123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416 |
- /*
- * jfdctint.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * Modification developed 2003-2018 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a slow-but-accurate integer implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- *
- * We also provide FDCT routines with various input sample block sizes for
- * direct resolution reduction or enlargement and for direct resolving the
- * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
- * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.
- *
- * For N<8 we fill the remaining block coefficients with zero.
- * For N>8 we apply a partial N-point FDCT on the input samples, computing
- * just the lower 8 frequency coefficients and discarding the rest.
- *
- * We must scale the output coefficients of the N-point FDCT appropriately
- * to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling
- * is folded into the constant multipliers (pass 2) and/or final/initial
- * shifting.
- *
- * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
- * since there would be too many additional constants to pre-calculate.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- #ifdef DCT_ISLOW_SUPPORTED
- /*
- * This module is specialized to the case DCTSIZE = 8.
- */
- #if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
- #endif
- /*
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
- * larger than the true DCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D DCT,
- * because the y0 and y4 outputs need not be divided by sqrt(N).
- * In the IJG code, this factor of 8 is removed by the quantization step
- * (in jcdctmgr.c), NOT in this module.
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (For 12-bit sample data, the intermediate
- * array is INT32 anyway.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
- #if BITS_IN_JSAMPLE == 8
- #define CONST_BITS 13
- #define PASS1_BITS 2
- #else
- #define CONST_BITS 13
- #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
- #endif
- /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
- #if CONST_BITS == 13
- #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
- #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
- #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
- #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
- #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
- #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
- #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
- #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
- #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
- #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
- #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
- #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
- #else
- #define FIX_0_298631336 FIX(0.298631336)
- #define FIX_0_390180644 FIX(0.390180644)
- #define FIX_0_541196100 FIX(0.541196100)
- #define FIX_0_765366865 FIX(0.765366865)
- #define FIX_0_899976223 FIX(0.899976223)
- #define FIX_1_175875602 FIX(1.175875602)
- #define FIX_1_501321110 FIX(1.501321110)
- #define FIX_1_847759065 FIX(1.847759065)
- #define FIX_1_961570560 FIX(1.961570560)
- #define FIX_2_053119869 FIX(2.053119869)
- #define FIX_2_562915447 FIX(2.562915447)
- #define FIX_3_072711026 FIX(3.072711026)
- #endif
- /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
- #if BITS_IN_JSAMPLE == 8
- #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
- #else
- #define MULTIPLY(var,const) ((var) * (const))
- #endif
- /*
- * Perform the forward DCT on one block of samples.
- */
- GLOBAL(void)
- jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * cK represents sqrt(2) * cos(K*pi/16).
- */
- dataptr = data;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "c1" should be "c6".
- */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
- tmp10 = tmp0 + tmp3;
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
- dataptr[2] = (DCTELEM)
- RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-1);
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
- tmp12 += z1;
- tmp13 += z1;
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp0 += z1 + tmp12;
- tmp3 += z1 + tmp13;
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp1 += z1 + tmp13;
- tmp2 += z1 + tmp12;
- dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * cK represents sqrt(2) * cos(K*pi/16).
- */
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "c1" should be "c6".
- */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- /* Add fudge factor here for final descale. */
- tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS+PASS1_BITS-1);
- dataptr[DCTSIZE*2] = (DCTELEM)
- RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
- CONST_BITS+PASS1_BITS);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS+PASS1_BITS-1);
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
- tmp12 += z1;
- tmp13 += z1;
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp0 += z1 + tmp12;
- tmp3 += z1 + tmp13;
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp1 += z1 + tmp13;
- tmp2 += z1 + tmp12;
- dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- #ifdef DCT_SCALING_SUPPORTED
- /*
- * Perform the forward DCT on a 7x7 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12;
- INT32 z1, z2, z3;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * cK represents sqrt(2) * cos(K*pi/14).
- */
- dataptr = data;
- for (ctr = 0; ctr < 7; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
- tmp3 = GETJSAMPLE(elemptr[3]);
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
- z1 = tmp0 + tmp2;
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
- tmp3 += tmp3;
- z1 -= tmp3;
- z1 -= tmp3;
- z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */
- z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */
- dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
- z1 -= z2;
- z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */
- dataptr[4] = (DCTELEM)
- DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
- tmp1 += tmp2;
- tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */
- tmp0 += tmp3;
- tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/7)**2 = 64/49, which we fold
- * into the constant multipliers:
- * cK now represents sqrt(2) * cos(K*pi/14) * 64/49.
- */
- dataptr = data;
- for (ctr = 0; ctr < 7; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
- tmp3 = dataptr[DCTSIZE*3];
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
- tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
- z1 = tmp0 + tmp2;
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
- CONST_BITS+PASS1_BITS);
- tmp3 += tmp3;
- z1 -= tmp3;
- z1 -= tmp3;
- z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */
- z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS);
- z1 -= z2;
- z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS);
- /* Odd part */
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
- tmp1 += tmp2;
- tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */
- tmp0 += tmp3;
- tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 6x6 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2;
- INT32 tmp10, tmp11, tmp12;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * cK represents sqrt(2) * cos(K*pi/12).
- */
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
- tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
- CONST_BITS-PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
- CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
- CONST_BITS-PASS1_BITS);
- dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
- dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
- dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/6)**2 = 16/9, which we fold
- * into the constant multipliers:
- * cK now represents sqrt(2) * cos(K*pi/12) * 16/9.
- */
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
- tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
- CONST_BITS+PASS1_BITS);
- /* Odd part */
- tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 5x5 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2;
- INT32 tmp10, tmp11;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * We scale the results further by 2 as part of output adaption
- * scaling for different DCT size.
- * cK represents sqrt(2) * cos(K*pi/10).
- */
- dataptr = data;
- for (ctr = 0; ctr < 5; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
- tmp2 = GETJSAMPLE(elemptr[2]);
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1));
- tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */
- tmp10 -= tmp2 << 2;
- tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */
- dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1);
- dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1);
- /* Odd part */
- tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */
- dataptr[1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
- CONST_BITS-PASS1_BITS-1);
- dataptr[3] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
- CONST_BITS-PASS1_BITS-1);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/5)**2 = 64/25, which we partially
- * fold into the constant multipliers (other part was done in pass 1):
- * cK now represents sqrt(2) * cos(K*pi/10) * 32/25.
- */
- dataptr = data;
- for (ctr = 0; ctr < 5; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
- tmp2 = dataptr[DCTSIZE*2];
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */
- CONST_BITS+PASS1_BITS);
- tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */
- tmp10 -= tmp2 << 2;
- tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
- /* Odd part */
- tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 4x4 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1;
- INT32 tmp10, tmp11;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * We must also scale the output by (8/4)**2 = 2**2, which we add here.
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
- */
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2));
- dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2));
- /* Odd part */
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-3);
- dataptr[1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS-2);
- dataptr[3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS-2);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
- */
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- /* Even part */
- /* Add fudge factor here for final descale. */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
- /* Odd part */
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
- dataptr[DCTSIZE*1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 3x3 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * We scale the results further by 2**2 as part of output adaption
- * scaling for different DCT size.
- * cK represents sqrt(2) * cos(K*pi/6).
- */
- dataptr = data;
- for (ctr = 0; ctr < 3; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
- tmp1 = GETJSAMPLE(elemptr[1]);
- tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2));
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
- CONST_BITS-PASS1_BITS-2);
- /* Odd part */
- dataptr[1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */
- CONST_BITS-PASS1_BITS-2);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/3)**2 = 64/9, which we partially
- * fold into the constant multipliers (other part was done in pass 1):
- * cK now represents sqrt(2) * cos(K*pi/6) * 16/9.
- */
- dataptr = data;
- for (ctr = 0; ctr < 3; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
- tmp1 = dataptr[DCTSIZE*1];
- tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
- CONST_BITS+PASS1_BITS);
- /* Odd part */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 2x2 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- DCTELEM tmp0, tmp1, tmp2, tmp3;
- JSAMPROW elemptr;
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT.
- */
- /* Row 0 */
- elemptr = sample_data[0] + start_col;
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
- tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
- /* Row 1 */
- elemptr = sample_data[1] + start_col;
- tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
- tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/2)**2 = 2**4.
- */
- /* Column 0 */
- /* Apply unsigned->signed conversion. */
- data[DCTSIZE*0] = (tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4;
- data[DCTSIZE*1] = (tmp0 - tmp2) << 4;
- /* Column 1 */
- data[DCTSIZE*0+1] = (tmp1 + tmp3) << 4;
- data[DCTSIZE*1+1] = (tmp1 - tmp3) << 4;
- }
- /*
- * Perform the forward DCT on a 1x1 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- DCTELEM dcval;
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- dcval = GETJSAMPLE(sample_data[0][start_col]);
- /* We leave the result scaled up by an overall factor of 8. */
- /* We must also scale the output by (8/1)**2 = 2**6. */
- /* Apply unsigned->signed conversion. */
- data[0] = (dcval - CENTERJSAMPLE) << 6;
- }
- /*
- * Perform the forward DCT on a 9x9 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2;
- DCTELEM workspace[8];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * we scale the results further by 2 as part of output adaption
- * scaling for different DCT size.
- * cK represents sqrt(2) * cos(K*pi/18).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]);
- tmp4 = GETJSAMPLE(elemptr[4]);
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]);
- tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]);
- z1 = tmp0 + tmp2 + tmp3;
- z2 = tmp1 + tmp4;
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1);
- dataptr[6] = (DCTELEM)
- DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */
- CONST_BITS-1);
- z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */
- z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */
- + z1 + z2, CONST_BITS-1);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */
- + z1 - z2, CONST_BITS-1);
- /* Odd part */
- dataptr[3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */
- CONST_BITS-1);
- tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */
- tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */
- tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */
- dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1);
- tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */
- dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1);
- dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 9)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/9)**2 = 64/81, which we partially
- * fold into the constant multipliers and final/initial shifting:
- * cK now represents sqrt(2) * cos(K*pi/18) * 128/81.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5];
- tmp4 = dataptr[DCTSIZE*4];
- tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7];
- tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6];
- tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5];
- z1 = tmp0 + tmp2 + tmp3;
- z2 = tmp1 + tmp4;
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */
- CONST_BITS+2);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */
- CONST_BITS+2);
- z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */
- z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */
- + z1 + z2, CONST_BITS+2);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */
- + z1 - z2, CONST_BITS+2);
- /* Odd part */
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */
- CONST_BITS+2);
- tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */
- tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */
- tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2);
- tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM)
- DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 10x10 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- DCTELEM workspace[8*2];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * we scale the results further by 2 as part of output adaption
- * scaling for different DCT size.
- * cK represents sqrt(2) * cos(K*pi/20).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
- tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
- tmp10 = tmp0 + tmp4;
- tmp13 = tmp0 - tmp4;
- tmp11 = tmp1 + tmp3;
- tmp14 = tmp1 - tmp3;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1);
- tmp12 += tmp12;
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
- MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */
- CONST_BITS-1);
- tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */
- CONST_BITS-1);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */
- CONST_BITS-1);
- /* Odd part */
- tmp10 = tmp0 + tmp4;
- tmp11 = tmp1 - tmp3;
- dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1);
- tmp2 <<= CONST_BITS;
- dataptr[1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */
- MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */
- MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */
- MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */
- CONST_BITS-1);
- tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */
- MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */
- tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */
- (tmp11 << (CONST_BITS - 1)) - tmp2;
- dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1);
- dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 10)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/10)**2 = 16/25, which we partially
- * fold into the constant multipliers and final/initial shifting:
- * cK now represents sqrt(2) * cos(K*pi/20) * 32/25.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
- tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
- tmp10 = tmp0 + tmp4;
- tmp13 = tmp0 - tmp4;
- tmp11 = tmp1 + tmp3;
- tmp14 = tmp1 - tmp3;
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
- tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
- CONST_BITS+2);
- tmp12 += tmp12;
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
- MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */
- CONST_BITS+2);
- tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */
- CONST_BITS+2);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */
- CONST_BITS+2);
- /* Odd part */
- tmp10 = tmp0 + tmp4;
- tmp11 = tmp1 - tmp3;
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */
- CONST_BITS+2);
- tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */
- MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */
- MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */
- MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */
- CONST_BITS+2);
- tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */
- MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */
- tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */
- MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on an 11x11 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- INT32 z1, z2, z3;
- DCTELEM workspace[8*3];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * we scale the results further by 2 as part of output adaption
- * scaling for different DCT size.
- * cK represents sqrt(2) * cos(K*pi/22).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]);
- tmp5 = GETJSAMPLE(elemptr[5]);
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]);
- tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]);
- tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1);
- tmp5 += tmp5;
- tmp0 -= tmp5;
- tmp1 -= tmp5;
- tmp2 -= tmp5;
- tmp3 -= tmp5;
- tmp4 -= tmp5;
- z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */
- MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */
- z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */
- z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */
- dataptr[2] = (DCTELEM)
- DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */
- - MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */
- CONST_BITS-1);
- dataptr[4] = (DCTELEM)
- DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */
- - MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */
- + MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */
- CONST_BITS-1);
- dataptr[6] = (DCTELEM)
- DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */
- - MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */
- CONST_BITS-1);
- /* Odd part */
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */
- tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */
- tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */
- tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */
- + MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */
- tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */
- tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */
- tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */
- - MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */
- tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */
- tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */
- + MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */
- tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */
- - MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1);
- dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 11)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/11)**2 = 64/121, which we partially
- * fold into the constant multipliers and final/initial shifting:
- * cK now represents sqrt(2) * cos(K*pi/22) * 128/121.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6];
- tmp5 = dataptr[DCTSIZE*5];
- tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2];
- tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1];
- tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0];
- tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7];
- tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5,
- FIX(1.057851240)), /* 128/121 */
- CONST_BITS+2);
- tmp5 += tmp5;
- tmp0 -= tmp5;
- tmp1 -= tmp5;
- tmp2 -= tmp5;
- tmp3 -= tmp5;
- tmp4 -= tmp5;
- z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */
- MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */
- z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */
- z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */
- - MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */
- CONST_BITS+2);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */
- - MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */
- + MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */
- CONST_BITS+2);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */
- - MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */
- CONST_BITS+2);
- /* Odd part */
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */
- tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */
- tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */
- tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */
- + MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */
- tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */
- tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */
- tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */
- - MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */
- tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */
- tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */
- + MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */
- tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */
- - MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 12x12 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- DCTELEM workspace[8*4];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT.
- * cK represents sqrt(2) * cos(K*pi/24).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
- tmp10 = tmp0 + tmp5;
- tmp13 = tmp0 - tmp5;
- tmp11 = tmp1 + tmp4;
- tmp14 = tmp1 - tmp4;
- tmp12 = tmp2 + tmp3;
- tmp15 = tmp2 - tmp3;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE);
- dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
- CONST_BITS);
- dataptr[2] = (DCTELEM)
- DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
- CONST_BITS);
- /* Odd part */
- tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */
- tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */
- tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */
- tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
- + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */
- tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
- tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
- + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */
- tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
- - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */
- tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
- - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */
- dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 12)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/12)**2 = 4/9, which we partially
- * fold into the constant multipliers and final shifting:
- * cK now represents sqrt(2) * cos(K*pi/24) * 8/9.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
- tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
- tmp10 = tmp0 + tmp5;
- tmp13 = tmp0 - tmp5;
- tmp11 = tmp1 + tmp4;
- tmp14 = tmp1 - tmp4;
- tmp12 = tmp2 + tmp3;
- tmp15 = tmp2 - tmp3;
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
- tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
- tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
- CONST_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
- CONST_BITS+1);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */
- CONST_BITS+1);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */
- MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */
- CONST_BITS+1);
- /* Odd part */
- tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */
- tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */
- tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */
- tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
- + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */
- tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
- tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
- + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */
- tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
- - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */
- tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
- - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 13x13 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- INT32 z1, z2;
- DCTELEM workspace[8*5];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT.
- * cK represents sqrt(2) * cos(K*pi/26).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]);
- tmp6 = GETJSAMPLE(elemptr[6]);
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]);
- tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]);
- tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]);
- tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE);
- tmp6 += tmp6;
- tmp0 -= tmp6;
- tmp1 -= tmp6;
- tmp2 -= tmp6;
- tmp3 -= tmp6;
- tmp4 -= tmp6;
- tmp5 -= tmp6;
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */
- MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */
- MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */
- MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */
- MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */
- MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */
- CONST_BITS);
- z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */
- MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */
- MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */
- z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */
- MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */
- MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */
- dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS);
- dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS);
- /* Odd part */
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */
- tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */
- tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */
- MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */
- tmp0 = tmp1 + tmp2 + tmp3 -
- MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */
- MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */
- tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */
- MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */
- tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */
- tmp1 += tmp4 + tmp5 +
- MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */
- MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */
- tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */
- tmp2 += tmp4 + tmp6 -
- MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */
- MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */
- tmp3 += tmp5 + tmp6 +
- MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */
- MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 13)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/13)**2 = 64/169, which we partially
- * fold into the constant multipliers and final shifting:
- * cK now represents sqrt(2) * cos(K*pi/26) * 128/169.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0];
- tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7];
- tmp6 = dataptr[DCTSIZE*6];
- tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4];
- tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3];
- tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2];
- tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1];
- tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0];
- tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6,
- FIX(0.757396450)), /* 128/169 */
- CONST_BITS+1);
- tmp6 += tmp6;
- tmp0 -= tmp6;
- tmp1 -= tmp6;
- tmp2 -= tmp6;
- tmp3 -= tmp6;
- tmp4 -= tmp6;
- tmp5 -= tmp6;
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */
- MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */
- MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */
- MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */
- MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */
- MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */
- CONST_BITS+1);
- z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */
- MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */
- MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */
- z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */
- MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */
- MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1);
- /* Odd part */
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */
- tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */
- tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */
- MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */
- tmp0 = tmp1 + tmp2 + tmp3 -
- MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */
- MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */
- tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */
- MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */
- tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */
- tmp1 += tmp4 + tmp5 +
- MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */
- MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */
- tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */
- tmp2 += tmp4 + tmp6 -
- MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */
- MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */
- tmp3 += tmp5 + tmp6 +
- MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */
- MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 14x14 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- DCTELEM workspace[8*6];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT.
- * cK represents sqrt(2) * cos(K*pi/28).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
- tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
- tmp10 = tmp0 + tmp6;
- tmp14 = tmp0 - tmp6;
- tmp11 = tmp1 + tmp5;
- tmp15 = tmp1 - tmp5;
- tmp12 = tmp2 + tmp4;
- tmp16 = tmp2 - tmp4;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
- tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE);
- tmp13 += tmp13;
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
- MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
- MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */
- CONST_BITS);
- tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */
- + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */
- CONST_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */
- - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */
- CONST_BITS);
- /* Odd part */
- tmp10 = tmp1 + tmp2;
- tmp11 = tmp5 - tmp4;
- dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6);
- tmp3 <<= CONST_BITS;
- tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */
- tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */
- tmp10 += tmp11 - tmp3;
- tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */
- MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */
- dataptr[5] = (DCTELEM)
- DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
- + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */
- CONST_BITS);
- tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */
- MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */
- dataptr[3] = (DCTELEM)
- DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
- - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */
- CONST_BITS);
- dataptr[1] = (DCTELEM)
- DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
- MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */
- CONST_BITS);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 14)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/14)**2 = 16/49, which we partially
- * fold into the constant multipliers and final shifting:
- * cK now represents sqrt(2) * cos(K*pi/28) * 32/49.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
- tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
- tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
- tmp10 = tmp0 + tmp6;
- tmp14 = tmp0 - tmp6;
- tmp11 = tmp1 + tmp5;
- tmp15 = tmp1 - tmp5;
- tmp12 = tmp2 + tmp4;
- tmp16 = tmp2 - tmp4;
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
- tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
- tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
- tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
- FIX(0.653061224)), /* 32/49 */
- CONST_BITS+1);
- tmp13 += tmp13;
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
- MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
- MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */
- CONST_BITS+1);
- tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */
- + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */
- CONST_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */
- - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */
- CONST_BITS+1);
- /* Odd part */
- tmp10 = tmp1 + tmp2;
- tmp11 = tmp5 - tmp4;
- dataptr[DCTSIZE*7] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
- FIX(0.653061224)), /* 32/49 */
- CONST_BITS+1);
- tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */
- tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */
- tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */
- tmp10 += tmp11 - tmp3;
- tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */
- MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
- + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */
- CONST_BITS+1);
- tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */
- MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
- - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */
- CONST_BITS+1);
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp11 + tmp12 + tmp3
- - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */
- - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */
- CONST_BITS+1);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 15x15 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 z1, z2, z3;
- DCTELEM workspace[8*7];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT.
- * cK represents sqrt(2) * cos(K*pi/30).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]);
- tmp7 = GETJSAMPLE(elemptr[7]);
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]);
- tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]);
- tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]);
- tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]);
- tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]);
- z1 = tmp0 + tmp4 + tmp5;
- z2 = tmp1 + tmp3 + tmp6;
- z3 = tmp2 + tmp7;
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE);
- z3 += z3;
- dataptr[6] = (DCTELEM)
- DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */
- MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */
- CONST_BITS);
- tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
- z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */
- MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */
- z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */
- MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */
- z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */
- MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */
- MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */
- dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS);
- dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS);
- /* Odd part */
- tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
- FIX(1.224744871)); /* c5 */
- tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */
- MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */
- tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */
- tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */
- MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */
- MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */
- tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */
- MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */
- MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */
- tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */
- MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */
- MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 15)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/15)**2 = 64/225, which we partially
- * fold into the constant multipliers and final shifting:
- * cK now represents sqrt(2) * cos(K*pi/30) * 256/225.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1];
- tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0];
- tmp7 = dataptr[DCTSIZE*7];
- tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6];
- tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5];
- tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4];
- tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3];
- tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2];
- tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1];
- tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0];
- z1 = tmp0 + tmp4 + tmp5;
- z2 = tmp1 + tmp3 + tmp6;
- z3 = tmp2 + tmp7;
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */
- CONST_BITS+2);
- z3 += z3;
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */
- MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */
- CONST_BITS+2);
- tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
- z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */
- MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */
- z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */
- MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */
- z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */
- MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */
- MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2);
- /* Odd part */
- tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
- FIX(1.393487498)); /* c5 */
- tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */
- MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */
- tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */
- tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */
- MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */
- MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */
- tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */
- MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */
- MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */
- tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */
- MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */
- MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 16x16 sample block.
- */
- GLOBAL(void)
- jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
- DCTELEM workspace[DCTSIZE2];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * cK represents sqrt(2) * cos(K*pi/32).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
- tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
- tmp10 = tmp0 + tmp7;
- tmp14 = tmp0 - tmp7;
- tmp11 = tmp1 + tmp6;
- tmp15 = tmp1 - tmp6;
- tmp12 = tmp2 + tmp5;
- tmp16 = tmp2 - tmp5;
- tmp13 = tmp3 + tmp4;
- tmp17 = tmp3 - tmp4;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
- tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
- tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
- MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
- CONST_BITS-PASS1_BITS);
- tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
- MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
- + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
- - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
- CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
- MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
- MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
- MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
- tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
- MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
- tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
- MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
- tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
- MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
- MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
- tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
- - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
- tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
- + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
- tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
- + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
- dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == DCTSIZE * 2)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/16)**2 = 1/2**2.
- * cK represents sqrt(2) * cos(K*pi/32).
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
- tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
- tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
- tmp10 = tmp0 + tmp7;
- tmp14 = tmp0 - tmp7;
- tmp11 = tmp1 + tmp6;
- tmp15 = tmp1 - tmp6;
- tmp12 = tmp2 + tmp5;
- tmp16 = tmp2 - tmp5;
- tmp13 = tmp3 + tmp4;
- tmp17 = tmp3 - tmp4;
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
- tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
- tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
- tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
- MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
- CONST_BITS+PASS1_BITS+2);
- tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
- MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
- + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */
- CONST_BITS+PASS1_BITS+2);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
- - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
- CONST_BITS+PASS1_BITS+2);
- /* Odd part */
- tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
- MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
- MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
- MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
- tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
- MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
- tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
- MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
- tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
- MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
- MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
- tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
- - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
- tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
- + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
- tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
- + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 16x8 sample block.
- *
- * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
- INT32 z1;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
- */
- dataptr = data;
- ctr = 0;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
- tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
- tmp10 = tmp0 + tmp7;
- tmp14 = tmp0 - tmp7;
- tmp11 = tmp1 + tmp6;
- tmp15 = tmp1 - tmp6;
- tmp12 = tmp2 + tmp5;
- tmp16 = tmp2 - tmp5;
- tmp13 = tmp3 + tmp4;
- tmp17 = tmp3 - tmp4;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
- tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
- tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
- MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
- CONST_BITS-PASS1_BITS);
- tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
- MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
- + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
- - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
- CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
- MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
- MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
- MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
- tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
- MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
- tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
- MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
- tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
- MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
- MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
- tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
- - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
- tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
- + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
- tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
- + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
- dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by 8/16 = 1/2.
- * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- */
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "c1" should be "c6".
- */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- tmp10 = tmp0 + tmp3;
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
- dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1);
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
- CONST_BITS+PASS1_BITS+1);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
- tmp12 += z1;
- tmp13 += z1;
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp0 += z1 + tmp12;
- tmp3 += z1 + tmp13;
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp1 += z1 + tmp13;
- tmp2 += z1 + tmp12;
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+PASS1_BITS+1);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 14x7 sample block.
- *
- * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 z1, z2, z3;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Zero bottom row of output coefficient block. */
- MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
- */
- dataptr = data;
- for (ctr = 0; ctr < 7; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
- tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
- tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
- tmp10 = tmp0 + tmp6;
- tmp14 = tmp0 - tmp6;
- tmp11 = tmp1 + tmp5;
- tmp15 = tmp1 - tmp5;
- tmp12 = tmp2 + tmp4;
- tmp16 = tmp2 - tmp4;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
- tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS);
- tmp13 += tmp13;
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
- MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
- MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */
- CONST_BITS-PASS1_BITS);
- tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */
- + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */
- - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */
- CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp10 = tmp1 + tmp2;
- tmp11 = tmp5 - tmp4;
- dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS);
- tmp3 <<= CONST_BITS;
- tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */
- tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */
- tmp10 += tmp11 - tmp3;
- tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */
- MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */
- dataptr[5] = (DCTELEM)
- DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
- + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */
- CONST_BITS-PASS1_BITS);
- tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */
- MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */
- dataptr[3] = (DCTELEM)
- DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
- - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */
- CONST_BITS-PASS1_BITS);
- dataptr[1] = (DCTELEM)
- DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
- MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */
- CONST_BITS-PASS1_BITS);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/14)*(8/7) = 32/49, which we
- * partially fold into the constant multipliers and final shifting:
- * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49.
- */
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
- tmp3 = dataptr[DCTSIZE*3];
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
- tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
- z1 = tmp0 + tmp2;
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
- CONST_BITS+PASS1_BITS+1);
- tmp3 += tmp3;
- z1 -= tmp3;
- z1 -= tmp3;
- z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */
- z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1);
- z1 -= z2;
- z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1);
- /* Odd part */
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
- tmp1 += tmp2;
- tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */
- tmp0 += tmp3;
- tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 12x6 sample block.
- *
- * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Zero 2 bottom rows of output coefficient block. */
- MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
- */
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
- tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
- tmp10 = tmp0 + tmp5;
- tmp13 = tmp0 - tmp5;
- tmp11 = tmp1 + tmp4;
- tmp14 = tmp1 - tmp4;
- tmp12 = tmp2 + tmp3;
- tmp15 = tmp2 - tmp3;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
- tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
- CONST_BITS-PASS1_BITS);
- dataptr[2] = (DCTELEM)
- DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
- CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */
- tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */
- tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */
- tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
- + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */
- tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
- tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
- + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */
- tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
- - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */
- tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
- - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */
- dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/12)*(8/6) = 8/9, which we
- * partially fold into the constant multipliers and final shifting:
- * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
- */
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
- tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
- CONST_BITS+PASS1_BITS+1);
- /* Odd part */
- tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS+1);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 10x5 sample block.
- *
- * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Zero 3 bottom rows of output coefficient block. */
- MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
- */
- dataptr = data;
- for (ctr = 0; ctr < 5; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
- tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
- tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
- tmp10 = tmp0 + tmp4;
- tmp13 = tmp0 - tmp4;
- tmp11 = tmp1 + tmp3;
- tmp14 = tmp1 - tmp3;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
- tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS);
- tmp12 += tmp12;
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
- MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */
- CONST_BITS-PASS1_BITS);
- tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */
- CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp10 = tmp0 + tmp4;
- tmp11 = tmp1 - tmp3;
- dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS);
- tmp2 <<= CONST_BITS;
- dataptr[1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */
- MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */
- MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */
- MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */
- CONST_BITS-PASS1_BITS);
- tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */
- MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */
- tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */
- (tmp11 << (CONST_BITS - 1)) - tmp2;
- dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/10)*(8/5) = 32/25, which we
- * fold into the constant multipliers:
- * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25.
- */
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
- tmp2 = dataptr[DCTSIZE*2];
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */
- CONST_BITS+PASS1_BITS);
- tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */
- tmp10 -= tmp2 << 2;
- tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
- /* Odd part */
- tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on an 8x4 sample block.
- *
- * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Zero 4 bottom rows of output coefficient block. */
- MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * We must also scale the output by 8/4 = 2, which we add here.
- * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- */
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "c1" should be "c6".
- */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
- tmp10 = tmp0 + tmp3;
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1));
- dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1));
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-2);
- dataptr[2] = (DCTELEM)
- RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS-1);
- dataptr[6] = (DCTELEM)
- RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS-1);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-PASS1_BITS-2);
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
- tmp12 += z1;
- tmp13 += z1;
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp0 += z1 + tmp12;
- tmp3 += z1 + tmp13;
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp1 += z1 + tmp13;
- tmp2 += z1 + tmp12;
- dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS-1);
- dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS-1);
- dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS-1);
- dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS-1);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * 4-point FDCT kernel,
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
- */
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- /* Add fudge factor here for final descale. */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
- /* Odd part */
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
- dataptr[DCTSIZE*1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 6x3 sample block.
- *
- * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2;
- INT32 tmp10, tmp11, tmp12;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * We scale the results further by 2 as part of output adaption
- * scaling for different DCT size.
- * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
- */
- dataptr = data;
- for (ctr = 0; ctr < 3; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
- tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1));
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
- CONST_BITS-PASS1_BITS-1);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
- CONST_BITS-PASS1_BITS-1);
- /* Odd part */
- tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
- CONST_BITS-PASS1_BITS-1);
- dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1)));
- dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1));
- dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1)));
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
- * fold into the constant multipliers (other part was done in pass 1):
- * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9.
- */
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
- tmp1 = dataptr[DCTSIZE*1];
- tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
- CONST_BITS+PASS1_BITS);
- /* Odd part */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 4x2 sample block.
- *
- * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- DCTELEM tmp0, tmp2, tmp10, tmp12, tmp4, tmp5;
- INT32 tmp1, tmp3, tmp11, tmp13;
- INT32 z1, z2, z3;
- JSAMPROW elemptr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT.
- * 4-point FDCT kernel,
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
- */
- /* Row 0 */
- elemptr = sample_data[0] + start_col;
- /* Even part */
- tmp4 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
- tmp5 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
- tmp0 = tmp4 + tmp5;
- tmp2 = tmp4 - tmp5;
- /* Odd part */
- z2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
- z3 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS-3-1);
- tmp1 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
- tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
- /* Row 1 */
- elemptr = sample_data[1] + start_col;
- /* Even part */
- tmp4 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
- tmp5 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
- tmp10 = tmp4 + tmp5;
- tmp12 = tmp4 - tmp5;
- /* Odd part */
- z2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
- z3 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
- tmp11 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
- tmp13 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/4)*(8/2) = 2**3.
- */
- /* Column 0 */
- /* Apply unsigned->signed conversion. */
- data[DCTSIZE*0] = (tmp0 + tmp10 - 8 * CENTERJSAMPLE) << 3;
- data[DCTSIZE*1] = (tmp0 - tmp10) << 3;
- /* Column 1 */
- data[DCTSIZE*0+1] = (DCTELEM) RIGHT_SHIFT(tmp1 + tmp11, CONST_BITS-3);
- data[DCTSIZE*1+1] = (DCTELEM) RIGHT_SHIFT(tmp1 - tmp11, CONST_BITS-3);
- /* Column 2 */
- data[DCTSIZE*0+2] = (tmp2 + tmp12) << 3;
- data[DCTSIZE*1+2] = (tmp2 - tmp12) << 3;
- /* Column 3 */
- data[DCTSIZE*0+3] = (DCTELEM) RIGHT_SHIFT(tmp3 + tmp13, CONST_BITS-3);
- data[DCTSIZE*1+3] = (DCTELEM) RIGHT_SHIFT(tmp3 - tmp13, CONST_BITS-3);
- }
- /*
- * Perform the forward DCT on a 2x1 sample block.
- *
- * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- DCTELEM tmp0, tmp1;
- JSAMPROW elemptr;
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- elemptr = sample_data[0] + start_col;
- tmp0 = GETJSAMPLE(elemptr[0]);
- tmp1 = GETJSAMPLE(elemptr[1]);
- /* We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/2)*(8/1) = 2**5.
- */
- /* Even part */
- /* Apply unsigned->signed conversion. */
- data[0] = (tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5;
- /* Odd part */
- data[1] = (tmp0 - tmp1) << 5;
- }
- /*
- * Perform the forward DCT on an 8x16 sample block.
- *
- * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
- INT32 z1;
- DCTELEM workspace[DCTSIZE2];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "c1" should be "c6".
- */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
- tmp10 = tmp0 + tmp3;
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
- tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
- dataptr[2] = (DCTELEM)
- DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM)
- DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
- tmp12 += z1;
- tmp13 += z1;
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp0 += z1 + tmp12;
- tmp3 += z1 + tmp13;
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp1 += z1 + tmp13;
- tmp2 += z1 + tmp12;
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-PASS1_BITS);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == DCTSIZE * 2)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by 8/16 = 1/2.
- * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
- tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
- tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
- tmp10 = tmp0 + tmp7;
- tmp14 = tmp0 - tmp7;
- tmp11 = tmp1 + tmp6;
- tmp15 = tmp1 - tmp6;
- tmp12 = tmp2 + tmp5;
- tmp16 = tmp2 - tmp5;
- tmp13 = tmp3 + tmp4;
- tmp17 = tmp3 - tmp4;
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
- tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
- tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
- tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
- MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
- CONST_BITS+PASS1_BITS+1);
- tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
- MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
- + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
- CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
- - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
- CONST_BITS+PASS1_BITS+1);
- /* Odd part */
- tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
- MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
- MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
- MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
- tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
- MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
- tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
- MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
- tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
- MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
- tmp10 = tmp11 + tmp12 + tmp13 -
- MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
- MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
- tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
- - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
- tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
- + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
- tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
- + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 7x14 sample block.
- *
- * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
- INT32 z1, z2, z3;
- DCTELEM workspace[8*6];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
- tmp3 = GETJSAMPLE(elemptr[3]);
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
- tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
- z1 = tmp0 + tmp2;
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
- tmp3 += tmp3;
- z1 -= tmp3;
- z1 -= tmp3;
- z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */
- z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */
- z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */
- dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
- z1 -= z2;
- z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */
- dataptr[4] = (DCTELEM)
- DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */
- tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */
- tmp0 = tmp1 - tmp2;
- tmp1 += tmp2;
- tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
- tmp1 += tmp2;
- tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */
- tmp0 += tmp3;
- tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */
- dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 14)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/7)*(8/14) = 32/49, which we
- * fold into the constant multipliers:
- * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = 0; ctr < 7; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
- tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
- tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
- tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
- tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
- tmp10 = tmp0 + tmp6;
- tmp14 = tmp0 - tmp6;
- tmp11 = tmp1 + tmp5;
- tmp15 = tmp1 - tmp5;
- tmp12 = tmp2 + tmp4;
- tmp16 = tmp2 - tmp4;
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
- tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
- tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
- tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
- FIX(0.653061224)), /* 32/49 */
- CONST_BITS+PASS1_BITS);
- tmp13 += tmp13;
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
- MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
- MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */
- CONST_BITS+PASS1_BITS);
- tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */
- + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */
- - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */
- CONST_BITS+PASS1_BITS);
- /* Odd part */
- tmp10 = tmp1 + tmp2;
- tmp11 = tmp5 - tmp4;
- dataptr[DCTSIZE*7] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
- FIX(0.653061224)), /* 32/49 */
- CONST_BITS+PASS1_BITS);
- tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */
- tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */
- tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */
- tmp10 += tmp11 - tmp3;
- tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */
- MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
- + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */
- CONST_BITS+PASS1_BITS);
- tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */
- MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
- - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp11 + tmp12 + tmp3
- - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */
- - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 6x12 sample block.
- *
- * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
- DCTELEM workspace[8*4];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
- tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
- tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
- CONST_BITS-PASS1_BITS);
- dataptr[4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
- CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
- CONST_BITS-PASS1_BITS);
- dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
- dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
- dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 12)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/6)*(8/12) = 8/9, which we
- * fold into the constant multipliers:
- * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = 0; ctr < 6; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
- tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
- tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
- tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
- tmp10 = tmp0 + tmp5;
- tmp13 = tmp0 - tmp5;
- tmp11 = tmp1 + tmp4;
- tmp14 = tmp1 - tmp4;
- tmp12 = tmp2 + tmp3;
- tmp15 = tmp2 - tmp3;
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
- tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
- tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
- tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
- tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */
- MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */
- CONST_BITS+PASS1_BITS);
- /* Odd part */
- tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */
- tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */
- tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */
- tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */
- tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */
- tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
- + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */
- tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
- tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
- + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */
- tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
- - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */
- tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
- - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 5x10 sample block.
- *
- * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
- INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
- DCTELEM workspace[8*2];
- DCTELEM *dataptr;
- DCTELEM *wsptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
- */
- dataptr = data;
- ctr = 0;
- for (;;) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
- tmp2 = GETJSAMPLE(elemptr[2]);
- tmp10 = tmp0 + tmp1;
- tmp11 = tmp0 - tmp1;
- tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
- tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS);
- tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */
- tmp10 -= tmp2 << 2;
- tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */
- dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS);
- dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS);
- /* Odd part */
- tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */
- dataptr[1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
- CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
- CONST_BITS-PASS1_BITS);
- ctr++;
- if (ctr != DCTSIZE) {
- if (ctr == 10)
- break; /* Done. */
- dataptr += DCTSIZE; /* advance pointer to next row */
- } else
- dataptr = workspace; /* switch pointer to extended workspace */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/5)*(8/10) = 32/25, which we
- * fold into the constant multipliers:
- * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25.
- */
- dataptr = data;
- wsptr = workspace;
- for (ctr = 0; ctr < 5; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
- tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
- tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
- tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
- tmp10 = tmp0 + tmp4;
- tmp13 = tmp0 - tmp4;
- tmp11 = tmp1 + tmp3;
- tmp14 = tmp1 - tmp3;
- tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
- tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
- tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
- CONST_BITS+PASS1_BITS);
- tmp12 += tmp12;
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
- MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */
- CONST_BITS+PASS1_BITS);
- tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */
- CONST_BITS+PASS1_BITS);
- /* Odd part */
- tmp10 = tmp0 + tmp4;
- tmp11 = tmp1 - tmp3;
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */
- CONST_BITS+PASS1_BITS);
- tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */
- MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */
- MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */
- MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */
- CONST_BITS+PASS1_BITS);
- tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */
- MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */
- tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */
- MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- wsptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 4x8 sample block.
- *
- * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * We must also scale the output by 8/4 = 2, which we add here.
- * 4-point FDCT kernel,
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
- */
- dataptr = data;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
- tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
- tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
- tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1));
- dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1));
- /* Odd part */
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-PASS1_BITS-2);
- dataptr[1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-PASS1_BITS-1);
- dataptr[3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-PASS1_BITS-1);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
- */
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "c1" should be "c6".
- */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- /* Add fudge factor here for final descale. */
- tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
- tmp12 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp13 = tmp1 - tmp2;
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
- dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS+PASS1_BITS-1);
- dataptr[DCTSIZE*2] = (DCTELEM)
- RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM)
- RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
- CONST_BITS+PASS1_BITS);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * i0..i3 in the paper are tmp0..tmp3 here.
- */
- tmp12 = tmp0 + tmp2;
- tmp13 = tmp1 + tmp3;
- z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
- /* Add fudge factor here for final descale. */
- z1 += ONE << (CONST_BITS+PASS1_BITS-1);
- tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
- tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
- tmp12 += z1;
- tmp13 += z1;
- z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
- tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
- tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
- tmp0 += z1 + tmp12;
- tmp3 += z1 + tmp13;
- z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
- tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
- tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
- tmp1 += z1 + tmp13;
- tmp2 += z1 + tmp12;
- dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 3x6 sample block.
- *
- * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1, tmp2;
- INT32 tmp10, tmp11, tmp12;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT;
- * furthermore, we scale the results by 2**PASS1_BITS.
- * We scale the results further by 2 as part of output adaption
- * scaling for different DCT size.
- * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
- */
- dataptr = data;
- for (ctr = 0; ctr < 6; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
- tmp1 = GETJSAMPLE(elemptr[1]);
- tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM)
- ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1));
- dataptr[2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
- CONST_BITS-PASS1_BITS-1);
- /* Odd part */
- dataptr[1] = (DCTELEM)
- DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */
- CONST_BITS-PASS1_BITS-1);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
- * fold into the constant multipliers (other part was done in pass 1):
- * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
- */
- dataptr = data;
- for (ctr = 0; ctr < 3; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
- tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
- tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
- tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
- dataptr[DCTSIZE*0] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*2] = (DCTELEM)
- DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM)
- DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
- CONST_BITS+PASS1_BITS);
- /* Odd part */
- tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
- dataptr[DCTSIZE*1] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM)
- DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM)
- DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
- CONST_BITS+PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 2x4 sample block.
- *
- * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- INT32 tmp0, tmp1;
- INT32 tmp10, tmp11;
- DCTELEM *dataptr;
- JSAMPROW elemptr;
- int ctr;
- SHIFT_TEMPS
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: process rows.
- * Note results are scaled up by sqrt(8) compared to a true DCT.
- */
- dataptr = data;
- for (ctr = 0; ctr < 4; ctr++) {
- elemptr = sample_data[ctr] + start_col;
- /* Even part */
- tmp0 = GETJSAMPLE(elemptr[0]);
- tmp1 = GETJSAMPLE(elemptr[1]);
- /* Apply unsigned->signed conversion. */
- dataptr[0] = (DCTELEM) (tmp0 + tmp1 - 2 * CENTERJSAMPLE);
- /* Odd part */
- dataptr[1] = (DCTELEM) (tmp0 - tmp1);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/2)*(8/4) = 2**3.
- * 4-point FDCT kernel,
- * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
- */
- dataptr = data;
- for (ctr = 0; ctr < 2; ctr++) {
- /* Even part */
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
- tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
- tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
- dataptr[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1) << 3);
- dataptr[DCTSIZE*2] = (DCTELEM) ((tmp0 - tmp1) << 3);
- /* Odd part */
- tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
- /* Add fudge factor here for final descale. */
- tmp0 += ONE << (CONST_BITS-3-1);
- dataptr[DCTSIZE*1] = (DCTELEM)
- RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
- CONST_BITS-3);
- dataptr[DCTSIZE*3] = (DCTELEM)
- RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
- CONST_BITS-3);
- dataptr++; /* advance pointer to next column */
- }
- }
- /*
- * Perform the forward DCT on a 1x2 sample block.
- *
- * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
- */
- GLOBAL(void)
- jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
- {
- DCTELEM tmp0, tmp1;
- /* Pre-zero output coefficient block. */
- MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
- /* Pass 1: empty. */
- /* Pass 2: process columns.
- * We leave the results scaled up by an overall factor of 8.
- * We must also scale the output by (8/1)*(8/2) = 2**5.
- */
- /* Even part */
- tmp0 = GETJSAMPLE(sample_data[0][start_col]);
- tmp1 = GETJSAMPLE(sample_data[1][start_col]);
- /* Apply unsigned->signed conversion. */
- data[DCTSIZE*0] = (tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5;
- /* Odd part */
- data[DCTSIZE*1] = (tmp0 - tmp1) << 5;
- }
- #endif /* DCT_SCALING_SUPPORTED */
- #endif /* DCT_ISLOW_SUPPORTED */
|