123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- /* adler32.c -- compute the Adler-32 checksum of a data stream
- * Copyright (C) 1995-2011, 2016 Mark Adler
- * For conditions of distribution and use, see copyright notice in zlib.h
- */
- /* @(#) $Id$ */
- #include "zutil.h"
- local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
- #define BASE 65521U /* largest prime smaller than 65536 */
- #define NMAX 5552
- /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
- #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
- #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
- #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
- #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
- #define DO16(buf) DO8(buf,0); DO8(buf,8);
- /* use NO_DIVIDE if your processor does not do division in hardware --
- try it both ways to see which is faster */
- #ifdef NO_DIVIDE
- /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
- (thank you to John Reiser for pointing this out) */
- # define CHOP(a) \
- do { \
- unsigned long tmp = a >> 16; \
- a &= 0xffffUL; \
- a += (tmp << 4) - tmp; \
- } while (0)
- # define MOD28(a) \
- do { \
- CHOP(a); \
- if (a >= BASE) a -= BASE; \
- } while (0)
- # define MOD(a) \
- do { \
- CHOP(a); \
- MOD28(a); \
- } while (0)
- # define MOD63(a) \
- do { /* this assumes a is not negative */ \
- z_off64_t tmp = a >> 32; \
- a &= 0xffffffffL; \
- a += (tmp << 8) - (tmp << 5) + tmp; \
- tmp = a >> 16; \
- a &= 0xffffL; \
- a += (tmp << 4) - tmp; \
- tmp = a >> 16; \
- a &= 0xffffL; \
- a += (tmp << 4) - tmp; \
- if (a >= BASE) a -= BASE; \
- } while (0)
- #else
- # define MOD(a) a %= BASE
- # define MOD28(a) a %= BASE
- # define MOD63(a) a %= BASE
- #endif
- /* ========================================================================= */
- uLong ZEXPORT adler32_z(adler, buf, len)
- uLong adler;
- const Bytef *buf;
- z_size_t len;
- {
- unsigned long sum2;
- unsigned n;
- /* split Adler-32 into component sums */
- sum2 = (adler >> 16) & 0xffff;
- adler &= 0xffff;
- /* in case user likes doing a byte at a time, keep it fast */
- if (len == 1) {
- adler += buf[0];
- if (adler >= BASE)
- adler -= BASE;
- sum2 += adler;
- if (sum2 >= BASE)
- sum2 -= BASE;
- return adler | (sum2 << 16);
- }
- /* initial Adler-32 value (deferred check for len == 1 speed) */
- if (buf == Z_NULL)
- return 1L;
- /* in case short lengths are provided, keep it somewhat fast */
- if (len < 16) {
- while (len--) {
- adler += *buf++;
- sum2 += adler;
- }
- if (adler >= BASE)
- adler -= BASE;
- MOD28(sum2); /* only added so many BASE's */
- return adler | (sum2 << 16);
- }
- /* do length NMAX blocks -- requires just one modulo operation */
- while (len >= NMAX) {
- len -= NMAX;
- n = NMAX / 16; /* NMAX is divisible by 16 */
- do {
- DO16(buf); /* 16 sums unrolled */
- buf += 16;
- } while (--n);
- MOD(adler);
- MOD(sum2);
- }
- /* do remaining bytes (less than NMAX, still just one modulo) */
- if (len) { /* avoid modulos if none remaining */
- while (len >= 16) {
- len -= 16;
- DO16(buf);
- buf += 16;
- }
- while (len--) {
- adler += *buf++;
- sum2 += adler;
- }
- MOD(adler);
- MOD(sum2);
- }
- /* return recombined sums */
- return adler | (sum2 << 16);
- }
- /* ========================================================================= */
- uLong ZEXPORT adler32(adler, buf, len)
- uLong adler;
- const Bytef *buf;
- uInt len;
- {
- return adler32_z(adler, buf, len);
- }
- /* ========================================================================= */
- local uLong adler32_combine_(adler1, adler2, len2)
- uLong adler1;
- uLong adler2;
- z_off64_t len2;
- {
- unsigned long sum1;
- unsigned long sum2;
- unsigned rem;
- /* for negative len, return invalid adler32 as a clue for debugging */
- if (len2 < 0)
- return 0xffffffffUL;
- /* the derivation of this formula is left as an exercise for the reader */
- MOD63(len2); /* assumes len2 >= 0 */
- rem = (unsigned)len2;
- sum1 = adler1 & 0xffff;
- sum2 = rem * sum1;
- MOD(sum2);
- sum1 += (adler2 & 0xffff) + BASE - 1;
- sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
- if (sum1 >= BASE) sum1 -= BASE;
- if (sum1 >= BASE) sum1 -= BASE;
- if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
- if (sum2 >= BASE) sum2 -= BASE;
- return sum1 | (sum2 << 16);
- }
- /* ========================================================================= */
- uLong ZEXPORT adler32_combine(adler1, adler2, len2)
- uLong adler1;
- uLong adler2;
- z_off_t len2;
- {
- return adler32_combine_(adler1, adler2, len2);
- }
- uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
- uLong adler1;
- uLong adler2;
- z_off64_t len2;
- {
- return adler32_combine_(adler1, adler2, len2);
- }
|