12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283 |
- /* $OpenBSD: umac.c,v 1.20 2020/03/13 03:17:07 djm Exp $ */
- /* -----------------------------------------------------------------------
- *
- * umac.c -- C Implementation UMAC Message Authentication
- *
- * Version 0.93b of rfc4418.txt -- 2006 July 18
- *
- * For a full description of UMAC message authentication see the UMAC
- * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
- * Please report bugs and suggestions to the UMAC webpage.
- *
- * Copyright (c) 1999-2006 Ted Krovetz
- *
- * Permission to use, copy, modify, and distribute this software and
- * its documentation for any purpose and with or without fee, is hereby
- * granted provided that the above copyright notice appears in all copies
- * and in supporting documentation, and that the name of the copyright
- * holder not be used in advertising or publicity pertaining to
- * distribution of the software without specific, written prior permission.
- *
- * Comments should be directed to Ted Krovetz (tdk@acm.org)
- *
- * ---------------------------------------------------------------------- */
- /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
- *
- * 1) This version does not work properly on messages larger than 16MB
- *
- * 2) If you set the switch to use SSE2, then all data must be 16-byte
- * aligned
- *
- * 3) When calling the function umac(), it is assumed that msg is in
- * a writable buffer of length divisible by 32 bytes. The message itself
- * does not have to fill the entire buffer, but bytes beyond msg may be
- * zeroed.
- *
- * 4) Three free AES implementations are supported by this implementation of
- * UMAC. Paulo Barreto's version is in the public domain and can be found
- * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
- * "Barreto"). The only two files needed are rijndael-alg-fst.c and
- * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
- * Public license at http://fp.gladman.plus.com/AES/index.htm. It
- * includes a fast IA-32 assembly version. The OpenSSL crypo library is
- * the third.
- *
- * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
- * produced under gcc with optimizations set -O3 or higher. Dunno why.
- *
- /////////////////////////////////////////////////////////////////////// */
- /* ---------------------------------------------------------------------- */
- /* --- User Switches ---------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- #ifndef UMAC_OUTPUT_LEN
- #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
- #endif
- #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
- UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
- # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
- #endif
- /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
- /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
- /* #define SSE2 0 Is SSE2 is available? */
- /* #define RUN_TESTS 0 Run basic correctness/speed tests */
- /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */
- /* ---------------------------------------------------------------------- */
- /* -- Global Includes --------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- #include "includes.h"
- #include <sys/types.h>
- #include <string.h>
- #include <stdarg.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <stddef.h>
- #include "xmalloc.h"
- #include "umac.h"
- #include "misc.h"
- /* ---------------------------------------------------------------------- */
- /* --- Primitive Data Types --- */
- /* ---------------------------------------------------------------------- */
- /* The following assumptions may need change on your system */
- typedef u_int8_t UINT8; /* 1 byte */
- typedef u_int16_t UINT16; /* 2 byte */
- typedef u_int32_t UINT32; /* 4 byte */
- typedef u_int64_t UINT64; /* 8 bytes */
- typedef unsigned int UWORD; /* Register */
- /* ---------------------------------------------------------------------- */
- /* --- Constants -------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
- /* Message "words" are read from memory in an endian-specific manner. */
- /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
- /* be set true if the host computer is little-endian. */
- #if BYTE_ORDER == LITTLE_ENDIAN
- #define __LITTLE_ENDIAN__ 1
- #else
- #define __LITTLE_ENDIAN__ 0
- #endif
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ----- Architecture Specific ------------------------------------------ */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ----- Primitive Routines --------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
- /* ---------------------------------------------------------------------- */
- #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
- /* ---------------------------------------------------------------------- */
- /* --- Endian Conversion --- Forcing assembly on some platforms */
- /* ---------------------------------------------------------------------- */
- #if (__LITTLE_ENDIAN__)
- #define LOAD_UINT32_REVERSED(p) get_u32(p)
- #define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
- #else
- #define LOAD_UINT32_REVERSED(p) get_u32_le(p)
- #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
- #endif
- #define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
- #define STORE_UINT32_BIG(p,v) put_u32(p, v)
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ----- Begin KDF & PDF Section ---------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* UMAC uses AES with 16 byte block and key lengths */
- #define AES_BLOCK_LEN 16
- /* OpenSSL's AES */
- #ifdef WITH_OPENSSL
- #include "openbsd-compat/openssl-compat.h"
- #ifndef USE_BUILTIN_RIJNDAEL
- # include <openssl/aes.h>
- #endif
- typedef AES_KEY aes_int_key[1];
- #define aes_encryption(in,out,int_key) \
- AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
- #define aes_key_setup(key,int_key) \
- AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
- #else
- #include "rijndael.h"
- #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
- typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
- #define aes_encryption(in,out,int_key) \
- rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
- #define aes_key_setup(key,int_key) \
- rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
- UMAC_KEY_LEN*8)
- #endif
- /* The user-supplied UMAC key is stretched using AES in a counter
- * mode to supply all random bits needed by UMAC. The kdf function takes
- * an AES internal key representation 'key' and writes a stream of
- * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
- * 'ndx' causes a distinct byte stream.
- */
- static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
- {
- UINT8 in_buf[AES_BLOCK_LEN] = {0};
- UINT8 out_buf[AES_BLOCK_LEN];
- UINT8 *dst_buf = (UINT8 *)bufp;
- int i;
- /* Setup the initial value */
- in_buf[AES_BLOCK_LEN-9] = ndx;
- in_buf[AES_BLOCK_LEN-1] = i = 1;
- while (nbytes >= AES_BLOCK_LEN) {
- aes_encryption(in_buf, out_buf, key);
- memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
- in_buf[AES_BLOCK_LEN-1] = ++i;
- nbytes -= AES_BLOCK_LEN;
- dst_buf += AES_BLOCK_LEN;
- }
- if (nbytes) {
- aes_encryption(in_buf, out_buf, key);
- memcpy(dst_buf,out_buf,nbytes);
- }
- explicit_bzero(in_buf, sizeof(in_buf));
- explicit_bzero(out_buf, sizeof(out_buf));
- }
- /* The final UHASH result is XOR'd with the output of a pseudorandom
- * function. Here, we use AES to generate random output and
- * xor the appropriate bytes depending on the last bits of nonce.
- * This scheme is optimized for sequential, increasing big-endian nonces.
- */
- typedef struct {
- UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
- UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
- aes_int_key prf_key; /* Expanded AES key for PDF */
- } pdf_ctx;
- static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
- {
- UINT8 buf[UMAC_KEY_LEN];
- kdf(buf, prf_key, 0, UMAC_KEY_LEN);
- aes_key_setup(buf, pc->prf_key);
- /* Initialize pdf and cache */
- memset(pc->nonce, 0, sizeof(pc->nonce));
- aes_encryption(pc->nonce, pc->cache, pc->prf_key);
- explicit_bzero(buf, sizeof(buf));
- }
- static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
- {
- /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
- * of the AES output. If last time around we returned the ndx-1st
- * element, then we may have the result in the cache already.
- */
- #if (UMAC_OUTPUT_LEN == 4)
- #define LOW_BIT_MASK 3
- #elif (UMAC_OUTPUT_LEN == 8)
- #define LOW_BIT_MASK 1
- #elif (UMAC_OUTPUT_LEN > 8)
- #define LOW_BIT_MASK 0
- #endif
- union {
- UINT8 tmp_nonce_lo[4];
- UINT32 align;
- } t;
- #if LOW_BIT_MASK != 0
- int ndx = nonce[7] & LOW_BIT_MASK;
- #endif
- *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
- t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
- if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
- (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
- {
- ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
- ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
- aes_encryption(pc->nonce, pc->cache, pc->prf_key);
- }
- #if (UMAC_OUTPUT_LEN == 4)
- *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
- #elif (UMAC_OUTPUT_LEN == 8)
- *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
- #elif (UMAC_OUTPUT_LEN == 12)
- ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
- ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
- #elif (UMAC_OUTPUT_LEN == 16)
- ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
- ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
- #endif
- }
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ----- Begin NH Hash Section ------------------------------------------ */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* The NH-based hash functions used in UMAC are described in the UMAC paper
- * and specification, both of which can be found at the UMAC website.
- * The interface to this implementation has two
- * versions, one expects the entire message being hashed to be passed
- * in a single buffer and returns the hash result immediately. The second
- * allows the message to be passed in a sequence of buffers. In the
- * multiple-buffer interface, the client calls the routine nh_update() as
- * many times as necessary. When there is no more data to be fed to the
- * hash, the client calls nh_final() which calculates the hash output.
- * Before beginning another hash calculation the nh_reset() routine
- * must be called. The single-buffer routine, nh(), is equivalent to
- * the sequence of calls nh_update() and nh_final(); however it is
- * optimized and should be preferred whenever the multiple-buffer interface
- * is not necessary. When using either interface, it is the client's
- * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
- *
- * The routine nh_init() initializes the nh_ctx data structure and
- * must be called once, before any other PDF routine.
- */
- /* The "nh_aux" routines do the actual NH hashing work. They
- * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
- * produce output for all STREAMS NH iterations in one call,
- * allowing the parallel implementation of the streams.
- */
- #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
- #define L1_KEY_LEN 1024 /* Internal key bytes */
- #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
- #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
- #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
- #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
- typedef struct {
- UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
- UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
- int next_data_empty; /* Bookkeeping variable for data buffer. */
- int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */
- UINT64 state[STREAMS]; /* on-line state */
- } nh_ctx;
- #if (UMAC_OUTPUT_LEN == 4)
- static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
- /* NH hashing primitive. Previous (partial) hash result is loaded and
- * then stored via hp pointer. The length of the data pointed at by "dp",
- * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
- * is expected to be endian compensated in memory at key setup.
- */
- {
- UINT64 h;
- UWORD c = dlen / 32;
- UINT32 *k = (UINT32 *)kp;
- const UINT32 *d = (const UINT32 *)dp;
- UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
- UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
- h = *((UINT64 *)hp);
- do {
- d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
- d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
- d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
- d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
- k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
- k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
- h += MUL64((k0 + d0), (k4 + d4));
- h += MUL64((k1 + d1), (k5 + d5));
- h += MUL64((k2 + d2), (k6 + d6));
- h += MUL64((k3 + d3), (k7 + d7));
- d += 8;
- k += 8;
- } while (--c);
- *((UINT64 *)hp) = h;
- }
- #elif (UMAC_OUTPUT_LEN == 8)
- static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
- /* Same as previous nh_aux, but two streams are handled in one pass,
- * reading and writing 16 bytes of hash-state per call.
- */
- {
- UINT64 h1,h2;
- UWORD c = dlen / 32;
- UINT32 *k = (UINT32 *)kp;
- const UINT32 *d = (const UINT32 *)dp;
- UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
- UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
- k8,k9,k10,k11;
- h1 = *((UINT64 *)hp);
- h2 = *((UINT64 *)hp + 1);
- k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
- do {
- d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
- d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
- d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
- d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
- k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
- k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
- h1 += MUL64((k0 + d0), (k4 + d4));
- h2 += MUL64((k4 + d0), (k8 + d4));
- h1 += MUL64((k1 + d1), (k5 + d5));
- h2 += MUL64((k5 + d1), (k9 + d5));
- h1 += MUL64((k2 + d2), (k6 + d6));
- h2 += MUL64((k6 + d2), (k10 + d6));
- h1 += MUL64((k3 + d3), (k7 + d7));
- h2 += MUL64((k7 + d3), (k11 + d7));
- k0 = k8; k1 = k9; k2 = k10; k3 = k11;
- d += 8;
- k += 8;
- } while (--c);
- ((UINT64 *)hp)[0] = h1;
- ((UINT64 *)hp)[1] = h2;
- }
- #elif (UMAC_OUTPUT_LEN == 12)
- static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
- /* Same as previous nh_aux, but two streams are handled in one pass,
- * reading and writing 24 bytes of hash-state per call.
- */
- {
- UINT64 h1,h2,h3;
- UWORD c = dlen / 32;
- UINT32 *k = (UINT32 *)kp;
- const UINT32 *d = (const UINT32 *)dp;
- UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
- UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
- k8,k9,k10,k11,k12,k13,k14,k15;
- h1 = *((UINT64 *)hp);
- h2 = *((UINT64 *)hp + 1);
- h3 = *((UINT64 *)hp + 2);
- k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
- k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
- do {
- d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
- d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
- d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
- d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
- k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
- k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
- h1 += MUL64((k0 + d0), (k4 + d4));
- h2 += MUL64((k4 + d0), (k8 + d4));
- h3 += MUL64((k8 + d0), (k12 + d4));
- h1 += MUL64((k1 + d1), (k5 + d5));
- h2 += MUL64((k5 + d1), (k9 + d5));
- h3 += MUL64((k9 + d1), (k13 + d5));
- h1 += MUL64((k2 + d2), (k6 + d6));
- h2 += MUL64((k6 + d2), (k10 + d6));
- h3 += MUL64((k10 + d2), (k14 + d6));
- h1 += MUL64((k3 + d3), (k7 + d7));
- h2 += MUL64((k7 + d3), (k11 + d7));
- h3 += MUL64((k11 + d3), (k15 + d7));
- k0 = k8; k1 = k9; k2 = k10; k3 = k11;
- k4 = k12; k5 = k13; k6 = k14; k7 = k15;
- d += 8;
- k += 8;
- } while (--c);
- ((UINT64 *)hp)[0] = h1;
- ((UINT64 *)hp)[1] = h2;
- ((UINT64 *)hp)[2] = h3;
- }
- #elif (UMAC_OUTPUT_LEN == 16)
- static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
- /* Same as previous nh_aux, but two streams are handled in one pass,
- * reading and writing 24 bytes of hash-state per call.
- */
- {
- UINT64 h1,h2,h3,h4;
- UWORD c = dlen / 32;
- UINT32 *k = (UINT32 *)kp;
- const UINT32 *d = (const UINT32 *)dp;
- UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
- UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
- k8,k9,k10,k11,k12,k13,k14,k15,
- k16,k17,k18,k19;
- h1 = *((UINT64 *)hp);
- h2 = *((UINT64 *)hp + 1);
- h3 = *((UINT64 *)hp + 2);
- h4 = *((UINT64 *)hp + 3);
- k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
- k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
- do {
- d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
- d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
- d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
- d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
- k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
- k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
- k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
- h1 += MUL64((k0 + d0), (k4 + d4));
- h2 += MUL64((k4 + d0), (k8 + d4));
- h3 += MUL64((k8 + d0), (k12 + d4));
- h4 += MUL64((k12 + d0), (k16 + d4));
- h1 += MUL64((k1 + d1), (k5 + d5));
- h2 += MUL64((k5 + d1), (k9 + d5));
- h3 += MUL64((k9 + d1), (k13 + d5));
- h4 += MUL64((k13 + d1), (k17 + d5));
- h1 += MUL64((k2 + d2), (k6 + d6));
- h2 += MUL64((k6 + d2), (k10 + d6));
- h3 += MUL64((k10 + d2), (k14 + d6));
- h4 += MUL64((k14 + d2), (k18 + d6));
- h1 += MUL64((k3 + d3), (k7 + d7));
- h2 += MUL64((k7 + d3), (k11 + d7));
- h3 += MUL64((k11 + d3), (k15 + d7));
- h4 += MUL64((k15 + d3), (k19 + d7));
- k0 = k8; k1 = k9; k2 = k10; k3 = k11;
- k4 = k12; k5 = k13; k6 = k14; k7 = k15;
- k8 = k16; k9 = k17; k10 = k18; k11 = k19;
- d += 8;
- k += 8;
- } while (--c);
- ((UINT64 *)hp)[0] = h1;
- ((UINT64 *)hp)[1] = h2;
- ((UINT64 *)hp)[2] = h3;
- ((UINT64 *)hp)[3] = h4;
- }
- /* ---------------------------------------------------------------------- */
- #endif /* UMAC_OUTPUT_LENGTH */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
- /* This function is a wrapper for the primitive NH hash functions. It takes
- * as argument "hc" the current hash context and a buffer which must be a
- * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
- * appropriately according to how much message has been hashed already.
- */
- {
- UINT8 *key;
- key = hc->nh_key + hc->bytes_hashed;
- nh_aux(key, buf, hc->state, nbytes);
- }
- /* ---------------------------------------------------------------------- */
- #if (__LITTLE_ENDIAN__)
- static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
- /* We endian convert the keys on little-endian computers to */
- /* compensate for the lack of big-endian memory reads during hashing. */
- {
- UWORD iters = num_bytes / bpw;
- if (bpw == 4) {
- UINT32 *p = (UINT32 *)buf;
- do {
- *p = LOAD_UINT32_REVERSED(p);
- p++;
- } while (--iters);
- } else if (bpw == 8) {
- UINT32 *p = (UINT32 *)buf;
- UINT32 t;
- do {
- t = LOAD_UINT32_REVERSED(p+1);
- p[1] = LOAD_UINT32_REVERSED(p);
- p[0] = t;
- p += 2;
- } while (--iters);
- }
- }
- #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
- #else
- #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
- #endif
- /* ---------------------------------------------------------------------- */
- static void nh_reset(nh_ctx *hc)
- /* Reset nh_ctx to ready for hashing of new data */
- {
- hc->bytes_hashed = 0;
- hc->next_data_empty = 0;
- hc->state[0] = 0;
- #if (UMAC_OUTPUT_LEN >= 8)
- hc->state[1] = 0;
- #endif
- #if (UMAC_OUTPUT_LEN >= 12)
- hc->state[2] = 0;
- #endif
- #if (UMAC_OUTPUT_LEN == 16)
- hc->state[3] = 0;
- #endif
- }
- /* ---------------------------------------------------------------------- */
- static void nh_init(nh_ctx *hc, aes_int_key prf_key)
- /* Generate nh_key, endian convert and reset to be ready for hashing. */
- {
- kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
- endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
- nh_reset(hc);
- }
- /* ---------------------------------------------------------------------- */
- static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
- /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
- /* even multiple of HASH_BUF_BYTES. */
- {
- UINT32 i,j;
- j = hc->next_data_empty;
- if ((j + nbytes) >= HASH_BUF_BYTES) {
- if (j) {
- i = HASH_BUF_BYTES - j;
- memcpy(hc->data+j, buf, i);
- nh_transform(hc,hc->data,HASH_BUF_BYTES);
- nbytes -= i;
- buf += i;
- hc->bytes_hashed += HASH_BUF_BYTES;
- }
- if (nbytes >= HASH_BUF_BYTES) {
- i = nbytes & ~(HASH_BUF_BYTES - 1);
- nh_transform(hc, buf, i);
- nbytes -= i;
- buf += i;
- hc->bytes_hashed += i;
- }
- j = 0;
- }
- memcpy(hc->data + j, buf, nbytes);
- hc->next_data_empty = j + nbytes;
- }
- /* ---------------------------------------------------------------------- */
- static void zero_pad(UINT8 *p, int nbytes)
- {
- /* Write "nbytes" of zeroes, beginning at "p" */
- if (nbytes >= (int)sizeof(UWORD)) {
- while ((ptrdiff_t)p % sizeof(UWORD)) {
- *p = 0;
- nbytes--;
- p++;
- }
- while (nbytes >= (int)sizeof(UWORD)) {
- *(UWORD *)p = 0;
- nbytes -= sizeof(UWORD);
- p += sizeof(UWORD);
- }
- }
- while (nbytes) {
- *p = 0;
- nbytes--;
- p++;
- }
- }
- /* ---------------------------------------------------------------------- */
- static void nh_final(nh_ctx *hc, UINT8 *result)
- /* After passing some number of data buffers to nh_update() for integration
- * into an NH context, nh_final is called to produce a hash result. If any
- * bytes are in the buffer hc->data, incorporate them into the
- * NH context. Finally, add into the NH accumulation "state" the total number
- * of bits hashed. The resulting numbers are written to the buffer "result".
- * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
- */
- {
- int nh_len, nbits;
- if (hc->next_data_empty != 0) {
- nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
- ~(L1_PAD_BOUNDARY - 1));
- zero_pad(hc->data + hc->next_data_empty,
- nh_len - hc->next_data_empty);
- nh_transform(hc, hc->data, nh_len);
- hc->bytes_hashed += hc->next_data_empty;
- } else if (hc->bytes_hashed == 0) {
- nh_len = L1_PAD_BOUNDARY;
- zero_pad(hc->data, L1_PAD_BOUNDARY);
- nh_transform(hc, hc->data, nh_len);
- }
- nbits = (hc->bytes_hashed << 3);
- ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
- #if (UMAC_OUTPUT_LEN >= 8)
- ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
- #endif
- #if (UMAC_OUTPUT_LEN >= 12)
- ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
- #endif
- #if (UMAC_OUTPUT_LEN == 16)
- ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
- #endif
- nh_reset(hc);
- }
- /* ---------------------------------------------------------------------- */
- static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
- UINT32 unpadded_len, UINT8 *result)
- /* All-in-one nh_update() and nh_final() equivalent.
- * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
- * well aligned
- */
- {
- UINT32 nbits;
- /* Initialize the hash state */
- nbits = (unpadded_len << 3);
- ((UINT64 *)result)[0] = nbits;
- #if (UMAC_OUTPUT_LEN >= 8)
- ((UINT64 *)result)[1] = nbits;
- #endif
- #if (UMAC_OUTPUT_LEN >= 12)
- ((UINT64 *)result)[2] = nbits;
- #endif
- #if (UMAC_OUTPUT_LEN == 16)
- ((UINT64 *)result)[3] = nbits;
- #endif
- nh_aux(hc->nh_key, buf, result, padded_len);
- }
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ----- Begin UHASH Section -------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
- * hashed by NH. The NH output is then hashed by a polynomial-hash layer
- * unless the initial data to be hashed is short. After the polynomial-
- * layer, an inner-product hash is used to produce the final UHASH output.
- *
- * UHASH provides two interfaces, one all-at-once and another where data
- * buffers are presented sequentially. In the sequential interface, the
- * UHASH client calls the routine uhash_update() as many times as necessary.
- * When there is no more data to be fed to UHASH, the client calls
- * uhash_final() which
- * calculates the UHASH output. Before beginning another UHASH calculation
- * the uhash_reset() routine must be called. The all-at-once UHASH routine,
- * uhash(), is equivalent to the sequence of calls uhash_update() and
- * uhash_final(); however it is optimized and should be
- * used whenever the sequential interface is not necessary.
- *
- * The routine uhash_init() initializes the uhash_ctx data structure and
- * must be called once, before any other UHASH routine.
- */
- /* ---------------------------------------------------------------------- */
- /* ----- Constants and uhash_ctx ---------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ----- Poly hash and Inner-Product hash Constants --------------------- */
- /* ---------------------------------------------------------------------- */
- /* Primes and masks */
- #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
- #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
- #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
- /* ---------------------------------------------------------------------- */
- typedef struct uhash_ctx {
- nh_ctx hash; /* Hash context for L1 NH hash */
- UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
- UINT64 poly_accum[STREAMS]; /* poly hash result */
- UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
- UINT32 ip_trans[STREAMS]; /* Inner-product translation */
- UINT32 msg_len; /* Total length of data passed */
- /* to uhash */
- } uhash_ctx;
- typedef struct uhash_ctx *uhash_ctx_t;
- /* ---------------------------------------------------------------------- */
- /* The polynomial hashes use Horner's rule to evaluate a polynomial one
- * word at a time. As described in the specification, poly32 and poly64
- * require keys from special domains. The following implementations exploit
- * the special domains to avoid overflow. The results are not guaranteed to
- * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
- * patches any errant values.
- */
- static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
- {
- UINT32 key_hi = (UINT32)(key >> 32),
- key_lo = (UINT32)key,
- cur_hi = (UINT32)(cur >> 32),
- cur_lo = (UINT32)cur,
- x_lo,
- x_hi;
- UINT64 X,T,res;
- X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
- x_lo = (UINT32)X;
- x_hi = (UINT32)(X >> 32);
- res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
- T = ((UINT64)x_lo << 32);
- res += T;
- if (res < T)
- res += 59;
- res += data;
- if (res < data)
- res += 59;
- return res;
- }
- /* Although UMAC is specified to use a ramped polynomial hash scheme, this
- * implementation does not handle all ramp levels. Because we don't handle
- * the ramp up to p128 modulus in this implementation, we are limited to
- * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
- * bytes input to UMAC per tag, ie. 16MB).
- */
- static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
- {
- int i;
- UINT64 *data=(UINT64*)data_in;
- for (i = 0; i < STREAMS; i++) {
- if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
- hc->poly_accum[i] = poly64(hc->poly_accum[i],
- hc->poly_key_8[i], p64 - 1);
- hc->poly_accum[i] = poly64(hc->poly_accum[i],
- hc->poly_key_8[i], (data[i] - 59));
- } else {
- hc->poly_accum[i] = poly64(hc->poly_accum[i],
- hc->poly_key_8[i], data[i]);
- }
- }
- }
- /* ---------------------------------------------------------------------- */
- /* The final step in UHASH is an inner-product hash. The poly hash
- * produces a result not necessarily WORD_LEN bytes long. The inner-
- * product hash breaks the polyhash output into 16-bit chunks and
- * multiplies each with a 36 bit key.
- */
- static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
- {
- t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
- t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
- t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
- t = t + ipkp[3] * (UINT64)(UINT16)(data);
- return t;
- }
- static UINT32 ip_reduce_p36(UINT64 t)
- {
- /* Divisionless modular reduction */
- UINT64 ret;
- ret = (t & m36) + 5 * (t >> 36);
- if (ret >= p36)
- ret -= p36;
- /* return least significant 32 bits */
- return (UINT32)(ret);
- }
- /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
- * the polyhash stage is skipped and ip_short is applied directly to the
- * NH output.
- */
- static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
- {
- UINT64 t;
- UINT64 *nhp = (UINT64 *)nh_res;
- t = ip_aux(0,ahc->ip_keys, nhp[0]);
- STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
- #if (UMAC_OUTPUT_LEN >= 8)
- t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
- STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
- #endif
- #if (UMAC_OUTPUT_LEN >= 12)
- t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
- STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
- #endif
- #if (UMAC_OUTPUT_LEN == 16)
- t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
- STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
- #endif
- }
- /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
- * the polyhash stage is not skipped and ip_long is applied to the
- * polyhash output.
- */
- static void ip_long(uhash_ctx_t ahc, u_char *res)
- {
- int i;
- UINT64 t;
- for (i = 0; i < STREAMS; i++) {
- /* fix polyhash output not in Z_p64 */
- if (ahc->poly_accum[i] >= p64)
- ahc->poly_accum[i] -= p64;
- t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
- STORE_UINT32_BIG((UINT32 *)res+i,
- ip_reduce_p36(t) ^ ahc->ip_trans[i]);
- }
- }
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* Reset uhash context for next hash session */
- static int uhash_reset(uhash_ctx_t pc)
- {
- nh_reset(&pc->hash);
- pc->msg_len = 0;
- pc->poly_accum[0] = 1;
- #if (UMAC_OUTPUT_LEN >= 8)
- pc->poly_accum[1] = 1;
- #endif
- #if (UMAC_OUTPUT_LEN >= 12)
- pc->poly_accum[2] = 1;
- #endif
- #if (UMAC_OUTPUT_LEN == 16)
- pc->poly_accum[3] = 1;
- #endif
- return 1;
- }
- /* ---------------------------------------------------------------------- */
- /* Given a pointer to the internal key needed by kdf() and a uhash context,
- * initialize the NH context and generate keys needed for poly and inner-
- * product hashing. All keys are endian adjusted in memory so that native
- * loads cause correct keys to be in registers during calculation.
- */
- static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
- {
- int i;
- UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
- /* Zero the entire uhash context */
- memset(ahc, 0, sizeof(uhash_ctx));
- /* Initialize the L1 hash */
- nh_init(&ahc->hash, prf_key);
- /* Setup L2 hash variables */
- kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
- for (i = 0; i < STREAMS; i++) {
- /* Fill keys from the buffer, skipping bytes in the buffer not
- * used by this implementation. Endian reverse the keys if on a
- * little-endian computer.
- */
- memcpy(ahc->poly_key_8+i, buf+24*i, 8);
- endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
- /* Mask the 64-bit keys to their special domain */
- ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
- ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
- }
- /* Setup L3-1 hash variables */
- kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
- for (i = 0; i < STREAMS; i++)
- memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
- 4*sizeof(UINT64));
- endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
- sizeof(ahc->ip_keys));
- for (i = 0; i < STREAMS*4; i++)
- ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
- /* Setup L3-2 hash variables */
- /* Fill buffer with index 4 key */
- kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
- endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
- STREAMS * sizeof(UINT32));
- explicit_bzero(buf, sizeof(buf));
- }
- /* ---------------------------------------------------------------------- */
- #if 0
- static uhash_ctx_t uhash_alloc(u_char key[])
- {
- /* Allocate memory and force to a 16-byte boundary. */
- uhash_ctx_t ctx;
- u_char bytes_to_add;
- aes_int_key prf_key;
- ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
- if (ctx) {
- if (ALLOC_BOUNDARY) {
- bytes_to_add = ALLOC_BOUNDARY -
- ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
- ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
- *((u_char *)ctx - 1) = bytes_to_add;
- }
- aes_key_setup(key,prf_key);
- uhash_init(ctx, prf_key);
- }
- return (ctx);
- }
- #endif
- /* ---------------------------------------------------------------------- */
- #if 0
- static int uhash_free(uhash_ctx_t ctx)
- {
- /* Free memory allocated by uhash_alloc */
- u_char bytes_to_sub;
- if (ctx) {
- if (ALLOC_BOUNDARY) {
- bytes_to_sub = *((u_char *)ctx - 1);
- ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
- }
- free(ctx);
- }
- return (1);
- }
- #endif
- /* ---------------------------------------------------------------------- */
- static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
- /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
- * hash each one with NH, calling the polyhash on each NH output.
- */
- {
- UWORD bytes_hashed, bytes_remaining;
- UINT64 result_buf[STREAMS];
- UINT8 *nh_result = (UINT8 *)&result_buf;
- if (ctx->msg_len + len <= L1_KEY_LEN) {
- nh_update(&ctx->hash, (const UINT8 *)input, len);
- ctx->msg_len += len;
- } else {
- bytes_hashed = ctx->msg_len % L1_KEY_LEN;
- if (ctx->msg_len == L1_KEY_LEN)
- bytes_hashed = L1_KEY_LEN;
- if (bytes_hashed + len >= L1_KEY_LEN) {
- /* If some bytes have been passed to the hash function */
- /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
- /* bytes to complete the current nh_block. */
- if (bytes_hashed) {
- bytes_remaining = (L1_KEY_LEN - bytes_hashed);
- nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
- nh_final(&ctx->hash, nh_result);
- ctx->msg_len += bytes_remaining;
- poly_hash(ctx,(UINT32 *)nh_result);
- len -= bytes_remaining;
- input += bytes_remaining;
- }
- /* Hash directly from input stream if enough bytes */
- while (len >= L1_KEY_LEN) {
- nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
- L1_KEY_LEN, nh_result);
- ctx->msg_len += L1_KEY_LEN;
- len -= L1_KEY_LEN;
- input += L1_KEY_LEN;
- poly_hash(ctx,(UINT32 *)nh_result);
- }
- }
- /* pass remaining < L1_KEY_LEN bytes of input data to NH */
- if (len) {
- nh_update(&ctx->hash, (const UINT8 *)input, len);
- ctx->msg_len += len;
- }
- }
- return (1);
- }
- /* ---------------------------------------------------------------------- */
- static int uhash_final(uhash_ctx_t ctx, u_char *res)
- /* Incorporate any pending data, pad, and generate tag */
- {
- UINT64 result_buf[STREAMS];
- UINT8 *nh_result = (UINT8 *)&result_buf;
- if (ctx->msg_len > L1_KEY_LEN) {
- if (ctx->msg_len % L1_KEY_LEN) {
- nh_final(&ctx->hash, nh_result);
- poly_hash(ctx,(UINT32 *)nh_result);
- }
- ip_long(ctx, res);
- } else {
- nh_final(&ctx->hash, nh_result);
- ip_short(ctx,nh_result, res);
- }
- uhash_reset(ctx);
- return (1);
- }
- /* ---------------------------------------------------------------------- */
- #if 0
- static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
- /* assumes that msg is in a writable buffer of length divisible by */
- /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
- {
- UINT8 nh_result[STREAMS*sizeof(UINT64)];
- UINT32 nh_len;
- int extra_zeroes_needed;
- /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
- * the polyhash.
- */
- if (len <= L1_KEY_LEN) {
- if (len == 0) /* If zero length messages will not */
- nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
- else
- nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
- extra_zeroes_needed = nh_len - len;
- zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
- nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
- ip_short(ahc,nh_result, res);
- } else {
- /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
- * output to poly_hash().
- */
- do {
- nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
- poly_hash(ahc,(UINT32 *)nh_result);
- len -= L1_KEY_LEN;
- msg += L1_KEY_LEN;
- } while (len >= L1_KEY_LEN);
- if (len) {
- nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
- extra_zeroes_needed = nh_len - len;
- zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
- nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
- poly_hash(ahc,(UINT32 *)nh_result);
- }
- ip_long(ahc, res);
- }
- uhash_reset(ahc);
- return 1;
- }
- #endif
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ----- Begin UMAC Section --------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* The UMAC interface has two interfaces, an all-at-once interface where
- * the entire message to be authenticated is passed to UMAC in one buffer,
- * and a sequential interface where the message is presented a little at a
- * time. The all-at-once is more optimaized than the sequential version and
- * should be preferred when the sequential interface is not required.
- */
- struct umac_ctx {
- uhash_ctx hash; /* Hash function for message compression */
- pdf_ctx pdf; /* PDF for hashed output */
- void *free_ptr; /* Address to free this struct via */
- } umac_ctx;
- /* ---------------------------------------------------------------------- */
- #if 0
- int umac_reset(struct umac_ctx *ctx)
- /* Reset the hash function to begin a new authentication. */
- {
- uhash_reset(&ctx->hash);
- return (1);
- }
- #endif
- /* ---------------------------------------------------------------------- */
- int umac_delete(struct umac_ctx *ctx)
- /* Deallocate the ctx structure */
- {
- if (ctx) {
- if (ALLOC_BOUNDARY)
- ctx = (struct umac_ctx *)ctx->free_ptr;
- freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
- }
- return (1);
- }
- /* ---------------------------------------------------------------------- */
- struct umac_ctx *umac_new(const u_char key[])
- /* Dynamically allocate a umac_ctx struct, initialize variables,
- * generate subkeys from key. Align to 16-byte boundary.
- */
- {
- struct umac_ctx *ctx, *octx;
- size_t bytes_to_add;
- aes_int_key prf_key;
- octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
- if (ctx) {
- if (ALLOC_BOUNDARY) {
- bytes_to_add = ALLOC_BOUNDARY -
- ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
- ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
- }
- ctx->free_ptr = octx;
- aes_key_setup(key, prf_key);
- pdf_init(&ctx->pdf, prf_key);
- uhash_init(&ctx->hash, prf_key);
- explicit_bzero(prf_key, sizeof(prf_key));
- }
- return (ctx);
- }
- /* ---------------------------------------------------------------------- */
- int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
- /* Incorporate any pending data, pad, and generate tag */
- {
- uhash_final(&ctx->hash, (u_char *)tag);
- pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
- return (1);
- }
- /* ---------------------------------------------------------------------- */
- int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
- /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
- /* hash each one, calling the PDF on the hashed output whenever the hash- */
- /* output buffer is full. */
- {
- uhash_update(&ctx->hash, input, len);
- return (1);
- }
- /* ---------------------------------------------------------------------- */
- #if 0
- int umac(struct umac_ctx *ctx, u_char *input,
- long len, u_char tag[],
- u_char nonce[8])
- /* All-in-one version simply calls umac_update() and umac_final(). */
- {
- uhash(&ctx->hash, input, len, (u_char *)tag);
- pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
- return (1);
- }
- #endif
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ----- End UMAC Section ----------------------------------------------- */
- /* ---------------------------------------------------------------------- */
- /* ---------------------------------------------------------------------- */
|