123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601 |
- #include <openssl/sha.h>
- #include "Log.h"
- #include "Crypto.h"
- #include "Ed25519.h"
- namespace i2p
- {
- namespace crypto
- {
- Ed25519::Ed25519 ()
- {
- BN_CTX * ctx = BN_CTX_new ();
- BIGNUM * tmp = BN_new ();
- q = BN_new ();
- // 2^255-19
- BN_set_bit (q, 255); // 2^255
- BN_sub_word (q, 19);
- l = BN_new ();
- // 2^252 + 27742317777372353535851937790883648493
- BN_set_bit (l, 252);
- two_252_2 = BN_dup (l);
- BN_dec2bn (&tmp, "27742317777372353535851937790883648493");
- BN_add (l, l, tmp);
- BN_sub_word (two_252_2, 2); // 2^252 - 2
- // -121665*inv(121666)
- d = BN_new ();
- BN_set_word (tmp, 121666);
- BN_mod_inverse (tmp, tmp, q, ctx);
- BN_set_word (d, 121665);
- BN_set_negative (d, 1);
- BN_mul (d, d, tmp, ctx);
- // 2^((q-1)/4)
- I = BN_new ();
- BN_free (tmp);
- tmp = BN_dup (q);
- BN_sub_word (tmp, 1);
- BN_div_word (tmp, 4);
- BN_set_word (I, 2);
- BN_mod_exp (I, I, tmp, q, ctx);
- BN_free (tmp);
- // 4*inv(5)
- BIGNUM * By = BN_new ();
- BN_set_word (By, 5);
- BN_mod_inverse (By, By, q, ctx);
- BN_mul_word (By, 4);
- BIGNUM * Bx = RecoverX (By, ctx);
- BN_mod (Bx, Bx, q, ctx); // % q
- BN_mod (By, By, q, ctx); // % q
- // precalculate Bi256 table
- Bi256Carry = { Bx, By }; // B
- for (int i = 0; i < 32; i++)
- {
- Bi256[i][0] = Bi256Carry; // first point
- for (int j = 1; j < 128; j++)
- Bi256[i][j] = Sum (Bi256[i][j-1], Bi256[i][0], ctx); // (256+j+1)^i*B
- Bi256Carry = Bi256[i][127];
- for (int j = 0; j < 128; j++) // add first point 128 more times
- Bi256Carry = Sum (Bi256Carry, Bi256[i][0], ctx);
- }
- BN_CTX_free (ctx);
- }
- Ed25519::Ed25519 (const Ed25519& other): q (BN_dup (other.q)), l (BN_dup (other.l)),
- d (BN_dup (other.d)), I (BN_dup (other.I)), two_252_2 (BN_dup (other.two_252_2)),
- Bi256Carry (other.Bi256Carry)
- {
- for (int i = 0; i < 32; i++)
- for (int j = 0; j < 128; j++)
- Bi256[i][j] = other.Bi256[i][j];
- }
- Ed25519::~Ed25519 ()
- {
- BN_free (q);
- BN_free (l);
- BN_free (d);
- BN_free (I);
- BN_free (two_252_2);
- }
- EDDSAPoint Ed25519::GeneratePublicKey (const uint8_t * expandedPrivateKey, BN_CTX * ctx) const
- {
- return MulB (expandedPrivateKey, ctx); // left half of expanded key, considered as Little Endian
- }
- EDDSAPoint Ed25519::DecodePublicKey (const uint8_t * buf, BN_CTX * ctx) const
- {
- return DecodePoint (buf, ctx);
- }
- void Ed25519::EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf, BN_CTX * ctx) const
- {
- EncodePoint (Normalize (publicKey, ctx), buf);
- }
- bool Ed25519::Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature) const
- {
- BN_CTX * ctx = BN_CTX_new ();
- BIGNUM * h = DecodeBN<64> (digest);
- // signature 0..31 - R, 32..63 - S
- // B*S = R + PK*h => R = B*S - PK*h
- // we don't decode R, but encode (B*S - PK*h)
- auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S;
- BN_mod (h, h, l, ctx); // public key is multiple of B, but B%l = 0
- auto PKh = Mul (publicKey, h, ctx); // PK*h
- uint8_t diff[32];
- EncodePoint (Normalize (Sum (Bs, -PKh, ctx), ctx), diff); // Bs - PKh encoded
- bool passed = !memcmp (signature, diff, 32); // R
- BN_free (h);
- BN_CTX_free (ctx);
- if (!passed)
- LogPrint (eLogError, "25519 signature verification failed");
- return passed;
- }
- void Ed25519::Sign (const uint8_t * expandedPrivateKey, const uint8_t * publicKeyEncoded,
- const uint8_t * buf, size_t len, uint8_t * signature) const
- {
- BN_CTX * bnCtx = BN_CTX_new ();
- // calculate r
- SHA512_CTX ctx;
- SHA512_Init (&ctx);
- SHA512_Update (&ctx, expandedPrivateKey + EDDSA25519_PRIVATE_KEY_LENGTH, EDDSA25519_PRIVATE_KEY_LENGTH); // right half of expanded key
- SHA512_Update (&ctx, buf, len); // data
- uint8_t digest[64];
- SHA512_Final (digest, &ctx);
- BIGNUM * r = DecodeBN<32> (digest); // DecodeBN<64> (digest); // for test vectors
- // calculate R
- uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
- EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors
- // calculate S
- SHA512_Init (&ctx);
- SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
- SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
- SHA512_Update (&ctx, buf, len); // data
- SHA512_Final (digest, &ctx);
- BIGNUM * h = DecodeBN<64> (digest);
- // S = (r + h*a) % l
- BIGNUM * a = DecodeBN<EDDSA25519_PRIVATE_KEY_LENGTH> (expandedPrivateKey); // left half of expanded key
- BN_mod_mul (h, h, a, l, bnCtx); // %l
- BN_mod_add (h, h, r, l, bnCtx); // %l
- memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2);
- EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S
- BN_free (r); BN_free (h); BN_free (a);
- BN_CTX_free (bnCtx);
- }
- void Ed25519::SignRedDSA (const uint8_t * privateKey, const uint8_t * publicKeyEncoded,
- const uint8_t * buf, size_t len, uint8_t * signature) const
- {
- BN_CTX * bnCtx = BN_CTX_new ();
- // T = 80 random bytes
- uint8_t T[80];
- RAND_bytes (T, 80);
- // calculate r = H*(T || publickey || data)
- SHA512_CTX ctx;
- SHA512_Init (&ctx);
- SHA512_Update (&ctx, T, 80);
- SHA512_Update (&ctx, publicKeyEncoded, 32);
- SHA512_Update (&ctx, buf, len); // data
- uint8_t digest[64];
- SHA512_Final (digest, &ctx);
- BIGNUM * r = DecodeBN<64> (digest);
- BN_mod (r, r, l, bnCtx); // % l
- EncodeBN (r, digest, 32);
- // calculate R
- uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
- EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R);
- // calculate S
- SHA512_Init (&ctx);
- SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
- SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
- SHA512_Update (&ctx, buf, len); // data
- SHA512_Final (digest, &ctx);
- BIGNUM * h = DecodeBN<64> (digest);
- // S = (r + h*a) % l
- BIGNUM * a = DecodeBN<EDDSA25519_PRIVATE_KEY_LENGTH> (privateKey);
- BN_mod_mul (h, h, a, l, bnCtx); // %l
- BN_mod_add (h, h, r, l, bnCtx); // %l
- memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2);
- EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S
- BN_free (r); BN_free (h); BN_free (a);
- BN_CTX_free (bnCtx);
- }
-
- EDDSAPoint Ed25519::Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const
- {
- // x3 = (x1*y2+y1*x2)*(z1*z2-d*t1*t2)
- // y3 = (y1*y2+x1*x2)*(z1*z2+d*t1*t2)
- // z3 = (z1*z2-d*t1*t2)*(z1*z2+d*t1*t2)
- // t3 = (y1*y2+x1*x2)*(x1*y2+y1*x2)
- BIGNUM * x3 = BN_new (), * y3 = BN_new (), * z3 = BN_new (), * t3 = BN_new ();
- BN_mul (x3, p1.x, p2.x, ctx); // A = x1*x2
- BN_mul (y3, p1.y, p2.y, ctx); // B = y1*y2
- BN_CTX_start (ctx);
- BIGNUM * t1 = p1.t, * t2 = p2.t;
- if (!t1) { t1 = BN_CTX_get (ctx); BN_mul (t1, p1.x, p1.y, ctx); }
- if (!t2) { t2 = BN_CTX_get (ctx); BN_mul (t2, p2.x, p2.y, ctx); }
- BN_mul (t3, t1, t2, ctx);
- BN_mul (t3, t3, d, ctx); // C = d*t1*t2
- if (p1.z)
- {
- if (p2.z)
- BN_mul (z3, p1.z, p2.z, ctx); // D = z1*z2
- else
- BN_copy (z3, p1.z); // D = z1
- }
- else
- {
- if (p2.z)
- BN_copy (z3, p2.z); // D = z2
- else
- BN_one (z3); // D = 1
- }
- BIGNUM * E = BN_CTX_get (ctx), * F = BN_CTX_get (ctx), * G = BN_CTX_get (ctx), * H = BN_CTX_get (ctx);
- BN_add (E, p1.x, p1.y);
- BN_add (F, p2.x, p2.y);
- BN_mul (E, E, F, ctx); // (x1 + y1)*(x2 + y2)
- BN_sub (E, E, x3);
- BN_sub (E, E, y3); // E = (x1 + y1)*(x2 + y2) - A - B
- BN_sub (F, z3, t3); // F = D - C
- BN_add (G, z3, t3); // G = D + C
- BN_add (H, y3, x3); // H = B + A
- BN_mod_mul (x3, E, F, q, ctx); // x3 = E*F
- BN_mod_mul (y3, G, H, q, ctx); // y3 = G*H
- BN_mod_mul (z3, F, G, q, ctx); // z3 = F*G
- BN_mod_mul (t3, E, H, q, ctx); // t3 = E*H
- BN_CTX_end (ctx);
- return EDDSAPoint {x3, y3, z3, t3};
- }
- void Ed25519::Double (EDDSAPoint& p, BN_CTX * ctx) const
- {
- BN_CTX_start (ctx);
- BIGNUM * x2 = BN_CTX_get (ctx), * y2 = BN_CTX_get (ctx), * z2 = BN_CTX_get (ctx), * t2 = BN_CTX_get (ctx);
- BN_sqr (x2, p.x, ctx); // x2 = A = x^2
- BN_sqr (y2, p.y, ctx); // y2 = B = y^2
- if (p.t)
- BN_sqr (t2, p.t, ctx); // t2 = t^2
- else
- {
- BN_mul (t2, p.x, p.y, ctx); // t = x*y
- BN_sqr (t2, t2, ctx); // t2 = t^2
- }
- BN_mul (t2, t2, d, ctx); // t2 = C = d*t^2
- if (p.z)
- BN_sqr (z2, p.z, ctx); // z2 = D = z^2
- else
- BN_one (z2); // z2 = 1
- BIGNUM * E = BN_CTX_get (ctx), * F = BN_CTX_get (ctx), * G = BN_CTX_get (ctx), * H = BN_CTX_get (ctx);
- // E = (x+y)*(x+y)-A-B = x^2+y^2+2xy-A-B = 2xy
- BN_mul (E, p.x, p.y, ctx);
- BN_lshift1 (E, E); // E =2*x*y
- BN_sub (F, z2, t2); // F = D - C
- BN_add (G, z2, t2); // G = D + C
- BN_add (H, y2, x2); // H = B + A
- BN_mod_mul (p.x, E, F, q, ctx); // x2 = E*F
- BN_mod_mul (p.y, G, H, q, ctx); // y2 = G*H
- if (!p.z) p.z = BN_new ();
- BN_mod_mul (p.z, F, G, q, ctx); // z2 = F*G
- if (!p.t) p.t = BN_new ();
- BN_mod_mul (p.t, E, H, q, ctx); // t2 = E*H
- BN_CTX_end (ctx);
- }
- EDDSAPoint Ed25519::Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const
- {
- BIGNUM * zero = BN_new (), * one = BN_new ();
- BN_zero (zero); BN_one (one);
- EDDSAPoint res {zero, one};
- if (!BN_is_zero (e))
- {
- int bitCount = BN_num_bits (e);
- for (int i = bitCount - 1; i >= 0; i--)
- {
- Double (res, ctx);
- if (BN_is_bit_set (e, i)) res = Sum (res, p, ctx);
- }
- }
- return res;
- }
- EDDSAPoint Ed25519::MulB (const uint8_t * e, BN_CTX * ctx) const // B*e, e is 32 bytes Little Endian
- {
- BIGNUM * zero = BN_new (), * one = BN_new ();
- BN_zero (zero); BN_one (one);
- EDDSAPoint res {zero, one};
- bool carry = false;
- for (int i = 0; i < 32; i++)
- {
- uint8_t x = e[i];
- if (carry)
- {
- if (x < 255)
- {
- x++;
- carry = false;
- }
- else
- x = 0;
- }
- if (x > 0)
- {
- if (x <= 128)
- res = Sum (res, Bi256[i][x-1], ctx);
- else
- {
- res = Sum (res, -Bi256[i][255-x], ctx); // -Bi[256-x]
- carry = true;
- }
- }
- }
- if (carry) res = Sum (res, Bi256Carry, ctx);
- return res;
- }
- EDDSAPoint Ed25519::Normalize (const EDDSAPoint& p, BN_CTX * ctx) const
- {
- if (p.z)
- {
- BIGNUM * x = BN_new (), * y = BN_new ();
- BN_mod_inverse (y, p.z, q, ctx);
- BN_mod_mul (x, p.x, y, q, ctx); // x = x/z
- BN_mod_mul (y, p.y, y, q, ctx); // y = y/z
- return EDDSAPoint{x, y};
- }
- else
- return EDDSAPoint{BN_dup (p.x), BN_dup (p.y)};
- }
- bool Ed25519::IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const
- {
- BN_CTX_start (ctx);
- BIGNUM * x2 = BN_CTX_get (ctx), * y2 = BN_CTX_get (ctx), * tmp = BN_CTX_get (ctx);
- BN_sqr (x2, p.x, ctx); // x^2
- BN_sqr (y2, p.y, ctx); // y^2
- // y^2 - x^2 - 1 - d*x^2*y^2
- BN_mul (tmp, d, x2, ctx);
- BN_mul (tmp, tmp, y2, ctx);
- BN_sub (tmp, y2, tmp);
- BN_sub (tmp, tmp, x2);
- BN_sub_word (tmp, 1);
- BN_mod (tmp, tmp, q, ctx); // % q
- bool ret = BN_is_zero (tmp);
- BN_CTX_end (ctx);
- return ret;
- }
- BIGNUM * Ed25519::RecoverX (const BIGNUM * y, BN_CTX * ctx) const
- {
- BN_CTX_start (ctx);
- BIGNUM * y2 = BN_CTX_get (ctx), * xx = BN_CTX_get (ctx);
- BN_sqr (y2, y, ctx); // y^2
- // xx = (y^2 -1)*inv(d*y^2 +1)
- BN_mul (xx, d, y2, ctx);
- BN_add_word (xx, 1);
- BN_mod_inverse (xx, xx, q, ctx);
- BN_sub_word (y2, 1);
- BN_mul (xx, y2, xx, ctx);
- // x = srqt(xx) = xx^(2^252-2)
- BIGNUM * x = BN_new ();
- BN_mod_exp (x, xx, two_252_2, q, ctx);
- // check (x^2 -xx) % q
- BN_sqr (y2, x, ctx);
- BN_mod_sub (y2, y2, xx, q, ctx);
- if (!BN_is_zero (y2))
- BN_mod_mul (x, x, I, q, ctx);
- if (BN_is_odd (x))
- BN_sub (x, q, x);
- BN_CTX_end (ctx);
- return x;
- }
- EDDSAPoint Ed25519::DecodePoint (const uint8_t * buf, BN_CTX * ctx) const
- {
- // buf is 32 bytes Little Endian, convert it to Big Endian
- uint8_t buf1[EDDSA25519_PUBLIC_KEY_LENGTH];
- for (size_t i = 0; i < EDDSA25519_PUBLIC_KEY_LENGTH/2; i++) // invert bytes
- {
- buf1[i] = buf[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i];
- buf1[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i] = buf[i];
- }
- bool isHighestBitSet = buf1[0] & 0x80;
- if (isHighestBitSet)
- buf1[0] &= 0x7f; // clear highest bit
- BIGNUM * y = BN_new ();
- BN_bin2bn (buf1, EDDSA25519_PUBLIC_KEY_LENGTH, y);
- BIGNUM * x = RecoverX (y, ctx);
- if (BN_is_bit_set (x, 0) != isHighestBitSet)
- BN_sub (x, q, x); // x = q - x
- BIGNUM * z = BN_new (), * t = BN_new ();
- BN_one (z); BN_mod_mul (t, x, y, q, ctx); // pre-calculate t
- EDDSAPoint p {x, y, z, t};
- if (!IsOnCurve (p, ctx))
- LogPrint (eLogError, "Decoded point is not on 25519");
- return p;
- }
- void Ed25519::EncodePoint (const EDDSAPoint& p, uint8_t * buf) const
- {
- EncodeBN (p.y, buf,EDDSA25519_PUBLIC_KEY_LENGTH);
- if (BN_is_bit_set (p.x, 0)) // highest bit
- buf[EDDSA25519_PUBLIC_KEY_LENGTH - 1] |= 0x80; // set highest bit
- }
- template<int len>
- BIGNUM * Ed25519::DecodeBN (const uint8_t * buf) const
- {
- // buf is Little Endian convert it to Big Endian
- uint8_t buf1[len];
- for (size_t i = 0; i < len/2; i++) // invert bytes
- {
- buf1[i] = buf[len -1 - i];
- buf1[len -1 - i] = buf[i];
- }
- BIGNUM * res = BN_new ();
- BN_bin2bn (buf1, len, res);
- return res;
- }
- void Ed25519::EncodeBN (const BIGNUM * bn, uint8_t * buf, size_t len) const
- {
- bn2buf (bn, buf, len);
- // To Little Endian
- for (size_t i = 0; i < len/2; i++) // invert bytes
- {
- uint8_t tmp = buf[i];
- buf[i] = buf[len -1 - i];
- buf[len -1 - i] = tmp;
- }
- }
- #if !OPENSSL_X25519
- BIGNUM * Ed25519::ScalarMul (const BIGNUM * u, const BIGNUM * k, BN_CTX * ctx) const
- {
- BN_CTX_start (ctx);
- auto x1 = BN_CTX_get (ctx); BN_copy (x1, u);
- auto x2 = BN_CTX_get (ctx); BN_one (x2);
- auto z2 = BN_CTX_get (ctx); BN_zero (z2);
- auto x3 = BN_CTX_get (ctx); BN_copy (x3, u);
- auto z3 = BN_CTX_get (ctx); BN_one (z3);
- auto c121666 = BN_CTX_get (ctx); BN_set_word (c121666, 121666);
- auto tmp0 = BN_CTX_get (ctx); auto tmp1 = BN_CTX_get (ctx);
- unsigned int swap = 0;
- auto bits = BN_num_bits (k);
- while(bits)
- {
- --bits;
- auto k_t = BN_is_bit_set(k, bits) ? 1 : 0;
- swap ^= k_t;
- if (swap)
- {
- std::swap (x2, x3);
- std::swap (z2, z3);
- }
- swap = k_t;
- BN_mod_sub(tmp0, x3, z3, q, ctx);
- BN_mod_sub(tmp1, x2, z2, q, ctx);
- BN_mod_add(x2, x2, z2, q, ctx);
- BN_mod_add(z2, x3, z3, q, ctx);
- BN_mod_mul(z3, tmp0, x2, q, ctx);
- BN_mod_mul(z2, z2, tmp1, q, ctx);
- BN_mod_sqr(tmp0, tmp1, q, ctx);
- BN_mod_sqr(tmp1, x2, q, ctx);
- BN_mod_add(x3, z3, z2, q, ctx);
- BN_mod_sub(z2, z3, z2, q, ctx);
- BN_mod_mul(x2, tmp1, tmp0, q, ctx);
- BN_mod_sub(tmp1, tmp1, tmp0, q, ctx);
- BN_mod_sqr(z2, z2, q, ctx);
- BN_mod_mul(z3, tmp1, c121666, q, ctx);
- BN_mod_sqr(x3, x3, q, ctx);
- BN_mod_add(tmp0, tmp0, z3, q, ctx);
- BN_mod_mul(z3, x1, z2, q, ctx);
- BN_mod_mul(z2, tmp1, tmp0, q, ctx);
- }
- if (swap)
- {
- std::swap (x2, x3);
- std::swap (z2, z3);
- }
- BN_mod_inverse (z2, z2, q, ctx);
- BIGNUM * res = BN_new (); // not from ctx
- BN_mod_mul(res, x2, z2, q, ctx);
- BN_CTX_end (ctx);
- return res;
- }
- void Ed25519::ScalarMul (const uint8_t * p, const uint8_t * e, uint8_t * buf, BN_CTX * ctx) const
- {
- BIGNUM * p1 = DecodeBN<32> (p);
- uint8_t k[32];
- memcpy (k, e, 32);
- k[0] &= 248; k[31] &= 127; k[31] |= 64;
- BIGNUM * n = DecodeBN<32> (k);
- BIGNUM * q1 = ScalarMul (p1, n, ctx);
- EncodeBN (q1, buf, 32);
- BN_free (p1); BN_free (n); BN_free (q1);
- }
- void Ed25519::ScalarMulB (const uint8_t * e, uint8_t * buf, BN_CTX * ctx) const
- {
- BIGNUM *p1 = BN_new (); BN_set_word (p1, 9);
- uint8_t k[32];
- memcpy (k, e, 32);
- k[0] &= 248; k[31] &= 127; k[31] |= 64;
- BIGNUM * n = DecodeBN<32> (k);
- BIGNUM * q1 = ScalarMul (p1, n, ctx);
- EncodeBN (q1, buf, 32);
- BN_free (p1); BN_free (n); BN_free (q1);
- }
- #endif
- void Ed25519::BlindPublicKey (const uint8_t * pub, const uint8_t * seed, uint8_t * blinded)
- {
- BN_CTX * ctx = BN_CTX_new ();
- // calculate alpha = seed mod l
- BIGNUM * alpha = DecodeBN<64> (seed); // seed is in Little Endian
- BN_mod (alpha, alpha, l, ctx); // % l
- uint8_t priv[32];
- EncodeBN (alpha, priv, 32); // back to Little Endian
- BN_free (alpha);
- // A' = BLIND_PUBKEY(A, alpha) = A + DERIVE_PUBLIC(alpha)
- auto A1 = Sum (DecodePublicKey (pub, ctx), MulB (priv, ctx), ctx); // pub + B*alpha
- EncodePublicKey (A1, blinded, ctx);
- BN_CTX_free (ctx);
- }
- void Ed25519::BlindPrivateKey (const uint8_t * priv, const uint8_t * seed, uint8_t * blindedPriv, uint8_t * blindedPub)
- {
- BN_CTX * ctx = BN_CTX_new ();
- // calculate alpha = seed mod l
- BIGNUM * alpha = DecodeBN<64> (seed); // seed is in Little Endian
- BN_mod (alpha, alpha, l, ctx); // % l
- BIGNUM * p = DecodeBN<32> (priv); // priv is in Little Endian
- BN_add (alpha, alpha, p); // alpha = alpha + priv
- // a' = BLIND_PRIVKEY(a, alpha) = (a + alpha) mod L
- BN_mod (alpha, alpha, l, ctx); // % l
- EncodeBN (alpha, blindedPriv, 32);
- // A' = DERIVE_PUBLIC(a')
- auto A1 = MulB (blindedPriv, ctx);
- EncodePublicKey (A1, blindedPub, ctx);
- BN_free (alpha); BN_free (p);
- BN_CTX_free (ctx);
- }
- void Ed25519::ExpandPrivateKey (const uint8_t * key, uint8_t * expandedKey)
- {
- SHA512 (key, EDDSA25519_PRIVATE_KEY_LENGTH, expandedKey);
- expandedKey[0] &= 0xF8; // drop last 3 bits
- expandedKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] &= 0x3F; // drop first 2 bits
- expandedKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit
- }
- void Ed25519::CreateRedDSAPrivateKey (uint8_t * priv)
- {
- uint8_t seed[32];
- RAND_bytes (seed, 32);
- BIGNUM * p = DecodeBN<32> (seed);
- BN_CTX * ctx = BN_CTX_new ();
- BN_mod (p, p, l, ctx); // % l
- EncodeBN (p, priv, 32);
- BN_CTX_free (ctx);
- BN_free (p);
- }
-
- static std::unique_ptr<Ed25519> g_Ed25519;
- std::unique_ptr<Ed25519>& GetEd25519 ()
- {
- if (!g_Ed25519)
- {
- auto c = new Ed25519();
- if (!g_Ed25519) // make sure it was not created already
- g_Ed25519.reset (c);
- else
- delete c;
- }
- return g_Ed25519;
- }
- }
- }
|