- void key128(const void *in_key)
- void key192(const void *in_key)
- void key256(const void *in_key)
- void decrypt(const void *in_blk, void *out_blk) const
- COMPILATION
- The files used to provide AES (Rijndael) are
- a. aes.h for the definitions needed for use in C.
- b. aescpp.h for the definitions needed for use in C++.
- c. aesopt.h for setting compilation options (also includes common code).
- d. aescrypt.c for encryption and decrytpion, or
- e. aeskey.c for key scheduling.
- f. aestab.c for table loading or generation.
- g. aescrypt.asm for encryption and decryption using assembler code.
- h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.
- To compile AES (Rijndael) for use in C code use aes.h and set the
- defines here for the facilities you need (key lengths, encryption
- and/or decryption). Do not define AES_DLL or AES_CPP. Set the options
- for optimisations and table sizes here.
- To compile AES (Rijndael) for use in in C++ code use aescpp.h but do
- not define AES_DLL
- To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use
- aes.h and include the AES_DLL define.
- CONFIGURATION OPTIONS (here and in aes.h)
- a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL
- b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.
- c. If you want the code to run in a specific internal byte order, then
- ALGORITHM_BYTE_ORDER must be set accordingly.
- d. set other configuration options decribed below.
- */
- #ifndef _AESOPT_H
- #define _AESOPT_H
- #include "asterisk/aes.h"
- #include "asterisk/endian.h"
- /* CONFIGURATION - USE OF DEFINES
- Later in this section there are a number of defines that control the
- operation of the code. In each section, the purpose of each define is
- explained so that the relevant form can be included or excluded by
- setting either 1's or 0's respectively on the branches of the related
- #if clauses.
- */
- /* BYTE ORDER IN 32-BIT WORDS
- To obtain the highest speed on processors with 32-bit words, this code
- needs to determine the byte order of the target machine. The following
- block of code is an attempt to capture the most obvious ways in which
- various environemnts define byte order. It may well fail, in which case
- the definitions will need to be set by editing at the points marked
- **** EDIT HERE IF NECESSARY **** below. My thanks to Peter Gutmann for
- some of these defines (from cryptlib).
- */
- #define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
- #define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
- #if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
- defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
- defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
- defined( vax ) || defined( vms ) || defined( VMS ) || \
- defined( __VMS )
- #define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
- #endif
- #if defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
- defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
- defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
- defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
- defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
- defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
-
- #define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
- #endif
- /* if the platform is still not known, try to find its byte order */
- /* from commonly used definitions in the headers included earlier */
- #if !defined(PLATFORM_BYTE_ORDER)
- #if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
- # if defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
- # elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
- # elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
- # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
- # elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
- # endif
- #elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
- # if defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
- # elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
- # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
- # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
- # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
- # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
- # endif
- #elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
- # if defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
- # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
- # elif !defined(__LITTLE_ENDIAN__) && defined(__BIG_ENDIAN__)
- # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
- # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
- # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
- # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
- # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
- # endif
- #elif 0 /* **** EDIT HERE IF NECESSARY **** */
- #define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
- #elif 0 /* **** EDIT HERE IF NECESSARY **** */
- #define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
- #else
- #error Please edit aesopt.h (line 235 or 238) to set the platform byte order
- #endif
- #endif
- /* SOME LOCAL DEFINITIONS */
- #define NO_TABLES 0
- #define ONE_TABLE 1
- #define FOUR_TABLES 4
- #define NONE 0
- #define PARTIAL 1
- #define FULL 2
- #if defined(bswap32)
- #define aes_sw32 bswap32
- #elif defined(bswap_32)
- #define aes_sw32 bswap_32
- #else
- #define brot(x,n) (((aes_32t)(x) << n) | ((aes_32t)(x) >> (32 - n)))
- #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
- #endif
- /* 1. FUNCTIONS REQUIRED
- This implementation provides subroutines for encryption, decryption
- and for setting the three key lengths (separately) for encryption
- and decryption. When the assembler code is not being used the following
- definition blocks allow the selection of the routines that are to be
- included in the compilation.
- */
- #ifdef AES_ENCRYPT
- #define ENCRYPTION
- #define ENCRYPTION_KEY_SCHEDULE
- #endif
- #ifdef AES_DECRYPT
- #define DECRYPTION
- #define DECRYPTION_KEY_SCHEDULE
- #endif
- /* 2. ASSEMBLER SUPPORT
- This define (which can be on the command line) enables the use of the
- assembler code routines for encryption and decryption with the C code
- only providing key scheduling
- */
- #if 0
- #define AES_ASM
- #endif
- /* 3. BYTE ORDER WITHIN 32 BIT WORDS
- The fundamental data processing units in Rijndael are 8-bit bytes. The
- input, output and key input are all enumerated arrays of bytes in which
- bytes are numbered starting at zero and increasing to one less than the
- number of bytes in the array in question. This enumeration is only used
- for naming bytes and does not imply any adjacency or order relationship
- from one byte to another. When these inputs and outputs are considered
- as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
- byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
- In this implementation bits are numbered from 0 to 7 starting at the
- numerically least significant end of each byte (bit n represents 2^n).
- However, Rijndael can be implemented more efficiently using 32-bit
- words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
- into word[n]. While in principle these bytes can be assembled into words
- in any positions, this implementation only supports the two formats in
- which bytes in adjacent positions within words also have adjacent byte
- numbers. This order is called big-endian if the lowest numbered bytes
- in words have the highest numeric significance and little-endian if the
- opposite applies.
- This code can work in either order irrespective of the order used by the
- machine on which it runs. Normally the internal byte order will be set
- to the order of the processor on which the code is to be run but this
- define can be used to reverse this in special situations
- NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set
- */
- #if 1 || defined(AES_ASM)
- #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
- #elif 0
- #define ALGORITHM_BYTE_ORDER BRG_LITTLE_ENDIAN
- #elif 0
- #define ALGORITHM_BYTE_ORDER BRG_BIG_ENDIAN
- #else
- #error The algorithm byte order is not defined
- #endif
- /* 4. FAST INPUT/OUTPUT OPERATIONS.
- On some machines it is possible to improve speed by transferring the
- bytes in the input and output arrays to and from the internal 32-bit
- variables by addressing these arrays as if they are arrays of 32-bit
- words. On some machines this will always be possible but there may
- be a large performance penalty if the byte arrays are not aligned on
- the normal word boundaries. On other machines this technique will
- lead to memory access errors when such 32-bit word accesses are not
- properly aligned. The option SAFE_IO avoids such problems but will
- often be slower on those machines that support misaligned access
- (especially so if care is taken to align the input and output byte
- arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
- assumed that access to byte arrays as if they are arrays of 32-bit
- words will not cause problems when such accesses are misaligned.
- */
- #if 1 && !defined(_MSC_VER)
- #define SAFE_IO
- #endif
- /* 5. LOOP UNROLLING
- The code for encryption and decrytpion cycles through a number of rounds
- that can be implemented either in a loop or by expanding the code into a
- long sequence of instructions, the latter producing a larger program but
- one that will often be much faster. The latter is called loop unrolling.
- There are also potential speed advantages in expanding two iterations in
- a loop with half the number of iterations, which is called partial loop
- unrolling. The following options allow partial or full loop unrolling
- to be set independently for encryption and decryption
- */
- #if 1
- #define ENC_UNROLL FULL
- #elif 0
- #define ENC_UNROLL PARTIAL
- #else
- #define ENC_UNROLL NONE
- #endif
- #if 1
- #define DEC_UNROLL FULL
- #elif 0
- #define DEC_UNROLL PARTIAL
- #else
- #define DEC_UNROLL NONE
- #endif
- /* 6. FAST FINITE FIELD OPERATIONS
- If this section is included, tables are used to provide faster finite
- field arithmetic (this has no effect if FIXED_TABLES is defined).
- */
- #if 1
- #define FF_TABLES
- #endif
- /* 7. INTERNAL STATE VARIABLE FORMAT
- The internal state of Rijndael is stored in a number of local 32-bit
- word varaibles which can be defined either as an array or as individual
- names variables. Include this section if you want to store these local
- varaibles in arrays. Otherwise individual local variables will be used.
- */
- #if 1
- #define ARRAYS
- #endif
- /* In this implementation the columns of the state array are each held in
- 32-bit words. The state array can be held in various ways: in an array
- of words, in a number of individual word variables or in a number of
- processor registers. The following define maps a variable name x and
- a column number c to the way the state array variable is to be held.
- The first define below maps the state into an array x[c] whereas the
- second form maps the state into a number of individual variables x0,
- x1, etc. Another form could map individual state colums to machine
- register names.
- */
- #if defined(ARRAYS)
- #define s(x,c) x[c]
- #else
- #define s(x,c) x##c
- #endif
- /* 8. FIXED OR DYNAMIC TABLES
- When this section is included the tables used by the code are compiled
- statically into the binary file. Otherwise the subroutine gen_tabs()
- must be called to compute them before the code is first used.
- */
- #if 1
- #define FIXED_TABLES
- #endif
- /* 9. TABLE ALIGNMENT
- On some sytsems speed will be improved by aligning the AES large lookup
- tables on particular boundaries. This define should be set to a power of
- two giving the desired alignment. It can be left undefined if alignment
- is not needed. This option is specific to the Microsft VC++ compiler -
- it seems to sometimes cause trouble for the VC++ version 6 compiler.
- */
- #if 0 && defined(_MSC_VER) && (_MSC_VER >= 1300)
- #define TABLE_ALIGN 64
- #endif
- /* 10. INTERNAL TABLE CONFIGURATION
- This cipher proceeds by repeating in a number of cycles known as 'rounds'
- which are implemented by a round function which can optionally be speeded
- up using tables. The basic tables are each 256 32-bit words, with either
- one or four tables being required for each round function depending on
- how much speed is required. The encryption and decryption round functions
- are different and the last encryption and decrytpion round functions are
- different again making four different round functions in all.
- This means that:
- 1. Normal encryption and decryption rounds can each use either 0, 1
- or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
- 2. The last encryption and decryption rounds can also use either 0, 1
- or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
- Include or exclude the appropriate definitions below to set the number
- of tables used by this implementation.
- */
- #if 1 /* set tables for the normal encryption round */
- #define ENC_ROUND FOUR_TABLES
- #elif 0
- #define ENC_ROUND ONE_TABLE
- #else
- #define ENC_ROUND NO_TABLES
- #endif
- #if 1 /* set tables for the last encryption round */
- #define LAST_ENC_ROUND FOUR_TABLES
- #elif 0
- #define LAST_ENC_ROUND ONE_TABLE
- #else
- #define LAST_ENC_ROUND NO_TABLES
- #endif
- #if 1 /* set tables for the normal decryption round */
- #define DEC_ROUND FOUR_TABLES
- #elif 0
- #define DEC_ROUND ONE_TABLE
- #else
- #define DEC_ROUND NO_TABLES
- #endif
- #if 1 /* set tables for the last decryption round */
- #define LAST_DEC_ROUND FOUR_TABLES
- #elif 0
- #define LAST_DEC_ROUND ONE_TABLE
- #else
- #define LAST_DEC_ROUND NO_TABLES
- #endif
- /* The decryption key schedule can be speeded up with tables in the same
- way that the round functions can. Include or exclude the following
- defines to set this requirement.
- */
- #if 1
- #define KEY_SCHED FOUR_TABLES
- #elif 0
- #define KEY_SCHED ONE_TABLE
- #else
- #define KEY_SCHED NO_TABLES
- #endif
- /* END OF CONFIGURATION OPTIONS */
- #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
- /* Disable or report errors on some combinations of options */
- #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
- #undef LAST_ENC_ROUND
- #define LAST_ENC_ROUND NO_TABLES
- #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
- #undef LAST_ENC_ROUND
- #define LAST_ENC_ROUND ONE_TABLE
- #endif
- #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
- #undef ENC_UNROLL
- #define ENC_UNROLL NONE
- #endif
- #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
- #undef LAST_DEC_ROUND
- #define LAST_DEC_ROUND NO_TABLES
- #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
- #undef LAST_DEC_ROUND
- #define LAST_DEC_ROUND ONE_TABLE
- #endif
- #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
- #undef DEC_UNROLL
- #define DEC_UNROLL NONE
- #endif
- /* upr(x,n): rotates bytes within words by n positions, moving bytes to
- higher index positions with wrap around into low positions
- ups(x,n): moves bytes by n positions to higher index positions in
- words but without wrap around
- bval(x,n): extracts a byte from a word
- NOTE: The definitions given here are intended only for use with
- unsigned variables and with shift counts that are compile
- time constants
- */
- #if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
- #define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))
- #define ups(x,n) ((aes_32t) (x) << (8 * (n)))
- #define bval(x,n) ((aes_08t)((x) >> (8 * (n))))
- #define bytes2word(b0, b1, b2, b3) \
- (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
- #endif
- #if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)
- #define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))
- #define ups(x,n) ((aes_32t) (x) >> (8 * (n))))
- #define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n))))
- #define bytes2word(b0, b1, b2, b3) \
- (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
- #endif
- #if defined(SAFE_IO)
- #define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \
- ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])
- #define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \
- ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }
- #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
- #define word_in(x,c) (*((aes_32t*)(x)+(c)))
- #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))
- #else
- #define word_in(x,c) aes_sw32(*((aes_32t*)(x)+(c)))
- #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))
- #endif
- /* the finite field modular polynomial and elements */
- #define WPOLY 0x011b
- #define BPOLY 0x1b
- /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
- #define m1 0x80808080
- #define m2 0x7f7f7f7f
- #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
- /* The following defines provide alternative definitions of gf_mulx that might
- give improved performance if a fast 32-bit multiply is not available. Note
- that a temporary variable u needs to be defined where gf_mulx is used.
- #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
- #define m4 (0x01010101 * BPOLY)
- #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
- */
- /* Work out which tables are needed for the different options */
- #ifdef AES_ASM
- #ifdef ENC_ROUND
- #undef ENC_ROUND
- #endif
- #define ENC_ROUND FOUR_TABLES
- #ifdef LAST_ENC_ROUND
- #undef LAST_ENC_ROUND
- #endif
- #define LAST_ENC_ROUND FOUR_TABLES
- #ifdef DEC_ROUND
- #undef DEC_ROUND
- #endif
- #define DEC_ROUND FOUR_TABLES
- #ifdef LAST_DEC_ROUND
- #undef LAST_DEC_ROUND
- #endif
- #define LAST_DEC_ROUND FOUR_TABLES
- #ifdef KEY_SCHED
- #undef KEY_SCHED
- #define KEY_SCHED FOUR_TABLES
- #endif
- #endif
- #if defined(ENCRYPTION) || defined(AES_ASM)
- #if ENC_ROUND == ONE_TABLE
- #define FT1_SET
- #elif ENC_ROUND == FOUR_TABLES
- #define FT4_SET
- #else
- #define SBX_SET
- #endif
- #if LAST_ENC_ROUND == ONE_TABLE
- #define FL1_SET
- #elif LAST_ENC_ROUND == FOUR_TABLES
- #define FL4_SET
- #elif !defined(SBX_SET)
- #define SBX_SET
- #endif
- #endif
- #if defined(DECRYPTION) || defined(AES_ASM)
- #if DEC_ROUND == ONE_TABLE
- #define IT1_SET
- #elif DEC_ROUND == FOUR_TABLES
- #define IT4_SET
- #else
- #define ISB_SET
- #endif
- #if LAST_DEC_ROUND == ONE_TABLE
- #define IL1_SET
- #elif LAST_DEC_ROUND == FOUR_TABLES
- #define IL4_SET
- #elif !defined(ISB_SET)
- #define ISB_SET
- #endif
- #endif
- #if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
- #if KEY_SCHED == ONE_TABLE
- #define LS1_SET
- #define IM1_SET
- #elif KEY_SCHED == FOUR_TABLES
- #define LS4_SET
- #define IM4_SET
- #elif !defined(SBX_SET)
- #define SBX_SET
- #endif
- #endif
- /* generic definitions of Rijndael macros that use tables */
- #define no_table(x,box,vf,rf,c) bytes2word( \
- box[bval(vf(x,0,c),rf(0,c))], \
- box[bval(vf(x,1,c),rf(1,c))], \
- box[bval(vf(x,2,c),rf(2,c))], \
- box[bval(vf(x,3,c),rf(3,c))])
- #define one_table(x,op,tab,vf,rf,c) \
- ( tab[bval(vf(x,0,c),rf(0,c))] \
- ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
- ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
- ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
- #define four_tables(x,tab,vf,rf,c) \
- ( tab[0][bval(vf(x,0,c),rf(0,c))] \
- ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
- ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
- ^ tab[3][bval(vf(x,3,c),rf(3,c))])
- #define vf1(x,r,c) (x)
- #define rf1(r,c) (r)
- #define rf2(r,c) ((8+r-c)&3)
- /* perform forward and inverse column mix operation on four bytes in long word x in */
- /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
- #if defined(FM4_SET) /* not currently used */
- #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
- #elif defined(FM1_SET) /* not currently used */
- #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
- #else
- #define dec_fmvars aes_32t g2
- #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
- #endif
- #if defined(IM4_SET)
- #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
- #elif defined(IM1_SET)
- #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
- #else
- #define dec_imvars aes_32t g2, g4, g9
- #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
- (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
- #endif
- #if defined(FL4_SET)
- #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
- #elif defined(LS4_SET)
- #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
- #elif defined(FL1_SET)
- #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
- #elif defined(LS1_SET)
- #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
- #else
- #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
- #endif
- #if defined(__cplusplus)
- extern "C"
- {
- #endif
- /* If there are no global variables, the definitions here can be
- used to put the AES tables in a structure so that a pointer
- can then be added to the AES context to pass them to the AES
- routines that need them. If this facility is used, the calling
- program has to ensure that this pointer is managed appropriately.
- In particular, the value of the t_dec(in,it) item in the table
- structure must be set to zero in order to ensure that the tables
- are initialised. In practice the three code sequences in aeskey.c
- that control the calls to gen_tabs() and the gen_tabs() routine
- itself will have to be changed for a specific implementation. If
- global variables are available it will generally be preferable to
- use them with the precomputed FIXED_TABLES option that uses static
- global tables.
- The following defines can be used to control the way the tables
- are defined, initialised and used in embedded environments that
- require special features for these purposes
- the 't_dec' construction is used to declare fixed table arrays
- the 't_set' construction is used to set fixed table values
- the 't_use' construction is used to access fixed table values
- 256 byte tables:
- t_xxx(s,box) => forward S box
- t_xxx(i,box) => inverse S box
- 256 32-bit word OR 4 x 256 32-bit word tables:
- t_xxx(f,n) => forward normal round
- t_xxx(f,l) => forward last round
- t_xxx(i,n) => inverse normal round
- t_xxx(i,l) => inverse last round
- t_xxx(l,s) => key schedule table
- t_xxx(i,m) => key schedule table
- Other variables and tables:
- t_xxx(r,c) => the rcon table
- */
- #define t_dec(m,n) t_##m##n
- #define t_set(m,n) t_##m##n
- #define t_use(m,n) t_##m##n
- #if defined(DO_TABLES) /* declare and instantiate tables */
- /* finite field arithmetic operations for table generation */
- #if defined(FIXED_TABLES) || !defined(FF_TABLES)
- #define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
- #define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
- #define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
- ^ (((x>>5) & 4) * WPOLY))
- #define f3(x) (f2(x) ^ x)
- #define f9(x) (f8(x) ^ x)
- #define fb(x) (f8(x) ^ f2(x) ^ x)
- #define fd(x) (f8(x) ^ f4(x) ^ x)
- #define fe(x) (f8(x) ^ f4(x) ^ f2(x))
- #else
- #define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
- #define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
- #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
- #define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
- #define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
- #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
- #define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
- #endif
- #if defined(FIXED_TABLES) /* declare and set values for static tables */
- #define sb_data(w) \
- w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
- w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
- w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
- w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
- w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
- w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
- w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
- w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
- w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
- w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
- w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
- w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
- w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
- w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
- w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
- w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
- w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
- w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
- w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
- w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
- w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
- w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
- w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
- w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
- w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
- w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
- w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
- w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
- w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
- w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
- w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
- w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16)
- #define isb_data(w) \
- w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
- w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
- w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
- w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
- w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
- w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
- w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
- w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
- w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
- w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
- w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
- w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
- w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
- w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
- w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
- w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
- w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
- w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
- w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
- w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
- w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
- w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
- w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
- w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
- w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
- w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
- w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
- w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
- w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
- w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
- w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
- w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d),
- #define mm_data(w) \
- w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
- w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
- w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
- w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
- w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
- w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
- w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
- w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
- w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
- w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
- w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
- w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
- w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
- w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
- w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
- w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
- w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
- w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
- w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
- w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
- w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
- w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
- w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
- w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
- w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
- w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
- w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
- w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
- w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
- w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
- w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
- w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff)
- #define h0(x) (x)
- /* These defines are used to ensure tables are generated in the
- right format depending on the internal byte order required
- */
- #define w0(p) bytes2word(p, 0, 0, 0)
- #define w1(p) bytes2word(0, p, 0, 0)
- #define w2(p) bytes2word(0, 0, p, 0)
- #define w3(p) bytes2word(0, 0, 0, p)
- #define u0(p) bytes2word(f2(p), p, p, f3(p))
- #define u1(p) bytes2word(f3(p), f2(p), p, p)
- #define u2(p) bytes2word(p, f3(p), f2(p), p)
- #define u3(p) bytes2word(p, p, f3(p), f2(p))
- #define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
- #define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
- #define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
- #define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
- const aes_32t t_dec(r,c)[RC_LENGTH] =
- {
- w0(0x01), w0(0x02), w0(0x04), w0(0x08), w0(0x10),
- w0(0x20), w0(0x40), w0(0x80), w0(0x1b), w0(0x36)
- };
- #define d_1(t,n,b,v) const t n[256] = { b(v##0) }
- #define d_4(t,n,b,v) const t n[4][256] = { { b(v##0) }, { b(v##1) }, { b(v##2) }, { b(v##3) } }
- #else /* declare and instantiate tables for dynamic value generation in in tab.c */
- aes_32t t_dec(r,c)[RC_LENGTH];
- #define d_1(t,n,b,v) t n[256]
- #define d_4(t,n,b,v) t n[4][256]
- #endif
- #else /* declare tables without instantiation */
- #if defined(FIXED_TABLES)
- extern const aes_32t t_dec(r,c)[RC_LENGTH];
- #if defined(_MSC_VER) && defined(TABLE_ALIGN)
- #define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[256]
- #define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[4][256]
- #else
- #define d_1(t,n,b,v) extern const t n[256]
- #define d_4(t,n,b,v) extern const t n[4][256]
- #endif
- #else
- extern aes_32t t_dec(r,c)[RC_LENGTH];
- #if defined(_MSC_VER) && defined(TABLE_ALIGN)
- #define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[256]
- #define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[4][256]
- #else
- #define d_1(t,n,b,v) extern t n[256]
- #define d_4(t,n,b,v) extern t n[4][256]
- #endif
- #endif
- #endif
- #ifdef SBX_SET
- d_1(aes_08t, t_dec(s,box), sb_data, h);
- #endif
- #ifdef ISB_SET
- d_1(aes_08t, t_dec(i,box), isb_data, h);
- #endif
- #ifdef FT1_SET
- d_1(aes_32t, t_dec(f,n), sb_data, u);
- #endif
- #ifdef FT4_SET
- d_4(aes_32t, t_dec(f,n), sb_data, u);
- #endif
- #ifdef FL1_SET
- d_1(aes_32t, t_dec(f,l), sb_data, w);
- #endif
- #ifdef FL4_SET
- d_4(aes_32t, t_dec(f,l), sb_data, w);
- #endif
- #ifdef IT1_SET
- d_1(aes_32t, t_dec(i,n), isb_data, v);
- #endif
- #ifdef IT4_SET
- d_4(aes_32t, t_dec(i,n), isb_data, v);
- #endif
- #ifdef IL1_SET
- d_1(aes_32t, t_dec(i,l), isb_data, w);
- #endif
- #ifdef IL4_SET
- d_4(aes_32t, t_dec(i,l), isb_data, w);
- #endif
- #ifdef LS1_SET
- #ifdef FL1_SET
- #undef LS1_SET
- #else
- d_1(aes_32t, t_dec(l,s), sb_data, w);
- #endif
- #endif
- #ifdef LS4_SET
- #ifdef FL4_SET
- #undef LS4_SET
- #else
- d_4(aes_32t, t_dec(l,s), sb_data, w);
- #endif
- #endif
- #ifdef IM1_SET
- d_1(aes_32t, t_dec(i,m), mm_data, v);
- #endif
- #ifdef IM4_SET
- d_4(aes_32t, t_dec(i,m), mm_data, v);
- #endif
- #if defined(__cplusplus)
- }
- #endif
- #endif
|