123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814 |
- /* $OpenBSD: moduli.c,v 1.37 2019/11/15 06:00:20 djm Exp $ */
- /*
- * Copyright 1994 Phil Karn <karn@qualcomm.com>
- * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
- * Copyright 2000 Niels Provos <provos@citi.umich.edu>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- /*
- * Two-step process to generate safe primes for DHGEX
- *
- * Sieve candidates for "safe" primes,
- * suitable for use as Diffie-Hellman moduli;
- * that is, where q = (p-1)/2 is also prime.
- *
- * First step: generate candidate primes (memory intensive)
- * Second step: test primes' safety (processor intensive)
- */
- #include "includes.h"
- #ifdef WITH_OPENSSL
- #include <sys/types.h>
- #include <openssl/bn.h>
- #include <openssl/dh.h>
- #include <errno.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdarg.h>
- #include <time.h>
- #include <unistd.h>
- #include <limits.h>
- #include "xmalloc.h"
- #include "dh.h"
- #include "log.h"
- #include "misc.h"
- #include "openbsd-compat/openssl-compat.h"
- /*
- * File output defines
- */
- /* need line long enough for largest moduli plus headers */
- #define QLINESIZE (100+8192)
- /*
- * Size: decimal.
- * Specifies the number of the most significant bit (0 to M).
- * WARNING: internally, usually 1 to N.
- */
- #define QSIZE_MINIMUM (511)
- /*
- * Prime sieving defines
- */
- /* Constant: assuming 8 bit bytes and 32 bit words */
- #define SHIFT_BIT (3)
- #define SHIFT_BYTE (2)
- #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
- #define SHIFT_MEGABYTE (20)
- #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
- /*
- * Using virtual memory can cause thrashing. This should be the largest
- * number that is supported without a large amount of disk activity --
- * that would increase the run time from hours to days or weeks!
- */
- #define LARGE_MINIMUM (8UL) /* megabytes */
- /*
- * Do not increase this number beyond the unsigned integer bit size.
- * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
- */
- #define LARGE_MAXIMUM (127UL) /* megabytes */
- /*
- * Constant: when used with 32-bit integers, the largest sieve prime
- * has to be less than 2**32.
- */
- #define SMALL_MAXIMUM (0xffffffffUL)
- /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
- #define TINY_NUMBER (1UL<<16)
- /* Ensure enough bit space for testing 2*q. */
- #define TEST_MAXIMUM (1UL<<16)
- #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
- /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
- #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
- /* bit operations on 32-bit words */
- #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
- #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
- #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
- /*
- * Prime testing defines
- */
- /* Minimum number of primality tests to perform */
- #define TRIAL_MINIMUM (4)
- /*
- * Sieving data (XXX - move to struct)
- */
- /* sieve 2**16 */
- static u_int32_t *TinySieve, tinybits;
- /* sieve 2**30 in 2**16 parts */
- static u_int32_t *SmallSieve, smallbits, smallbase;
- /* sieve relative to the initial value */
- static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
- static u_int32_t largebits, largememory; /* megabytes */
- static BIGNUM *largebase;
- int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
- int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
- unsigned long);
- /*
- * print moduli out in consistent form,
- */
- static int
- qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
- u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
- {
- struct tm *gtm;
- time_t time_now;
- int res;
- time(&time_now);
- gtm = gmtime(&time_now);
- if (gtm == NULL)
- return -1;
- res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
- gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
- gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
- otype, otests, otries, osize, ogenerator);
- if (res < 0)
- return (-1);
- if (BN_print_fp(ofile, omodulus) < 1)
- return (-1);
- res = fprintf(ofile, "\n");
- fflush(ofile);
- return (res > 0 ? 0 : -1);
- }
- /*
- ** Sieve p's and q's with small factors
- */
- static void
- sieve_large(u_int32_t s)
- {
- u_int32_t r, u;
- debug3("sieve_large %u", s);
- largetries++;
- /* r = largebase mod s */
- r = BN_mod_word(largebase, s);
- if (r == 0)
- u = 0; /* s divides into largebase exactly */
- else
- u = s - r; /* largebase+u is first entry divisible by s */
- if (u < largebits * 2) {
- /*
- * The sieve omits p's and q's divisible by 2, so ensure that
- * largebase+u is odd. Then, step through the sieve in
- * increments of 2*s
- */
- if (u & 0x1)
- u += s; /* Make largebase+u odd, and u even */
- /* Mark all multiples of 2*s */
- for (u /= 2; u < largebits; u += s)
- BIT_SET(LargeSieve, u);
- }
- /* r = p mod s */
- r = (2 * r + 1) % s;
- if (r == 0)
- u = 0; /* s divides p exactly */
- else
- u = s - r; /* p+u is first entry divisible by s */
- if (u < largebits * 4) {
- /*
- * The sieve omits p's divisible by 4, so ensure that
- * largebase+u is not. Then, step through the sieve in
- * increments of 4*s
- */
- while (u & 0x3) {
- if (SMALL_MAXIMUM - u < s)
- return;
- u += s;
- }
- /* Mark all multiples of 4*s */
- for (u /= 4; u < largebits; u += s)
- BIT_SET(LargeSieve, u);
- }
- }
- /*
- * list candidates for Sophie-Germain primes (where q = (p-1)/2)
- * to standard output.
- * The list is checked against small known primes (less than 2**30).
- */
- int
- gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
- {
- BIGNUM *q;
- u_int32_t j, r, s, t;
- u_int32_t smallwords = TINY_NUMBER >> 6;
- u_int32_t tinywords = TINY_NUMBER >> 6;
- time_t time_start, time_stop;
- u_int32_t i;
- int ret = 0;
- largememory = memory;
- if (memory != 0 &&
- (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
- error("Invalid memory amount (min %ld, max %ld)",
- LARGE_MINIMUM, LARGE_MAXIMUM);
- return (-1);
- }
- /*
- * Set power to the length in bits of the prime to be generated.
- * This is changed to 1 less than the desired safe prime moduli p.
- */
- if (power > TEST_MAXIMUM) {
- error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
- return (-1);
- } else if (power < TEST_MINIMUM) {
- error("Too few bits: %u < %u", power, TEST_MINIMUM);
- return (-1);
- }
- power--; /* decrement before squaring */
- /*
- * The density of ordinary primes is on the order of 1/bits, so the
- * density of safe primes should be about (1/bits)**2. Set test range
- * to something well above bits**2 to be reasonably sure (but not
- * guaranteed) of catching at least one safe prime.
- */
- largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
- /*
- * Need idea of how much memory is available. We don't have to use all
- * of it.
- */
- if (largememory > LARGE_MAXIMUM) {
- logit("Limited memory: %u MB; limit %lu MB",
- largememory, LARGE_MAXIMUM);
- largememory = LARGE_MAXIMUM;
- }
- if (largewords <= (largememory << SHIFT_MEGAWORD)) {
- logit("Increased memory: %u MB; need %u bytes",
- largememory, (largewords << SHIFT_BYTE));
- largewords = (largememory << SHIFT_MEGAWORD);
- } else if (largememory > 0) {
- logit("Decreased memory: %u MB; want %u bytes",
- largememory, (largewords << SHIFT_BYTE));
- largewords = (largememory << SHIFT_MEGAWORD);
- }
- TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
- tinybits = tinywords << SHIFT_WORD;
- SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
- smallbits = smallwords << SHIFT_WORD;
- /*
- * dynamically determine available memory
- */
- while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
- largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
- largebits = largewords << SHIFT_WORD;
- largenumbers = largebits * 2; /* even numbers excluded */
- /* validation check: count the number of primes tried */
- largetries = 0;
- if ((q = BN_new()) == NULL)
- fatal("BN_new failed");
- /*
- * Generate random starting point for subprime search, or use
- * specified parameter.
- */
- if ((largebase = BN_new()) == NULL)
- fatal("BN_new failed");
- if (start == NULL) {
- if (BN_rand(largebase, power, 1, 1) == 0)
- fatal("BN_rand failed");
- } else {
- if (BN_copy(largebase, start) == NULL)
- fatal("BN_copy: failed");
- }
- /* ensure odd */
- if (BN_set_bit(largebase, 0) == 0)
- fatal("BN_set_bit: failed");
- time(&time_start);
- logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
- largenumbers, power);
- debug2("start point: 0x%s", BN_bn2hex(largebase));
- /*
- * TinySieve
- */
- for (i = 0; i < tinybits; i++) {
- if (BIT_TEST(TinySieve, i))
- continue; /* 2*i+3 is composite */
- /* The next tiny prime */
- t = 2 * i + 3;
- /* Mark all multiples of t */
- for (j = i + t; j < tinybits; j += t)
- BIT_SET(TinySieve, j);
- sieve_large(t);
- }
- /*
- * Start the small block search at the next possible prime. To avoid
- * fencepost errors, the last pass is skipped.
- */
- for (smallbase = TINY_NUMBER + 3;
- smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
- smallbase += TINY_NUMBER) {
- for (i = 0; i < tinybits; i++) {
- if (BIT_TEST(TinySieve, i))
- continue; /* 2*i+3 is composite */
- /* The next tiny prime */
- t = 2 * i + 3;
- r = smallbase % t;
- if (r == 0) {
- s = 0; /* t divides into smallbase exactly */
- } else {
- /* smallbase+s is first entry divisible by t */
- s = t - r;
- }
- /*
- * The sieve omits even numbers, so ensure that
- * smallbase+s is odd. Then, step through the sieve
- * in increments of 2*t
- */
- if (s & 1)
- s += t; /* Make smallbase+s odd, and s even */
- /* Mark all multiples of 2*t */
- for (s /= 2; s < smallbits; s += t)
- BIT_SET(SmallSieve, s);
- }
- /*
- * SmallSieve
- */
- for (i = 0; i < smallbits; i++) {
- if (BIT_TEST(SmallSieve, i))
- continue; /* 2*i+smallbase is composite */
- /* The next small prime */
- sieve_large((2 * i) + smallbase);
- }
- memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
- }
- time(&time_stop);
- logit("%.24s Sieved with %u small primes in %lld seconds",
- ctime(&time_stop), largetries, (long long)(time_stop - time_start));
- for (j = r = 0; j < largebits; j++) {
- if (BIT_TEST(LargeSieve, j))
- continue; /* Definitely composite, skip */
- debug2("test q = largebase+%u", 2 * j);
- if (BN_set_word(q, 2 * j) == 0)
- fatal("BN_set_word failed");
- if (BN_add(q, q, largebase) == 0)
- fatal("BN_add failed");
- if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
- MODULI_TESTS_SIEVE, largetries,
- (power - 1) /* MSB */, (0), q) == -1) {
- ret = -1;
- break;
- }
- r++; /* count q */
- }
- time(&time_stop);
- free(LargeSieve);
- free(SmallSieve);
- free(TinySieve);
- logit("%.24s Found %u candidates", ctime(&time_stop), r);
- return (ret);
- }
- static void
- write_checkpoint(char *cpfile, u_int32_t lineno)
- {
- FILE *fp;
- char tmp[PATH_MAX];
- int r;
- r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
- if (r < 0 || r >= PATH_MAX) {
- logit("write_checkpoint: temp pathname too long");
- return;
- }
- if ((r = mkstemp(tmp)) == -1) {
- logit("mkstemp(%s): %s", tmp, strerror(errno));
- return;
- }
- if ((fp = fdopen(r, "w")) == NULL) {
- logit("write_checkpoint: fdopen: %s", strerror(errno));
- unlink(tmp);
- close(r);
- return;
- }
- if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
- && rename(tmp, cpfile) == 0)
- debug3("wrote checkpoint line %lu to '%s'",
- (unsigned long)lineno, cpfile);
- else
- logit("failed to write to checkpoint file '%s': %s", cpfile,
- strerror(errno));
- }
- static unsigned long
- read_checkpoint(char *cpfile)
- {
- FILE *fp;
- unsigned long lineno = 0;
- if ((fp = fopen(cpfile, "r")) == NULL)
- return 0;
- if (fscanf(fp, "%lu\n", &lineno) < 1)
- logit("Failed to load checkpoint from '%s'", cpfile);
- else
- logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
- fclose(fp);
- return lineno;
- }
- static unsigned long
- count_lines(FILE *f)
- {
- unsigned long count = 0;
- char lp[QLINESIZE + 1];
- if (fseek(f, 0, SEEK_SET) != 0) {
- debug("input file is not seekable");
- return ULONG_MAX;
- }
- while (fgets(lp, QLINESIZE + 1, f) != NULL)
- count++;
- rewind(f);
- debug("input file has %lu lines", count);
- return count;
- }
- static char *
- fmt_time(time_t seconds)
- {
- int day, hr, min;
- static char buf[128];
- min = (seconds / 60) % 60;
- hr = (seconds / 60 / 60) % 24;
- day = seconds / 60 / 60 / 24;
- if (day > 0)
- snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
- else
- snprintf(buf, sizeof buf, "%d:%02d", hr, min);
- return buf;
- }
- static void
- print_progress(unsigned long start_lineno, unsigned long current_lineno,
- unsigned long end_lineno)
- {
- static time_t time_start, time_prev;
- time_t time_now, elapsed;
- unsigned long num_to_process, processed, remaining, percent, eta;
- double time_per_line;
- char *eta_str;
- time_now = monotime();
- if (time_start == 0) {
- time_start = time_prev = time_now;
- return;
- }
- /* print progress after 1m then once per 5m */
- if (time_now - time_prev < 5 * 60)
- return;
- time_prev = time_now;
- elapsed = time_now - time_start;
- processed = current_lineno - start_lineno;
- remaining = end_lineno - current_lineno;
- num_to_process = end_lineno - start_lineno;
- time_per_line = (double)elapsed / processed;
- /* if we don't know how many we're processing just report count+time */
- time(&time_now);
- if (end_lineno == ULONG_MAX) {
- logit("%.24s processed %lu in %s", ctime(&time_now),
- processed, fmt_time(elapsed));
- return;
- }
- percent = 100 * processed / num_to_process;
- eta = time_per_line * remaining;
- eta_str = xstrdup(fmt_time(eta));
- logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
- ctime(&time_now), processed, num_to_process, percent,
- fmt_time(elapsed), eta_str);
- free(eta_str);
- }
- /*
- * perform a Miller-Rabin primality test
- * on the list of candidates
- * (checking both q and p)
- * The result is a list of so-call "safe" primes
- */
- int
- prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
- char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
- {
- BIGNUM *q, *p, *a;
- char *cp, *lp;
- u_int32_t count_in = 0, count_out = 0, count_possible = 0;
- u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
- unsigned long last_processed = 0, end_lineno;
- time_t time_start, time_stop;
- int res, is_prime;
- if (trials < TRIAL_MINIMUM) {
- error("Minimum primality trials is %d", TRIAL_MINIMUM);
- return (-1);
- }
- if (num_lines == 0)
- end_lineno = count_lines(in);
- else
- end_lineno = start_lineno + num_lines;
- time(&time_start);
- if ((p = BN_new()) == NULL)
- fatal("BN_new failed");
- if ((q = BN_new()) == NULL)
- fatal("BN_new failed");
- debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
- ctime(&time_start), trials, generator_wanted);
- if (checkpoint_file != NULL)
- last_processed = read_checkpoint(checkpoint_file);
- last_processed = start_lineno = MAXIMUM(last_processed, start_lineno);
- if (end_lineno == ULONG_MAX)
- debug("process from line %lu from pipe", last_processed);
- else
- debug("process from line %lu to line %lu", last_processed,
- end_lineno);
- res = 0;
- lp = xmalloc(QLINESIZE + 1);
- while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
- count_in++;
- if (count_in <= last_processed) {
- debug3("skipping line %u, before checkpoint or "
- "specified start line", count_in);
- continue;
- }
- if (checkpoint_file != NULL)
- write_checkpoint(checkpoint_file, count_in);
- print_progress(start_lineno, count_in, end_lineno);
- if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
- debug2("%10u: comment or short line", count_in);
- continue;
- }
- /* XXX - fragile parser */
- /* time */
- cp = &lp[14]; /* (skip) */
- /* type */
- in_type = strtoul(cp, &cp, 10);
- /* tests */
- in_tests = strtoul(cp, &cp, 10);
- if (in_tests & MODULI_TESTS_COMPOSITE) {
- debug2("%10u: known composite", count_in);
- continue;
- }
- /* tries */
- in_tries = strtoul(cp, &cp, 10);
- /* size (most significant bit) */
- in_size = strtoul(cp, &cp, 10);
- /* generator (hex) */
- generator_known = strtoul(cp, &cp, 16);
- /* Skip white space */
- cp += strspn(cp, " ");
- /* modulus (hex) */
- switch (in_type) {
- case MODULI_TYPE_SOPHIE_GERMAIN:
- debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
- a = q;
- if (BN_hex2bn(&a, cp) == 0)
- fatal("BN_hex2bn failed");
- /* p = 2*q + 1 */
- if (BN_lshift(p, q, 1) == 0)
- fatal("BN_lshift failed");
- if (BN_add_word(p, 1) == 0)
- fatal("BN_add_word failed");
- in_size += 1;
- generator_known = 0;
- break;
- case MODULI_TYPE_UNSTRUCTURED:
- case MODULI_TYPE_SAFE:
- case MODULI_TYPE_SCHNORR:
- case MODULI_TYPE_STRONG:
- case MODULI_TYPE_UNKNOWN:
- debug2("%10u: (%u)", count_in, in_type);
- a = p;
- if (BN_hex2bn(&a, cp) == 0)
- fatal("BN_hex2bn failed");
- /* q = (p-1) / 2 */
- if (BN_rshift(q, p, 1) == 0)
- fatal("BN_rshift failed");
- break;
- default:
- debug2("Unknown prime type");
- break;
- }
- /*
- * due to earlier inconsistencies in interpretation, check
- * the proposed bit size.
- */
- if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
- debug2("%10u: bit size %u mismatch", count_in, in_size);
- continue;
- }
- if (in_size < QSIZE_MINIMUM) {
- debug2("%10u: bit size %u too short", count_in, in_size);
- continue;
- }
- if (in_tests & MODULI_TESTS_MILLER_RABIN)
- in_tries += trials;
- else
- in_tries = trials;
- /*
- * guess unknown generator
- */
- if (generator_known == 0) {
- if (BN_mod_word(p, 24) == 11)
- generator_known = 2;
- else {
- u_int32_t r = BN_mod_word(p, 10);
- if (r == 3 || r == 7)
- generator_known = 5;
- }
- }
- /*
- * skip tests when desired generator doesn't match
- */
- if (generator_wanted > 0 &&
- generator_wanted != generator_known) {
- debug2("%10u: generator %d != %d",
- count_in, generator_known, generator_wanted);
- continue;
- }
- /*
- * Primes with no known generator are useless for DH, so
- * skip those.
- */
- if (generator_known == 0) {
- debug2("%10u: no known generator", count_in);
- continue;
- }
- count_possible++;
- /*
- * The (1/4)^N performance bound on Miller-Rabin is
- * extremely pessimistic, so don't spend a lot of time
- * really verifying that q is prime until after we know
- * that p is also prime. A single pass will weed out the
- * vast majority of composite q's.
- */
- is_prime = BN_is_prime_ex(q, 1, NULL, NULL);
- if (is_prime < 0)
- fatal("BN_is_prime_ex failed");
- if (is_prime == 0) {
- debug("%10u: q failed first possible prime test",
- count_in);
- continue;
- }
- /*
- * q is possibly prime, so go ahead and really make sure
- * that p is prime. If it is, then we can go back and do
- * the same for q. If p is composite, chances are that
- * will show up on the first Rabin-Miller iteration so it
- * doesn't hurt to specify a high iteration count.
- */
- is_prime = BN_is_prime_ex(p, trials, NULL, NULL);
- if (is_prime < 0)
- fatal("BN_is_prime_ex failed");
- if (is_prime == 0) {
- debug("%10u: p is not prime", count_in);
- continue;
- }
- debug("%10u: p is almost certainly prime", count_in);
- /* recheck q more rigorously */
- is_prime = BN_is_prime_ex(q, trials - 1, NULL, NULL);
- if (is_prime < 0)
- fatal("BN_is_prime_ex failed");
- if (is_prime == 0) {
- debug("%10u: q is not prime", count_in);
- continue;
- }
- debug("%10u: q is almost certainly prime", count_in);
- if (qfileout(out, MODULI_TYPE_SAFE,
- in_tests | MODULI_TESTS_MILLER_RABIN,
- in_tries, in_size, generator_known, p)) {
- res = -1;
- break;
- }
- count_out++;
- }
- time(&time_stop);
- free(lp);
- BN_free(p);
- BN_free(q);
- if (checkpoint_file != NULL)
- unlink(checkpoint_file);
- logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
- ctime(&time_stop), count_out, count_possible,
- (long) (time_stop - time_start));
- return (res);
- }
- #endif /* WITH_OPENSSL */
|