625 Gcd sum.pl 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. #!/usr/bin/perl
  2. # Daniel "Trizen" Șuteu
  3. # Date: 04 February 2019
  4. # https://github.com/trizen
  5. # A sublinear algorithm for computing the partial sums of the gcd-sum function, using Dirichlet's hyperbola method.
  6. # The partial sums of the gcd-sum function is defined as:
  7. #
  8. # a(n) = Sum_{k=1..n} Sum_{d|k} d*phi(k/d)
  9. #
  10. # where phi(k) is the Euler totient function.
  11. # Also equivalent with:
  12. # a(n) = Sum_{j=1..n} Sum_{i=1..j} gcd(i, j)
  13. # Based on the formula:
  14. # a(n) = (1/2)*Sum_{k=1..n} phi(k) * floor(n/k) * floor(1+n/k)
  15. # Example:
  16. # a(10^1) = 122
  17. # a(10^2) = 18065
  18. # a(10^3) = 2475190
  19. # a(10^4) = 317257140
  20. # a(10^5) = 38717197452
  21. # a(10^6) = 4571629173912
  22. # a(10^7) = 527148712519016
  23. # a(10^8) = 59713873168012716
  24. # a(10^9) = 6671288261316915052
  25. # OEIS sequences:
  26. # https://oeis.org/A272718 -- Partial sums of gcd-sum sequence A018804.
  27. # https://oeis.org/A018804 -- Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n).
  28. # See also:
  29. # https://en.wikipedia.org/wiki/Dirichlet_hyperbola_method
  30. # https://trizenx.blogspot.com/2018/11/partial-sums-of-arithmetical-functions.html
  31. # https://projecteuler.net/problem=625
  32. # WARNING: this program uses more than 3 GB of memory!
  33. use 5.020;
  34. use strict;
  35. use warnings;
  36. use experimental qw(signatures);
  37. use ntheory qw(euler_phi sqrtint rootint addmod mulmod invmod);
  38. sub partial_sums_of_gcd_sum_function ($n, $mod) {
  39. my $s = sqrtint($n);
  40. my @euler_sum_lookup = (0);
  41. my $lookup_size = 2 + 2 * rootint($n, 3)**2;
  42. my @euler_phi = euler_phi(0, $lookup_size);
  43. foreach my $i (1 .. $lookup_size) {
  44. $euler_sum_lookup[$i] = addmod($euler_sum_lookup[$i - 1], $euler_phi[$i], $mod);
  45. }
  46. my $two_invmod = invmod(2, $mod);
  47. my %seen;
  48. my sub euler_phi_partial_sum($n) {
  49. if ($n <= $lookup_size) {
  50. return $euler_sum_lookup[$n];
  51. }
  52. if (exists $seen{$n}) {
  53. return $seen{$n};
  54. }
  55. my $s = sqrtint($n);
  56. my $T = mulmod(mulmod($n, $n + 1, $mod), $two_invmod, $mod);
  57. my $A = 0;
  58. foreach my $k (2 .. $s) {
  59. $A = addmod($A, __SUB__->(int($n / $k)), $mod);
  60. }
  61. my $B = 0;
  62. foreach my $k (1 .. int($n / $s) - 1) {
  63. $B = addmod($B, mulmod((int($n / $k) - int($n / ($k + 1))), __SUB__->($k), $mod), $mod);
  64. }
  65. $seen{$n} = addmod(addmod($T, -$A, $mod), -$B, $mod);
  66. }
  67. my $A = 0;
  68. foreach my $k (1 .. $s) {
  69. my $t = int($n / $k);
  70. my $z = mulmod(mulmod($t, ($t + 1), $mod), $two_invmod, $mod);
  71. $A = addmod($A, addmod(mulmod($k, euler_phi_partial_sum($t), $mod), mulmod($euler_phi[$k], $z, $mod), $mod), $mod);
  72. }
  73. my $T = mulmod(mulmod($s, $s + 1, $mod), $two_invmod, $mod);
  74. my $C = euler_phi_partial_sum($s);
  75. return addmod($A, -mulmod($T, $C, $mod), $mod);
  76. }
  77. my $n = 11;
  78. my $mod = 998244353;
  79. say "a(10^$n) = ", partial_sums_of_gcd_sum_function(10**$n, $mod);