123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- /* $OpenBSD: fe25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
- /*
- * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
- * Peter Schwabe, Bo-Yin Yang.
- * Copied from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c
- */
- #include "includes.h"
- #define WINDOWSIZE 1 /* Should be 1,2, or 4 */
- #define WINDOWMASK ((1<<WINDOWSIZE)-1)
- #include "fe25519.h"
- static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
- {
- crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */
- x -= 1; /* 4294967295: yes; 0..65534: no */
- x >>= 31; /* 1: yes; 0: no */
- return x;
- }
- static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
- {
- unsigned int x = a;
- x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */
- x >>= 31; /* 0: yes; 1: no */
- x ^= 1; /* 1: yes; 0: no */
- return x;
- }
- static crypto_uint32 times19(crypto_uint32 a)
- {
- return (a << 4) + (a << 1) + a;
- }
- static crypto_uint32 times38(crypto_uint32 a)
- {
- return (a << 5) + (a << 2) + (a << 1);
- }
- static void reduce_add_sub(fe25519 *r)
- {
- crypto_uint32 t;
- int i,rep;
- for(rep=0;rep<4;rep++)
- {
- t = r->v[31] >> 7;
- r->v[31] &= 127;
- t = times19(t);
- r->v[0] += t;
- for(i=0;i<31;i++)
- {
- t = r->v[i] >> 8;
- r->v[i+1] += t;
- r->v[i] &= 255;
- }
- }
- }
- static void reduce_mul(fe25519 *r)
- {
- crypto_uint32 t;
- int i,rep;
- for(rep=0;rep<2;rep++)
- {
- t = r->v[31] >> 7;
- r->v[31] &= 127;
- t = times19(t);
- r->v[0] += t;
- for(i=0;i<31;i++)
- {
- t = r->v[i] >> 8;
- r->v[i+1] += t;
- r->v[i] &= 255;
- }
- }
- }
- /* reduction modulo 2^255-19 */
- void fe25519_freeze(fe25519 *r)
- {
- int i;
- crypto_uint32 m = equal(r->v[31],127);
- for(i=30;i>0;i--)
- m &= equal(r->v[i],255);
- m &= ge(r->v[0],237);
- m = -m;
- r->v[31] -= m&127;
- for(i=30;i>0;i--)
- r->v[i] -= m&255;
- r->v[0] -= m&237;
- }
- void fe25519_unpack(fe25519 *r, const unsigned char x[32])
- {
- int i;
- for(i=0;i<32;i++) r->v[i] = x[i];
- r->v[31] &= 127;
- }
- /* Assumes input x being reduced below 2^255 */
- void fe25519_pack(unsigned char r[32], const fe25519 *x)
- {
- int i;
- fe25519 y = *x;
- fe25519_freeze(&y);
- for(i=0;i<32;i++)
- r[i] = y.v[i];
- }
- int fe25519_iszero(const fe25519 *x)
- {
- int i;
- int r;
- fe25519 t = *x;
- fe25519_freeze(&t);
- r = equal(t.v[0],0);
- for(i=1;i<32;i++)
- r &= equal(t.v[i],0);
- return r;
- }
- int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y)
- {
- int i;
- fe25519 t1 = *x;
- fe25519 t2 = *y;
- fe25519_freeze(&t1);
- fe25519_freeze(&t2);
- for(i=0;i<32;i++)
- if(t1.v[i] != t2.v[i]) return 0;
- return 1;
- }
- void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
- {
- int i;
- crypto_uint32 mask = b;
- mask = -mask;
- for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]);
- }
- unsigned char fe25519_getparity(const fe25519 *x)
- {
- fe25519 t = *x;
- fe25519_freeze(&t);
- return t.v[0] & 1;
- }
- void fe25519_setone(fe25519 *r)
- {
- int i;
- r->v[0] = 1;
- for(i=1;i<32;i++) r->v[i]=0;
- }
- void fe25519_setzero(fe25519 *r)
- {
- int i;
- for(i=0;i<32;i++) r->v[i]=0;
- }
- void fe25519_neg(fe25519 *r, const fe25519 *x)
- {
- fe25519 t;
- int i;
- for(i=0;i<32;i++) t.v[i]=x->v[i];
- fe25519_setzero(r);
- fe25519_sub(r, r, &t);
- }
- void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
- {
- int i;
- for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
- reduce_add_sub(r);
- }
- void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
- {
- int i;
- crypto_uint32 t[32];
- t[0] = x->v[0] + 0x1da;
- t[31] = x->v[31] + 0xfe;
- for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
- for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
- reduce_add_sub(r);
- }
- void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
- {
- int i,j;
- crypto_uint32 t[63];
- for(i=0;i<63;i++)t[i] = 0;
- for(i=0;i<32;i++)
- for(j=0;j<32;j++)
- t[i+j] += x->v[i] * y->v[j];
- for(i=32;i<63;i++)
- r->v[i-32] = t[i-32] + times38(t[i]);
- r->v[31] = t[31]; /* result now in r[0]...r[31] */
- reduce_mul(r);
- }
- void fe25519_square(fe25519 *r, const fe25519 *x)
- {
- fe25519_mul(r, x, x);
- }
- void fe25519_invert(fe25519 *r, const fe25519 *x)
- {
- fe25519 z2;
- fe25519 z9;
- fe25519 z11;
- fe25519 z2_5_0;
- fe25519 z2_10_0;
- fe25519 z2_20_0;
- fe25519 z2_50_0;
- fe25519 z2_100_0;
- fe25519 t0;
- fe25519 t1;
- int i;
-
- /* 2 */ fe25519_square(&z2,x);
- /* 4 */ fe25519_square(&t1,&z2);
- /* 8 */ fe25519_square(&t0,&t1);
- /* 9 */ fe25519_mul(&z9,&t0,x);
- /* 11 */ fe25519_mul(&z11,&z9,&z2);
- /* 22 */ fe25519_square(&t0,&z11);
- /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
- /* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
- /* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
- /* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
- /* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
- /* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
- /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
- /* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
- /* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
- /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
- /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
- /* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
- /* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
- /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
- /* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
- /* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
- /* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
- /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
- /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
- /* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
- /* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
- /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
- /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
- /* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
- /* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
- /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
- /* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
- /* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
- /* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
- /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
- /* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
- /* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
- /* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
- /* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
- /* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
- /* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
- /* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);
- }
- void fe25519_pow2523(fe25519 *r, const fe25519 *x)
- {
- fe25519 z2;
- fe25519 z9;
- fe25519 z11;
- fe25519 z2_5_0;
- fe25519 z2_10_0;
- fe25519 z2_20_0;
- fe25519 z2_50_0;
- fe25519 z2_100_0;
- fe25519 t;
- int i;
-
- /* 2 */ fe25519_square(&z2,x);
- /* 4 */ fe25519_square(&t,&z2);
- /* 8 */ fe25519_square(&t,&t);
- /* 9 */ fe25519_mul(&z9,&t,x);
- /* 11 */ fe25519_mul(&z11,&z9,&z2);
- /* 22 */ fe25519_square(&t,&z11);
- /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9);
- /* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
- /* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
- /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
- /* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
- /* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
- /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
- /* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
- /* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
- /* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);
- /* 2^41 - 2^1 */ fe25519_square(&t,&t);
- /* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
- /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
- /* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
- /* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
- /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
- /* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
- /* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
- /* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
- /* 2^201 - 2^1 */ fe25519_square(&t,&t);
- /* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
- /* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
- /* 2^251 - 2^1 */ fe25519_square(&t,&t);
- /* 2^252 - 2^2 */ fe25519_square(&t,&t);
- /* 2^252 - 3 */ fe25519_mul(r,&t,x);
- }
|