sha1.c 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. /* $OpenBSD: sha1.c,v 1.27 2019/06/07 22:56:36 dtucker Exp $ */
  2. /*
  3. * SHA-1 in C
  4. * By Steve Reid <steve@edmweb.com>
  5. * 100% Public Domain
  6. *
  7. * Test Vectors (from FIPS PUB 180-1)
  8. * "abc"
  9. * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
  10. * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
  11. * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
  12. * A million repetitions of "a"
  13. * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
  14. */
  15. #include "includes.h"
  16. #ifndef WITH_OPENSSL
  17. #include <sys/types.h>
  18. #include <string.h>
  19. #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
  20. /*
  21. * blk0() and blk() perform the initial expand.
  22. * I got the idea of expanding during the round function from SSLeay
  23. */
  24. #if BYTE_ORDER == LITTLE_ENDIAN
  25. # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
  26. |(rol(block->l[i],8)&0x00FF00FF))
  27. #else
  28. # define blk0(i) block->l[i]
  29. #endif
  30. #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
  31. ^block->l[(i+2)&15]^block->l[i&15],1))
  32. /*
  33. * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
  34. */
  35. #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
  36. #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
  37. #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
  38. #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
  39. #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
  40. typedef union {
  41. u_int8_t c[64];
  42. u_int32_t l[16];
  43. } CHAR64LONG16;
  44. /*
  45. * Hash a single 512-bit block. This is the core of the algorithm.
  46. */
  47. void
  48. SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
  49. {
  50. u_int32_t a, b, c, d, e;
  51. u_int8_t workspace[SHA1_BLOCK_LENGTH];
  52. CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
  53. (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
  54. /* Copy context->state[] to working vars */
  55. a = state[0];
  56. b = state[1];
  57. c = state[2];
  58. d = state[3];
  59. e = state[4];
  60. /* 4 rounds of 20 operations each. Loop unrolled. */
  61. R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
  62. R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
  63. R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
  64. R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
  65. R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
  66. R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
  67. R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
  68. R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
  69. R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
  70. R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
  71. R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
  72. R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
  73. R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
  74. R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
  75. R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
  76. R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
  77. R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
  78. R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
  79. R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
  80. R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
  81. /* Add the working vars back into context.state[] */
  82. state[0] += a;
  83. state[1] += b;
  84. state[2] += c;
  85. state[3] += d;
  86. state[4] += e;
  87. /* Wipe variables */
  88. a = b = c = d = e = 0;
  89. }
  90. DEF_WEAK(SHA1Transform);
  91. /*
  92. * SHA1Init - Initialize new context
  93. */
  94. void
  95. SHA1Init(SHA1_CTX *context)
  96. {
  97. /* SHA1 initialization constants */
  98. context->count = 0;
  99. context->state[0] = 0x67452301;
  100. context->state[1] = 0xEFCDAB89;
  101. context->state[2] = 0x98BADCFE;
  102. context->state[3] = 0x10325476;
  103. context->state[4] = 0xC3D2E1F0;
  104. }
  105. DEF_WEAK(SHA1Init);
  106. /*
  107. * Run your data through this.
  108. */
  109. void
  110. SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
  111. {
  112. size_t i, j;
  113. j = (size_t)((context->count >> 3) & 63);
  114. context->count += ((u_int64_t)len << 3);
  115. if ((j + len) > 63) {
  116. (void)memcpy(&context->buffer[j], data, (i = 64-j));
  117. SHA1Transform(context->state, context->buffer);
  118. for ( ; i + 63 < len; i += 64)
  119. SHA1Transform(context->state, (u_int8_t *)&data[i]);
  120. j = 0;
  121. } else {
  122. i = 0;
  123. }
  124. (void)memcpy(&context->buffer[j], &data[i], len - i);
  125. }
  126. DEF_WEAK(SHA1Update);
  127. /*
  128. * Add padding and return the message digest.
  129. */
  130. void
  131. SHA1Pad(SHA1_CTX *context)
  132. {
  133. u_int8_t finalcount[8];
  134. u_int i;
  135. for (i = 0; i < 8; i++) {
  136. finalcount[i] = (u_int8_t)((context->count >>
  137. ((7 - (i & 7)) * 8)) & 255); /* Endian independent */
  138. }
  139. SHA1Update(context, (u_int8_t *)"\200", 1);
  140. while ((context->count & 504) != 448)
  141. SHA1Update(context, (u_int8_t *)"\0", 1);
  142. SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
  143. }
  144. DEF_WEAK(SHA1Pad);
  145. void
  146. SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
  147. {
  148. u_int i;
  149. SHA1Pad(context);
  150. for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
  151. digest[i] = (u_int8_t)
  152. ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
  153. }
  154. explicit_bzero(context, sizeof(*context));
  155. }
  156. DEF_WEAK(SHA1Final);
  157. #endif /* !WITH_OPENSSL */