12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176 |
- /*
- Reprap firmware based on Sprinter
- Optimize for Sanguinololu 1.2 and above, RAMPS
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- /*
- This firmware is a mashup between Sprinter,grbl and parts from marlin.
- (https://github.com/kliment/Sprinter)
-
- Changes by Doppler Michael (midopple)
-
- Planner is from Simen Svale Skogsrud
- https://github.com/simen/grbl
- Parts of Marlin Firmware from ErikZalm
- https://github.com/ErikZalm/Marlin-non-gen6
-
- Sprinter Changelog
- - Look forward function --> calculate 16 Steps forward, get from Firmaware Marlin and Grbl
- - Stepper control with Timer 1 (Interrupt)
- - Extruder heating with PID use a Softpwm (Timer 2) with 500 hz to free Timer1 für Steppercontrol
- - command M220 Sxxx --> tune Printing speed online (+/- 50 %)
- - G2 / G3 command --> circle funktion
- - Baudrate set to 250 kbaud
- - Testet on Sanguinololu Board
- - M30 Command can delete files on SD Card
- - move string to flash to free RAM vor forward planner
- - M203 Temperature monitor for Repetier
- Version 1.3.04T
- - Implement Plannercode from Marlin V1 big thanks to Erik
- - Stepper interrupt with Step loops
- - Stepperfrequenz 30 Khz
- - New Command
- * M202 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
- * M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2
- * M205 - advanced settings: minimum travel speed S=while printing T=travel only, X= maximum xy jerk, Z=maximum Z jerk
- - Remove unused Variables
- - Check Uart Puffer while circle processing (CMD: G2 / G3)
- - Fast Xfer Function --> move Text to Flash
- - Option to deaktivate ARC (G2/G3) function (save flash)
- - Removed modulo (%) operator, which uses an expensive divide
- Version 1.3.05T
- - changed homing function to not conflict with min_software_endstops/max_software_endstops (thanks rGlory)
- - Changed check in arc_func
- - Corrected distance calculation. (thanks jv4779)
- - MAX Feed Rate for Z-Axis reduced to 2 mm/s some Printers had problems with 4 mm/s
-
- Version 1.3.06T
- - the microcontroller can store settings in the EEPROM
- - M500 - stores paramters in EEPROM
- - M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
- - M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
- - M503 - Print settings
-
- Version 1.3.07T
- - Optimize Variable Size (faster Code)
- - Remove unused Code from Interrupt --> faster ~ 22 us per step
- - Replace abs with fabs --> Faster and smaler
- - Add "store_eeprom.cpp" to makefile
- Version 1.3.08T
- - If a line starts with ';', it is ignored but comment_mode is reset.
- A ';' inside a line ignores just the portion following the ';' character.
- The beginning of the line is still interpreted.
-
- - Same fix for SD Card, testet and work
- Version 1.3.09T
- - Move SLOWDOWN Function up
-
- Version 1.3.10T
- - Add info to GEN7 Pins
- - Update pins.h for gen7, working setup for 20MHz
- - calculate feedrate without extrude before planner block is set
- - New Board --> GEN7 @ 20 Mhz …
- - ENDSTOPS_ONLY_FOR_HOMING Option ignore Endstop always --> fault is cleared
- Version 1.3.11T
- - fix for broken include in store_eeprom.cpp --> Thanks to kmeehl (issue #145)
- - Make fastio & Arduino pin numbering consistent for AT90USB128x. --> Thanks to lincomatic
- - Select Speedtable with F_CPU
- - Use same Values for Speedtables as Marlin
- -
-
- */
- #include <avr/pgmspace.h>
- #include <math.h>
- #include "fastio.h"
- #include "Configuration.h"
- #include "pins.h"
- #include "Sprinter.h"
- #include "speed_lookuptable.h"
- #include "heater.h"
- #ifdef USE_ARC_FUNCTION
- #include "arc_func.h"
- #endif
- #ifdef SDSUPPORT
- #include "SdFat.h"
- #endif
- #ifdef USE_EEPROM_SETTINGS
- #include "store_eeprom.h"
- #endif
- #ifndef CRITICAL_SECTION_START
- #define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
- #define CRITICAL_SECTION_END SREG = _sreg
- #endif //CRITICAL_SECTION_START
- void __cxa_pure_virtual(){};
- // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
- // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
- //Implemented Codes
- //-------------------
- // G0 -> G1
- // G1 - Coordinated Movement X Y Z E
- // G2 - CW ARC
- // G3 - CCW ARC
- // G4 - Dwell S<seconds> or P<milliseconds>
- // G28 - Home all Axis
- // G90 - Use Absolute Coordinates
- // G91 - Use Relative Coordinates
- // G92 - Set current position to cordinates given
- //RepRap M Codes
- // M104 - Set extruder target temp
- // M105 - Read current temp
- // M106 - Fan on
- // M107 - Fan off
- // M109 - Wait for extruder current temp to reach target temp.
- // M114 - Display current position
- //Custom M Codes
- // M20 - List SD card
- // M21 - Init SD card
- // M22 - Release SD card
- // M23 - Select SD file (M23 filename.g)
- // M24 - Start/resume SD print
- // M25 - Pause SD print
- // M26 - Set SD position in bytes (M26 S12345)
- // M27 - Report SD print status
- // M28 - Start SD write (M28 filename.g)
- // M29 - Stop SD write
- // - <filename> - Delete file on sd card
- // M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on
- // M80 - Turn on Power Supply
- // M81 - Turn off Power Supply
- // M82 - Set E codes absolute (default)
- // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
- // M84 - Disable steppers until next move,
- // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
- // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
- // M92 - Set axis_steps_per_unit - same syntax as G92
- // M115 - Capabilities string
- // M119 - Show Endstopper State
- // M140 - Set bed target temp
- // M190 - Wait for bed current temp to reach target temp.
- // M201 - Set maximum acceleration in units/s^2 for print moves (M201 X1000 Y1000)
- // M202 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
- // M203 - Set temperture monitor to Sx
- // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2
- // M205 - advanced settings: minimum travel speed S=while printing T=travel only, X= maximum xy jerk, Z=maximum Z jerk
- // M220 - set speed factor override percentage S:factor in percent
- // M500 - stores paramters in EEPROM
- // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
- // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
- // M503 - Print settings
- // Debug feature / Testing the PID for Hotend
- // M601 - Show Temp jitter from Extruder (min / max value from Hotend Temperatur while printing)
- // M602 - Reset Temp jitter from Extruder (min / max val) --> Dont use it while Printing
- // M603 - Show Free Ram
- #define _VERSION_TEXT "1.3.11T / 19.03.2012"
- //Stepper Movement Variables
- char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
- float axis_steps_per_unit[4] = _AXIS_STEP_PER_UNIT;
- float max_feedrate[4] = _MAX_FEEDRATE;
- float homing_feedrate[] = _HOMING_FEEDRATE;
- bool axis_relative_modes[] = _AXIS_RELATIVE_MODES;
- float move_acceleration = _ACCELERATION; // Normal acceleration mm/s^2
- float retract_acceleration = _RETRACT_ACCELERATION; // Normal acceleration mm/s^2
- float max_xy_jerk = _MAX_XY_JERK;
- float max_z_jerk = _MAX_Z_JERK;
- long max_acceleration_units_per_sq_second[4] = _MAX_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
- //float max_start_speed_units_per_second[] = _MAX_START_SPEED_UNITS_PER_SECOND;
- //long max_travel_acceleration_units_per_sq_second[] = _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z max acceleration in mm/s^2 for travel moves
- float mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
- float minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
- unsigned long axis_steps_per_sqr_second[NUM_AXIS];
- unsigned long plateau_steps;
- //unsigned long axis_max_interval[NUM_AXIS];
- //unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS];
- //unsigned long max_interval;
- //unsigned long steps_per_sqr_second;
- //adjustable feed faktor for online tuning printerspeed
- volatile int feedmultiply=100; //100->original / 200-> Faktor 2 / 50 -> Faktor 0.5
- int saved_feedmultiply;
- volatile bool feedmultiplychanged=false;
- //boolean acceleration_enabled = false, accelerating = false;
- //unsigned long interval;
- float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
- float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
- bool home_all_axis = true;
- //unsigned ?? ToDo: Check
- int feedrate = 1500, next_feedrate, saved_feedrate;
- long gcode_N, gcode_LastN;
- bool relative_mode = false; //Determines Absolute or Relative Coordinates
- //unsigned long steps_taken[NUM_AXIS];
- //long axis_interval[NUM_AXIS]; // for speed delay
- //float time_for_move;
- //bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
- //long timediff = 0;
- bool is_homing = false;
- //experimental feedrate calc
- //float d = 0;
- //float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
- #ifdef USE_ARC_FUNCTION
- //For arc centerpont, send bei Command G2/G3
- float offset[3] = {0.0, 0.0, 0.0};
- #endif
- #ifdef STEP_DELAY_RATIO
- long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
- #endif
- ///oscillation reduction
- #ifdef RAPID_OSCILLATION_REDUCTION
- float cumm_wait_time_in_dir[NUM_AXIS]={0.0,0.0,0.0,0.0};
- bool prev_move_direction[NUM_AXIS]={1,1,1,1};
- float osc_wait_remainder = 0.0;
- #endif
- // comm variables and Commandbuffer
- // BUFSIZE is reduced from 8 to 6 to free more RAM for the PLANNER
- #define MAX_CMD_SIZE 96
- #define BUFSIZE 6 //8
- char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
- bool fromsd[BUFSIZE];
- //Need 1kb Ram --> only work with Atmega1284
- #ifdef SD_FAST_XFER_AKTIV
- char fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE + 1];
- int lastxferchar;
- long xferbytes;
- #endif
- unsigned char bufindr = 0;
- unsigned char bufindw = 0;
- unsigned char buflen = 0;
- char serial_char;
- int serial_count = 0;
- boolean comment_mode = false;
- char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
- //Send Temperature in °C to Host
- int hotendtC = 0, bedtempC = 0;
-
- //Inactivity shutdown variables
- unsigned long previous_millis_cmd = 0;
- unsigned long max_inactive_time = 0;
- unsigned long stepper_inactive_time = 0;
- //Temp Montor for repetier
- unsigned char manage_monitor = 255;
- //------------------------------------------------
- //Init the SD card
- //------------------------------------------------
- #ifdef SDSUPPORT
- Sd2Card card;
- SdVolume volume;
- SdFile root;
- SdFile file;
- uint32_t filesize = 0;
- uint32_t sdpos = 0;
- bool sdmode = false;
- bool sdactive = false;
- bool savetosd = false;
- int16_t read_char_int;
-
- void initsd()
- {
- sdactive = false;
- #if SDSS >- 1
- if(root.isOpen())
- root.close();
- if (!card.init(SPI_FULL_SPEED,SDSS)){
- //if (!card.init(SPI_HALF_SPEED,SDSS))
- showString(PSTR("SD init fail\r\n"));
- }
- else if (!volume.init(&card))
- showString(PSTR("volume.init failed\r\n"));
- else if (!root.openRoot(&volume))
- showString(PSTR("openRoot failed\r\n"));
- else{
- sdactive = true;
- print_disk_info();
- #ifdef SDINITFILE
- file.close();
- if(file.open(&root, "init.g", O_READ)){
- sdpos = 0;
- filesize = file.fileSize();
- sdmode = true;
- }
- #endif
- }
-
- #endif
- }
-
- #ifdef SD_FAST_XFER_AKTIV
-
- #ifdef PIDTEMP
- extern int g_heater_pwm_val;
- #endif
-
- void fast_xfer()
- {
- char *pstr;
- boolean done = false;
-
- //force heater pins low
- if(HEATER_0_PIN > -1) WRITE(HEATER_0_PIN,LOW);
- if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
-
- g_heater_pwm_val = 0;
-
- lastxferchar = 1;
- xferbytes = 0;
-
- pstr = strstr(strchr_pointer+4, " ");
-
- if(pstr == NULL)
- {
- showString(PSTR("invalid command\r\n"));
- return;
- }
-
- *pstr = '\0';
-
- //check mode (currently only RAW is supported
- if(strcmp(strchr_pointer+4, "RAW") != 0)
- {
- showString(PSTR("Invalid transfer codec\r\n"));
- return;
- }else{
- showString(PSTR("Selected codec: "));
- Serial.println(strchr_pointer+4);
- }
-
- if (!file.open(&root, pstr+1, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
- {
- showString(PSTR("open failed, File: "));
- Serial.print(pstr+1);
- showString(PSTR("."));
- }else{
- showString(PSTR("Writing to file: "));
- Serial.println(pstr+1);
- }
-
- showString(PSTR("ok\r\n"));
-
- //RAW transfer codec
- //Host sends \0 then up to SD_FAST_XFER_CHUNK_SIZE then \0
- //when host is done, it sends \0\0.
- //if a non \0 character is recieved at the beginning, host has failed somehow, kill the transfer.
-
- //read SD_FAST_XFER_CHUNK_SIZE bytes (or until \0 is recieved)
- while(!done)
- {
- while(!Serial.available())
- {
- }
- if(Serial.read() != 0)
- {
- //host has failed, this isn't a RAW chunk, it's an actual command
- file.sync();
- file.close();
- return;
- }
- for(int i=0;i<SD_FAST_XFER_CHUNK_SIZE+1;i++)
- {
- while(!Serial.available())
- {
- }
- lastxferchar = Serial.read();
- //buffer the data...
- fastxferbuffer[i] = lastxferchar;
-
- xferbytes++;
-
- if(lastxferchar == 0)
- break;
- }
-
- if(fastxferbuffer[0] != 0)
- {
- fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE] = 0;
- file.write(fastxferbuffer);
- showString(PSTR("ok\r\n"));
- }else{
- showString(PSTR("Wrote "));
- Serial.print(xferbytes);
- showString(PSTR(" bytes.\r\n"));
- done = true;
- }
- }
- file.sync();
- file.close();
- }
- #endif
-
- void print_disk_info(void)
- {
- // print the type of card
- showString(PSTR("\nCard type: "));
- switch(card.type())
- {
- case SD_CARD_TYPE_SD1:
- showString(PSTR("SD1\r\n"));
- break;
- case SD_CARD_TYPE_SD2:
- showString(PSTR("SD2\r\n"));
- break;
- case SD_CARD_TYPE_SDHC:
- showString(PSTR("SDHC\r\n"));
- break;
- default:
- showString(PSTR("Unknown\r\n"));
- }
-
- //uint64_t freeSpace = volume.clusterCount()*volume.blocksPerCluster()*512;
- //uint64_t occupiedSpace = (card.cardSize()*512) - freeSpace;
- // print the type and size of the first FAT-type volume
- uint32_t volumesize;
- showString(PSTR("\nVolume type is FAT"));
- Serial.println(volume.fatType(), DEC);
-
- volumesize = volume.blocksPerCluster(); // clusters are collections of blocks
- volumesize *= volume.clusterCount(); // we'll have a lot of clusters
- volumesize *= 512; // SD card blocks are always 512 bytes
- volumesize /= 1024; //kbytes
- volumesize /= 1024; //Mbytes
- showString(PSTR("Volume size (Mbytes): "));
- Serial.println(volumesize);
-
- // list all files in the card with date and size
- //root.ls(LS_R | LS_DATE | LS_SIZE);
- }
-
-
-
-
- FORCE_INLINE void write_command(char *buf)
- {
- char* begin = buf;
- char* npos = 0;
- char* end = buf + strlen(buf) - 1;
-
- file.writeError = false;
-
- if((npos = strchr(buf, 'N')) != NULL)
- {
- begin = strchr(npos, ' ') + 1;
- end = strchr(npos, '*') - 1;
- }
-
- end[1] = '\r';
- end[2] = '\n';
- end[3] = '\0';
-
- //Serial.println(begin);
- file.write(begin);
-
- if (file.writeError)
- {
- showString(PSTR("error writing to file\r\n"));
- }
- }
- #endif
- int FreeRam1(void)
- {
- extern int __bss_end;
- extern int* __brkval;
- int free_memory;
- if (reinterpret_cast<int>(__brkval) == 0)
- {
- // if no heap use from end of bss section
- free_memory = reinterpret_cast<int>(&free_memory) - reinterpret_cast<int>(&__bss_end);
- }
- else
- {
- // use from top of stack to heap
- free_memory = reinterpret_cast<int>(&free_memory) - reinterpret_cast<int>(__brkval);
- }
-
- return free_memory;
- }
- //------------------------------------------------
- //Print a String from Flash to Serial (save RAM)
- //------------------------------------------------
- void showString (PGM_P s)
- {
- char c;
-
- while ((c = pgm_read_byte(s++)) != 0)
- Serial.print(c);
- }
- //------------------------------------------------
- // Init
- //------------------------------------------------
- void setup()
- {
-
- Serial.begin(BAUDRATE);
- showString(PSTR("Sprinter\r\n"));
- showString(PSTR(_VERSION_TEXT));
- showString(PSTR("\r\n"));
- showString(PSTR("start\r\n"));
- for(int i = 0; i < BUFSIZE; i++)
- {
- fromsd[i] = false;
- }
-
-
- //Initialize Dir Pins
- #if X_DIR_PIN > -1
- SET_OUTPUT(X_DIR_PIN);
- #endif
- #if Y_DIR_PIN > -1
- SET_OUTPUT(Y_DIR_PIN);
- #endif
- #if Z_DIR_PIN > -1
- SET_OUTPUT(Z_DIR_PIN);
- #endif
- #if E_DIR_PIN > -1
- SET_OUTPUT(E_DIR_PIN);
- #endif
-
- //Initialize Enable Pins - steppers default to disabled.
-
- #if (X_ENABLE_PIN > -1)
- SET_OUTPUT(X_ENABLE_PIN);
- if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
- #endif
- #if (Y_ENABLE_PIN > -1)
- SET_OUTPUT(Y_ENABLE_PIN);
- if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
- #endif
- #if (Z_ENABLE_PIN > -1)
- SET_OUTPUT(Z_ENABLE_PIN);
- if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
- #endif
- #if (E_ENABLE_PIN > -1)
- SET_OUTPUT(E_ENABLE_PIN);
- if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
- #endif
- #ifdef CONTROLLERFAN_PIN
- SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
- #endif
-
- //endstops and pullups
- #ifdef ENDSTOPPULLUPS
- #if X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
- WRITE(X_MIN_PIN,HIGH);
- #endif
- #if X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
- WRITE(X_MAX_PIN,HIGH);
- #endif
- #if Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
- WRITE(Y_MIN_PIN,HIGH);
- #endif
- #if Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
- WRITE(Y_MAX_PIN,HIGH);
- #endif
- #if Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
- WRITE(Z_MIN_PIN,HIGH);
- #endif
- #if Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
- WRITE(Z_MAX_PIN,HIGH);
- #endif
- #else
- #if X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
- #endif
- #if X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
- #endif
- #if Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
- #endif
- #if Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
- #endif
- #if Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
- #endif
- #if Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
- #endif
- #endif
-
- #if (HEATER_0_PIN > -1)
- SET_OUTPUT(HEATER_0_PIN);
- WRITE(HEATER_0_PIN,LOW);
- #endif
- #if (HEATER_1_PIN > -1)
- SET_OUTPUT(HEATER_1_PIN);
- WRITE(HEATER_1_PIN,LOW);
- #endif
-
- //Initialize Fan Pin
- #if (FAN_PIN > -1)
- SET_OUTPUT(FAN_PIN);
- #endif
-
- //Initialize Alarm Pin
- #if (ALARM_PIN > -1)
- SET_OUTPUT(ALARM_PIN);
- WRITE(ALARM_PIN,LOW);
- #endif
- //Initialize LED Pin
- #if (LED_PIN > -1)
- SET_OUTPUT(LED_PIN);
- WRITE(LED_PIN,LOW);
- #endif
-
- //Initialize Step Pins
- #if (X_STEP_PIN > -1)
- SET_OUTPUT(X_STEP_PIN);
- #endif
- #if (Y_STEP_PIN > -1)
- SET_OUTPUT(Y_STEP_PIN);
- #endif
- #if (Z_STEP_PIN > -1)
- SET_OUTPUT(Z_STEP_PIN);
- #endif
- #if (E_STEP_PIN > -1)
- SET_OUTPUT(E_STEP_PIN);
- #endif
- for(int8_t i=0; i < NUM_AXIS; i++)
- {
- axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- }
- // for(int i=0; i < NUM_AXIS; i++){
- // axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);
- // axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- // axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- // }
-
- #ifdef HEATER_USES_MAX6675
- SET_OUTPUT(SCK_PIN);
- WRITE(SCK_PIN,0);
-
- SET_OUTPUT(MOSI_PIN);
- WRITE(MOSI_PIN,1);
-
- SET_INPUT(MISO_PIN);
- WRITE(MISO_PIN,1);
-
- SET_OUTPUT(MAX6675_SS);
- WRITE(MAX6675_SS,1);
- #endif
-
- #ifdef SDSUPPORT
- //power to SD reader
- #if SDPOWER > -1
- SET_OUTPUT(SDPOWER);
- WRITE(SDPOWER,HIGH);
- #endif
-
- showString(PSTR("SD Start\r\n"));
- initsd();
- #endif
- #ifdef PID_SOFT_PWM
- showString(PSTR("Soft PWM Init\r\n"));
- init_Timer2_softpwm();
- #endif
-
- showString(PSTR("Planner Init\r\n"));
- plan_init(); // Initialize planner;
- showString(PSTR("Stepper Timer init\r\n"));
- st_init(); // Initialize stepper
- #ifdef USE_EEPROM_SETTINGS
- //first Value --> Init with default
- //second value --> Print settings to UART
- EEPROM_RetrieveSettings(false,false);
- #endif
- //Free Ram
- showString(PSTR("Free Ram: "));
- Serial.println(FreeRam1());
-
- //Planner Buffer Size
- showString(PSTR("Plan Buffer Size:"));
- Serial.print((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
- showString(PSTR(" / "));
- Serial.println(BLOCK_BUFFER_SIZE);
- }
- //------------------------------------------------
- //MAIN LOOP
- //------------------------------------------------
- void loop()
- {
- if(buflen < (BUFSIZE-1))
- get_command();
-
- if(buflen)
- {
- #ifdef SDSUPPORT
- if(savetosd)
- {
- if(strstr(cmdbuffer[bufindr],"M29") == NULL)
- {
- write_command(cmdbuffer[bufindr]);
- showString(PSTR("ok\r\n"));
- }
- else
- {
- file.sync();
- file.close();
- savetosd = false;
- showString(PSTR("Done saving file.\r\n"));
- }
- }
- else
- {
- process_commands();
- }
- #else
- process_commands();
- #endif
- buflen = (buflen-1);
- //bufindr = (bufindr + 1)%BUFSIZE;
- //Removed modulo (%) operator, which uses an expensive divide and multiplication
- bufindr++;
- if(bufindr == BUFSIZE) bufindr = 0;
- }
-
- //check heater every n milliseconds
- manage_heater();
- manage_inactivity(1);
- }
- //------------------------------------------------
- //Check Uart buffer while arc function ist calc a circle
- //------------------------------------------------
- void check_buffer_while_arc()
- {
- if(buflen < (BUFSIZE-1))
- {
- get_command();
- }
- }
- //------------------------------------------------
- //READ COMMAND FROM UART
- //------------------------------------------------
- void get_command()
- {
- while( Serial.available() > 0 && buflen < BUFSIZE)
- {
- serial_char = Serial.read();
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
- {
- if(!serial_count) { //if empty line
- comment_mode = false; // for new command
- return;
- }
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- fromsd[bufindw] = false;
- if(strstr(cmdbuffer[bufindw], "N") != NULL)
- {
- strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
- gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
- if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) )
- {
- showString(PSTR("Serial Error: Line Number is not Last Line Number+1, Last Line:"));
- Serial.println(gcode_LastN);
- //Serial.println(gcode_N);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- if(strstr(cmdbuffer[bufindw], "*") != NULL)
- {
- byte checksum = 0;
- byte count = 0;
- while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
- strchr_pointer = strchr(cmdbuffer[bufindw], '*');
-
- if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum)
- {
- showString(PSTR("Error: checksum mismatch, Last Line:"));
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
- //if no errors, continue parsing
- }
- else
- {
- showString(PSTR("Error: No Checksum with line number, Last Line:"));
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- gcode_LastN = gcode_N;
- //if no errors, continue parsing
- }
- else // if we don't receive 'N' but still see '*'
- {
- if((strstr(cmdbuffer[bufindw], "*") != NULL))
- {
- showString(PSTR("Error: No Line Number with checksum, Last Line:"));
- Serial.println(gcode_LastN);
- serial_count = 0;
- return;
- }
- }
-
- if((strstr(cmdbuffer[bufindw], "G") != NULL))
- {
- strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
- switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL))))
- {
- case 0:
- case 1:
- #ifdef USE_ARC_FUNCTION
- case 2: //G2
- case 3: //G3 arc func
- #endif
- #ifdef SDSUPPORT
- if(savetosd)
- break;
- #endif
- showString(PSTR("ok\r\n"));
- //Serial.println("ok");
- break;
-
- default:
- break;
- }
- }
- //Removed modulo (%) operator, which uses an expensive divide and multiplication
- //bufindw = (bufindw + 1)%BUFSIZE;
- bufindw++;
- if(bufindw == BUFSIZE) bufindw = 0;
- buflen += 1;
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
- #ifdef SDSUPPORT
- if(!sdmode || serial_count!=0)
- {
- return;
- }
- while( filesize > sdpos && buflen < BUFSIZE)
- {
- serial_char = file.read();
- read_char_int = (int)serial_char;
-
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || read_char_int == -1)
- {
- sdpos = file.curPosition();
- if(sdpos >= filesize)
- {
- sdmode = false;
- showString(PSTR("Done printing file\r\n"));
- }
-
- if(!serial_count) { //if empty line
- comment_mode = false; // for new command
- return;
- }
-
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- fromsd[bufindw] = true;
- buflen += 1;
- //Removed modulo (%) operator, which uses an expensive divide and multiplication
- //bufindw = (bufindw + 1)%BUFSIZE;
- bufindw++;
- if(bufindw == BUFSIZE) bufindw = 0;
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
- #endif
- }
- static bool check_endstops = true;
- void enable_endstops(bool check)
- {
- check_endstops = check;
- }
- FORCE_INLINE float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); }
- FORCE_INLINE long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); }
- FORCE_INLINE bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } //Return True if the string was found
- FORCE_INLINE bool code_seen(char code)
- {
- strchr_pointer = strchr(cmdbuffer[bufindr], code);
- return (strchr_pointer != NULL); //Return True if a character was found
- }
- //------------------------------------------------
- // CHECK COMMAND AND CONVERT VALUES
- //------------------------------------------------
- FORCE_INLINE void process_commands()
- {
- unsigned long codenum; //throw away variable
- char *starpos = NULL;
- if(code_seen('G'))
- {
- switch((int)code_value())
- {
- case 0: // G0 -> G1
- case 1: // G1
- #if (defined DISABLE_CHECK_DURING_ACC) || (defined DISABLE_CHECK_DURING_MOVE) || (defined DISABLE_CHECK_DURING_TRAVEL)
- manage_heater();
- #endif
- get_coordinates(); // For X Y Z E F
- prepare_move();
- previous_millis_cmd = millis();
- //ClearToSend();
- return;
- //break;
- #ifdef USE_ARC_FUNCTION
- case 2: // G2 - CW ARC
- get_arc_coordinates();
- prepare_arc_move(true);
- previous_millis_cmd = millis();
- //break;
- return;
- case 3: // G3 - CCW ARC
- get_arc_coordinates();
- prepare_arc_move(false);
- previous_millis_cmd = millis();
- //break;
- return;
- #endif
- case 4: // G4 dwell
- codenum = 0;
- if(code_seen('P')) codenum = code_value(); // milliseconds to wait
- if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
- codenum += millis(); // keep track of when we started waiting
- while(millis() < codenum ){
- manage_heater();
- }
- break;
- case 28: //G28 Home all Axis one at a time
- saved_feedrate = feedrate;
- saved_feedmultiply = feedmultiply;
- previous_millis_cmd = millis();
-
- feedmultiply = 100;
-
- enable_endstops(true);
-
- for(int i=0; i < NUM_AXIS; i++)
- {
- destination[i] = current_position[i];
- }
- feedrate = 0;
- is_homing = true;
- home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
- if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
- {
- if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1))
- {
- st_synchronize();
- current_position[X_AXIS] = -1.5 * X_MAX_LENGTH * X_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = 0;
- feedrate = homing_feedrate[X_AXIS];
- prepare_move();
-
- st_synchronize();
- current_position[X_AXIS] = 5 * X_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = 0;
- prepare_move();
-
- st_synchronize();
- current_position[X_AXIS] = -10 * X_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = 0;
- feedrate = homing_feedrate[X_AXIS]/2 ;
- prepare_move();
- st_synchronize();
-
- current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = current_position[X_AXIS];
- feedrate = 0;
- }
- }
- //showString(PSTR("HOME X AXIS\r\n"));
- if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
- {
- if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1))
- {
- current_position[Y_AXIS] = -1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = 0;
- feedrate = homing_feedrate[Y_AXIS];
- prepare_move();
- st_synchronize();
-
- current_position[Y_AXIS] = 5 * Y_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = 0;
- prepare_move();
- st_synchronize();
-
- current_position[Y_AXIS] = -10 * Y_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = 0;
- feedrate = homing_feedrate[Y_AXIS]/2;
- prepare_move();
- st_synchronize();
-
- current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = current_position[Y_AXIS];
- feedrate = 0;
- }
- }
- //showString(PSTR("HOME Y AXIS\r\n"));
- if((home_all_axis) || (code_seen(axis_codes[Z_AXIS])))
- {
- if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1))
- {
- current_position[Z_AXIS] = -1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = 0;
- feedrate = homing_feedrate[Z_AXIS];
- prepare_move();
- st_synchronize();
-
- current_position[Z_AXIS] = 2 * Z_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = 0;
- prepare_move();
- st_synchronize();
-
- current_position[Z_AXIS] = -3 * Z_HOME_DIR;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = 0;
- feedrate = homing_feedrate[Z_AXIS]/2;
- prepare_move();
- st_synchronize();
-
- current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = current_position[Z_AXIS];
- feedrate = 0;
- }
- }
-
- //showString(PSTR("HOME Z AXIS\r\n"));
-
- #ifdef ENDSTOPS_ONLY_FOR_HOMING
- enable_endstops(false);
- #endif
-
- is_homing = false;
- feedrate = saved_feedrate;
- feedmultiply = saved_feedmultiply;
-
- previous_millis_cmd = millis();
- break;
- case 90: // G90
- relative_mode = false;
- break;
- case 91: // G91
- relative_mode = true;
- break;
- case 92: // G92
- if(!code_seen(axis_codes[E_AXIS]))
- st_synchronize();
-
- for(int i=0; i < NUM_AXIS; i++)
- {
- if(code_seen(axis_codes[i])) current_position[i] = code_value();
- }
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- break;
- default:
- #ifdef SEND_WRONG_CMD_INFO
- showString(PSTR("Unknown G-COM:"));
- Serial.println(cmdbuffer[bufindr]);
- #endif
- break;
- }
- }
- else if(code_seen('M'))
- {
-
- switch( (int)code_value() )
- {
- #ifdef SDSUPPORT
-
- case 20: // M20 - list SD card
- showString(PSTR("Begin file list\r\n"));
- root.ls();
- showString(PSTR("End file list\r\n"));
- break;
- case 21: // M21 - init SD card
- sdmode = false;
- initsd();
- break;
- case 22: //M22 - release SD card
- sdmode = false;
- sdactive = false;
- break;
- case 23: //M23 - Select file
- if(sdactive)
- {
- sdmode = false;
- file.close();
- starpos = (strchr(strchr_pointer + 4,'*'));
-
- if(starpos!=NULL)
- *(starpos-1)='\0';
-
- if (file.open(&root, strchr_pointer + 4, O_READ))
- {
- showString(PSTR("File opened:"));
- Serial.print(strchr_pointer + 4);
- showString(PSTR(" Size:"));
- Serial.println(file.fileSize());
- sdpos = 0;
- filesize = file.fileSize();
- showString(PSTR("File selected\r\n"));
- }
- else
- {
- showString(PSTR("file.open failed\r\n"));
- }
- }
- break;
- case 24: //M24 - Start SD print
- if(sdactive)
- {
- sdmode = true;
- }
- break;
- case 25: //M25 - Pause SD print
- if(sdmode)
- {
- sdmode = false;
- }
- break;
- case 26: //M26 - Set SD index
- if(sdactive && code_seen('S'))
- {
- sdpos = code_value_long();
- file.seekSet(sdpos);
- }
- break;
- case 27: //M27 - Get SD status
- if(sdactive)
- {
- showString(PSTR("SD printing byte "));
- Serial.print(sdpos);
- showString(PSTR("/"));
- Serial.println(filesize);
- }
- else
- {
- showString(PSTR("Not SD printing\r\n"));
- }
- break;
- case 28: //M28 - Start SD write
- if(sdactive)
- {
- char* npos = 0;
- file.close();
- sdmode = false;
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL)
- {
- npos = strchr(cmdbuffer[bufindr], 'N');
- strchr_pointer = strchr(npos,' ') + 1;
- *(starpos-1) = '\0';
- }
-
- if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
- {
- showString(PSTR("open failed, File: "));
- Serial.print(strchr_pointer + 4);
- showString(PSTR("."));
- }
- else
- {
- savetosd = true;
- showString(PSTR("Writing to file: "));
- Serial.println(strchr_pointer + 4);
- }
- }
- break;
- case 29: //M29 - Stop SD write
- //processed in write to file routine above
- //savetosd = false;
- break;
- #ifndef SD_FAST_XFER_AKTIV
- case 30: // M30 filename - Delete file
- if(sdactive)
- {
- sdmode = false;
- file.close();
-
- starpos = (strchr(strchr_pointer + 4,'*'));
-
- if(starpos!=NULL)
- *(starpos-1)='\0';
-
- if(file.remove(&root, strchr_pointer + 4))
- {
- showString(PSTR("File deleted\r\n"));
- }
- else
- {
- showString(PSTR("Deletion failed\r\n"));
- }
- }
- break;
- #else
- case 30: //M30 - fast SD transfer
- fast_xfer();
- break;
- case 31: //M31 - high speed xfer capabilities
- showString(PSTR("RAW:"));
- Serial.println(SD_FAST_XFER_CHUNK_SIZE);
- break;
- #endif
-
- #endif
- case 42: //M42 -Change pin status via gcode
- if (code_seen('S'))
- {
- int pin_status = code_value();
- if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
- {
- int pin_number = code_value();
- for(int i = 0; i < sizeof(sensitive_pins); i++)
- {
- if (sensitive_pins[i] == pin_number)
- {
- pin_number = -1;
- break;
- }
- }
-
- if (pin_number > -1)
- {
- pinMode(pin_number, OUTPUT);
- digitalWrite(pin_number, pin_status);
- //analogWrite(pin_number, pin_status);
- }
- }
- }
- break;
- case 104: // M104
- if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
- #ifdef WATCHPERIOD
- if(target_raw > current_raw)
- {
- watchmillis = max(1,millis());
- watch_raw = current_raw;
- }
- else
- {
- watchmillis = 0;
- }
- #endif
- break;
- case 140: // M140 set bed temp
- #if TEMP_1_PIN > -1 || defined BED_USES_AD595
- if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
- #endif
- break;
- case 105: // M105
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
- hotendtC = analog2temp(current_raw);
- #endif
- #if TEMP_1_PIN > -1 || defined BED_USES_AD595
- bedtempC = analog2tempBed(current_bed_raw);
- #endif
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined HEATER_USES_AD595
- showString(PSTR("ok T:"));
- Serial.print(hotendtC);
- #ifdef PIDTEMP
- showString(PSTR(" @:"));
- Serial.print(heater_duty);
- /*
- showString(PSTR(",P:"));
- Serial.print(pTerm);
- showString(PSTR(",I:"));
- Serial.print(iTerm);
- showString(PSTR(",D:"));
- Serial.print(dTerm);
- */
- #ifdef AUTOTEMP
- showString(PSTR(",AU:"));
- Serial.print(autotemp_setpoint);
- #endif
- #endif
- #if TEMP_1_PIN > -1 || defined BED_USES_AD595
- showString(PSTR(" B:"));
- Serial.println(bedtempC);
- #else
- Serial.println();
- #endif
- #else
- #error No temperature source available
- #endif
- return;
- //break;
- case 109: { // M109 - Wait for extruder heater to reach target.
- if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
- #ifdef WATCHPERIOD
- if(target_raw>current_raw)
- {
- watchmillis = max(1,millis());
- watch_raw = current_raw;
- }
- else
- {
- watchmillis = 0;
- }
- #endif
- codenum = millis();
-
- /* See if we are heating up or cooling down */
- bool target_direction = (current_raw < target_raw); // true if heating, false if cooling
-
- #ifdef TEMP_RESIDENCY_TIME
- long residencyStart;
- residencyStart = -1;
- /* continue to loop until we have reached the target temp
- _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
- while( (target_direction ? (current_raw < target_raw) : (current_raw > target_raw))
- || (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
- #else
- while ( target_direction ? (current_raw < target_raw) : (current_raw > target_raw) ) {
- #endif
- if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up/cooling down
- {
- showString(PSTR("T:"));
- Serial.println( analog2temp(current_raw) );
- codenum = millis();
- }
- manage_heater();
- #ifdef TEMP_RESIDENCY_TIME
- /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
- or when current temp falls outside the hysteresis after target temp was reached */
- if ( (residencyStart == -1 && target_direction && current_raw >= target_raw)
- || (residencyStart == -1 && !target_direction && current_raw <= target_raw)
- || (residencyStart > -1 && labs(analog2temp(current_raw) - analog2temp(target_raw)) > TEMP_HYSTERESIS) ) {
- residencyStart = millis();
- }
- #endif
- }
- }
- break;
- case 190: // M190 - Wait bed for heater to reach target.
- #if TEMP_1_PIN > -1
- if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
- codenum = millis();
- while(current_bed_raw < target_bed_raw)
- {
- if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
- {
- hotendtC=analog2temp(current_raw);
- showString(PSTR("T:"));
- Serial.print( hotendtC );
- showString(PSTR(" B:"));
- Serial.println( analog2tempBed(current_bed_raw) );
- codenum = millis();
- }
- manage_heater();
- }
- #endif
- break;
- #if FAN_PIN > -1
- case 106: //M106 Fan On
- if (code_seen('S'))
- {
- WRITE(FAN_PIN, HIGH);
- //analogWrite(FAN_PIN, constrain(code_value(),0,255) );
- }
- else
- {
- WRITE(FAN_PIN, HIGH);
- //analogWrite(FAN_PIN, 255 );
- }
- break;
- case 107: //M107 Fan Off
- //analogWrite(FAN_PIN, 0);
- WRITE(FAN_PIN, LOW);
- break;
- #endif
- #if (PS_ON_PIN > -1)
- case 80: // M81 - ATX Power On
- SET_OUTPUT(PS_ON_PIN); //GND
- break;
- case 81: // M81 - ATX Power Off
- SET_INPUT(PS_ON_PIN); //Floating
- break;
- #endif
- case 82:
- axis_relative_modes[3] = false;
- break;
- case 83:
- axis_relative_modes[3] = true;
- break;
- case 84:
- st_synchronize(); // wait for all movements to finish
- if(code_seen('S'))
- {
- stepper_inactive_time = code_value() * 1000;
- }
- else
- {
- disable_x();
- disable_y();
- disable_z();
- disable_e();
- }
- break;
- case 85: // M85
- code_seen('S');
- max_inactive_time = code_value() * 1000;
- break;
- case 92: // M92
- for(int i=0; i < NUM_AXIS; i++)
- {
- if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
- }
-
- // Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it
- // should also be used in setup() as well
- // long temp_max_intervals[NUM_AXIS];
- // for(int i=0; i < NUM_AXIS; i++)
- // {
- // axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for
- // all steps_per_unit related variables
- // }
- break;
- case 115: // M115
- showString(PSTR("FIRMWARE_NAME: Sprinter Experimental PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\r\n"));
- //Serial.println(uuid);
- showString(PSTR(_DEF_CHAR_UUID));
- showString(PSTR("\r\n"));
- break;
- case 114: // M114
- showString(PSTR("X:"));
- Serial.print(current_position[0]);
- showString(PSTR("Y:"));
- Serial.print(current_position[1]);
- showString(PSTR("Z:"));
- Serial.print(current_position[2]);
- showString(PSTR("E:"));
- Serial.println(current_position[3]);
- break;
- case 119: // M119
-
- #if (X_MIN_PIN > -1)
- showString(PSTR("x_min:"));
- Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
- #endif
- #if (X_MAX_PIN > -1)
- showString(PSTR("x_max:"));
- Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
- #endif
- #if (Y_MIN_PIN > -1)
- showString(PSTR("y_min:"));
- Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
- #endif
- #if (Y_MAX_PIN > -1)
- showString(PSTR("y_max:"));
- Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
- #endif
- #if (Z_MIN_PIN > -1)
- showString(PSTR("z_min:"));
- Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
- #endif
- #if (Z_MAX_PIN > -1)
- showString(PSTR("z_max:"));
- Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
- #endif
-
- showString(PSTR("\r\n"));
- break;
- case 201: // M201
- for(int8_t i=0; i < NUM_AXIS; i++)
- {
- if(code_seen(axis_codes[i]))
- {
- max_acceleration_units_per_sq_second[i] = code_value();
- axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- }
- #if 0 // Not used for Sprinter/grbl gen6
- case 202: // M202
- for(int i=0; i < NUM_AXIS; i++)
- {
- if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- break;
- #else
- case 202: // M202 max feedrate mm/sec
- for(int8_t i=0; i < NUM_AXIS; i++)
- {
- if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
- }
- break;
- #endif
- case 203: // M203 Temperature monitor
- if(code_seen('S')) manage_monitor = code_value();
- if(manage_monitor==100) manage_monitor=1; // Set 100 to heated bed
- break;
- case 204: // M204 acclereration S normal moves T filmanent only moves
- if(code_seen('S')) move_acceleration = code_value() ;
- if(code_seen('T')) retract_acceleration = code_value() ;
- break;
- case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
- if(code_seen('S')) minimumfeedrate = code_value();
- if(code_seen('T')) mintravelfeedrate = code_value();
- //if(code_seen('B')) minsegmenttime = code_value() ;
- if(code_seen('X')) max_xy_jerk = code_value() ;
- if(code_seen('Z')) max_z_jerk = code_value() ;
- break;
- case 220: // M220 S<factor in percent>- set speed factor override percentage
- {
- if(code_seen('S'))
- {
- feedmultiply = code_value() ;
- if(feedmultiply < 20) feedmultiply = 20;
- if(feedmultiply > 200) feedmultiply = 200;
- feedmultiplychanged=true;
- }
- }
- break;
- #ifdef USE_EEPROM_SETTINGS
- case 500: // Store settings in EEPROM
- {
- EEPROM_StoreSettings();
- }
- break;
- case 501: // Read settings from EEPROM
- {
- EEPROM_RetrieveSettings(false,true);
- }
- break;
- case 502: // Revert to default settings
- {
- EEPROM_RetrieveSettings(true,true);
- }
- break;
- case 503: // print settings currently in memory
- {
- EEPROM_printSettings();
- }
- break;
- #endif
- #ifdef DEBUG_HEATER_TEMP
- case 601: // M601 show Extruder Temp jitter
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
- if(current_raw_maxval > 0)
- tt_maxval = analog2temp(current_raw_maxval);
- if(current_raw_minval < 10000)
- tt_minval = analog2temp(current_raw_minval);
- #endif
-
- showString(PSTR("Tmin:"));
- Serial.print(tt_minval);
- showString(PSTR(" / Tmax:"));
- Serial.print(tt_maxval);
- showString(PSTR(" "));
- break;
- case 602: // M602 reset Extruder Temp jitter
- current_raw_minval = 32000;
- current_raw_maxval = -32000;
-
- showString(PSTR("T Minmax Reset "));
- break;
- #endif
- case 603: // M603 Free RAM
- showString(PSTR("Free Ram: "));
- Serial.println(FreeRam1());
- break;
- default:
- #ifdef SEND_WRONG_CMD_INFO
- showString(PSTR("Unknown M-COM:"));
- Serial.println(cmdbuffer[bufindr]);
- #endif
- break;
- }
-
- }
- else{
- showString(PSTR("Unknown command:\r\n"));
- Serial.println(cmdbuffer[bufindr]);
- }
-
- ClearToSend();
-
- }
- void FlushSerialRequestResend()
- {
- //char cmdbuffer[bufindr][100]="Resend:";
- Serial.flush();
- showString(PSTR("Resend:"));
- Serial.println(gcode_LastN + 1);
- ClearToSend();
- }
- void ClearToSend()
- {
- previous_millis_cmd = millis();
- #ifdef SDSUPPORT
- if(fromsd[bufindr])
- return;
- #endif
- showString(PSTR("ok\r\n"));
- //Serial.println("ok");
- }
- FORCE_INLINE void get_coordinates()
- {
- for(int i=0; i < NUM_AXIS; i++)
- {
- if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
- else destination[i] = current_position[i]; //Are these else lines really needed?
- }
-
- if(code_seen('F'))
- {
- next_feedrate = code_value();
- if(next_feedrate > 0.0) feedrate = next_feedrate;
- }
- }
- #ifdef USE_ARC_FUNCTION
- FORCE_INLINE void get_arc_coordinates()
- {
- get_coordinates();
- if(code_seen('I')) offset[0] = code_value();
- if(code_seen('J')) offset[1] = code_value();
- }
- #endif
- void prepare_move()
- {
- long help_feedrate = 0;
- if(!is_homing){
- if (min_software_endstops)
- {
- if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
- if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
- if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
- }
- if (max_software_endstops)
- {
- if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
- if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
- if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
- }
- }
-
- help_feedrate = ((long)feedrate*(long)feedmultiply);
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], help_feedrate/6000.0);
-
- for(int i=0; i < NUM_AXIS; i++)
- {
- current_position[i] = destination[i];
- }
- }
- #ifdef USE_ARC_FUNCTION
- void prepare_arc_move(char isclockwise)
- {
- float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
- long help_feedrate = 0;
-
- help_feedrate = ((long)feedrate*(long)feedmultiply);
- // Trace the arc
- mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, help_feedrate/6000.0, r, isclockwise);
-
- // As far as the parser is concerned, the position is now == target. In reality the
- // motion control system might still be processing the action and the real tool position
- // in any intermediate location.
- for(int8_t i=0; i < NUM_AXIS; i++)
- {
- current_position[i] = destination[i];
- }
- }
- #endif
- FORCE_INLINE void kill()
- {
- #if TEMP_0_PIN > -1
- target_raw=0;
- WRITE(HEATER_0_PIN,LOW);
- #endif
-
- #if TEMP_1_PIN > -1
- target_bed_raw=0;
- if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
- #endif
- disable_x();
- disable_y();
- disable_z();
- disable_e();
-
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
-
- }
- FORCE_INLINE void manage_inactivity(byte debug)
- {
- if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
-
- if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time)
- {
- disable_x();
- disable_y();
- disable_z();
- disable_e();
- }
- check_axes_activity();
- }
- // Planner with Interrupt for Stepper
- /*
- Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
-
- s == speed, a == acceleration, t == time, d == distance
-
- Basic definitions:
-
- Speed[s_, a_, t_] := s + (a*t)
- Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
-
- Distance to reach a specific speed with a constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
-
- Speed after a given distance of travel with constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- m -> Sqrt[2 a d + s^2]
-
- DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
-
- When to start braking (di) to reach a specified destionation speed (s2) after accelerating
- from initial speed s1 without ever stopping at a plateau:
-
- Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
-
- IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- */
- static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
- static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
- static volatile unsigned char block_buffer_tail; // Index of the block to process now
- //===========================================================================
- //=============================private variables ============================
- //===========================================================================
- // Returns the index of the next block in the ring buffer
- // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
- static int8_t next_block_index(int8_t block_index) {
- block_index++;
- if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
- return(block_index);
- }
- // Returns the index of the previous block in the ring buffer
- static int8_t prev_block_index(int8_t block_index) {
- if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
- block_index--;
- return(block_index);
- }
- // The current position of the tool in absolute steps
- static long position[4];
- static float previous_speed[4]; // Speed of previous path line segment
- static float previous_nominal_speed; // Nominal speed of previous path line segment
- // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
- // given acceleration:
- FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
- {
- if (acceleration!=0) {
- return((target_rate*target_rate-initial_rate*initial_rate)/
- (2.0*acceleration));
- }
- else {
- return 0.0; // acceleration was 0, set acceleration distance to 0
- }
- }
- // This function gives you the point at which you must start braking (at the rate of -acceleration) if
- // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
- // a total travel of distance. This can be used to compute the intersection point between acceleration and
- // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
- FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
- {
- if (acceleration!=0) {
- return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
- (4.0*acceleration) );
- }
- else {
- return 0.0; // acceleration was 0, set intersection distance to 0
- }
- }
- // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
- void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
- unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
- unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
- // Limit minimal step rate (Otherwise the timer will overflow.)
- if(initial_rate <120) {initial_rate=120; }
- if(final_rate < 120) {final_rate=120; }
-
- long acceleration = block->acceleration_st;
- int32_t accelerate_steps =
- ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
- int32_t decelerate_steps =
- floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
-
- // Calculate the size of Plateau of Nominal Rate.
- int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
-
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
- // have to use intersection_distance() to calculate when to abort acceleration and start braking
- // in order to reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- accelerate_steps = ceil(
- intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
- accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
- accelerate_steps = min(accelerate_steps,block->step_event_count);
- plateau_steps = 0;
- }
- #ifdef ADVANCE
- volatile long initial_advance = block->advance*entry_factor*entry_factor;
- volatile long final_advance = block->advance*exit_factor*exit_factor;
- #endif // ADVANCE
-
- // block->accelerate_until = accelerate_steps;
- // block->decelerate_after = accelerate_steps+plateau_steps;
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
- if(block->busy == false) { // Don't update variables if block is busy.
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = accelerate_steps+plateau_steps;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
- #ifdef ADVANCE
- block->initial_advance = initial_advance;
- block->final_advance = final_advance;
- #endif //ADVANCE
- }
- CRITICAL_SECTION_END;
- }
- // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
- // acceleration within the allotted distance.
- FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
- return sqrt(target_velocity*target_velocity-2*acceleration*distance);
- }
- // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
- // This method will calculate the junction jerk as the euclidean distance between the nominal
- // velocities of the respective blocks.
- //inline float junction_jerk(block_t *before, block_t *after) {
- // return sqrt(
- // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
- //}
- // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
- void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!current) { return; }
-
- if (next) {
- // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
- // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
- // check for maximum allowable speed reductions to ensure maximum possible planned speed.
- if (current->entry_speed != current->max_entry_speed) {
-
- // If nominal length true, max junction speed is guaranteed to be reached. Only compute
- // for max allowable speed if block is decelerating and nominal length is false.
- if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
- current->entry_speed = min( current->max_entry_speed,
- max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
- } else {
- current->entry_speed = current->max_entry_speed;
- }
- current->recalculate_flag = true;
-
- }
- } // Skip last block. Already initialized and set for recalculation.
- }
- // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
- // implements the reverse pass.
- void planner_reverse_pass() {
- uint8_t block_index = block_buffer_head;
- if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
- block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
- block_t *block[3] = { NULL, NULL, NULL };
- while(block_index != block_buffer_tail) {
- block_index = prev_block_index(block_index);
- block[2]= block[1];
- block[1]= block[0];
- block[0] = &block_buffer[block_index];
- planner_reverse_pass_kernel(block[0], block[1], block[2]);
- }
- }
- }
- // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
- void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!previous) { return; }
-
- // If the previous block is an acceleration block, but it is not long enough to complete the
- // full speed change within the block, we need to adjust the entry speed accordingly. Entry
- // speeds have already been reset, maximized, and reverse planned by reverse planner.
- // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
- if (!previous->nominal_length_flag) {
- if (previous->entry_speed < current->entry_speed) {
- double entry_speed = min( current->entry_speed,
- max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
- // Check for junction speed change
- if (current->entry_speed != entry_speed) {
- current->entry_speed = entry_speed;
- current->recalculate_flag = true;
- }
- }
- }
- }
- // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
- // implements the forward pass.
- void planner_forward_pass() {
- uint8_t block_index = block_buffer_tail;
- block_t *block[3] = { NULL, NULL, NULL };
- while(block_index != block_buffer_head) {
- block[0] = block[1];
- block[1] = block[2];
- block[2] = &block_buffer[block_index];
- planner_forward_pass_kernel(block[0],block[1],block[2]);
- block_index = next_block_index(block_index);
- }
- planner_forward_pass_kernel(block[1], block[2], NULL);
- }
- // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
- // entry_factor for each junction. Must be called by planner_recalculate() after
- // updating the blocks.
- void planner_recalculate_trapezoids() {
- int8_t block_index = block_buffer_tail;
- block_t *current;
- block_t *next = NULL;
-
- while(block_index != block_buffer_head) {
- current = next;
- next = &block_buffer[block_index];
- if (current) {
- // Recalculate if current block entry or exit junction speed has changed.
- if (current->recalculate_flag || next->recalculate_flag) {
- // NOTE: Entry and exit factors always > 0 by all previous logic operations.
- calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
- next->entry_speed/current->nominal_speed);
- current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
- }
- }
- block_index = next_block_index( block_index );
- }
- // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
- if(next != NULL) {
- calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
- MINIMUM_PLANNER_SPEED/next->nominal_speed);
- next->recalculate_flag = false;
- }
- }
- // Recalculates the motion plan according to the following algorithm:
- //
- // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
- // so that:
- // a. The junction jerk is within the set limit
- // b. No speed reduction within one block requires faster deceleration than the one, true constant
- // acceleration.
- // 2. Go over every block in chronological order and dial down junction speed reduction values if
- // a. The speed increase within one block would require faster accelleration than the one, true
- // constant acceleration.
- //
- // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
- // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
- // the set limit. Finally it will:
- //
- // 3. Recalculate trapezoids for all blocks.
- void planner_recalculate() {
- planner_reverse_pass();
- planner_forward_pass();
- planner_recalculate_trapezoids();
- }
- void plan_init() {
- block_buffer_head = 0;
- block_buffer_tail = 0;
- memset(position, 0, sizeof(position)); // clear position
- previous_speed[0] = 0.0;
- previous_speed[1] = 0.0;
- previous_speed[2] = 0.0;
- previous_speed[3] = 0.0;
- previous_nominal_speed = 0.0;
- }
- FORCE_INLINE void plan_discard_current_block() {
- if (block_buffer_head != block_buffer_tail) {
- block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
- }
- }
- FORCE_INLINE block_t *plan_get_current_block() {
- if (block_buffer_head == block_buffer_tail) {
- return(NULL);
- }
- block_t *block = &block_buffer[block_buffer_tail];
- block->busy = true;
- return(block);
- }
- // Gets the current block. Returns NULL if buffer empty
- FORCE_INLINE bool blocks_queued()
- {
- if (block_buffer_head == block_buffer_tail) {
- return false;
- }
- else
- return true;
- }
- void check_axes_activity() {
- unsigned char x_active = 0;
- unsigned char y_active = 0;
- unsigned char z_active = 0;
- unsigned char e_active = 0;
- block_t *block;
- if(block_buffer_tail != block_buffer_head) {
- uint8_t block_index = block_buffer_tail;
- while(block_index != block_buffer_head) {
- block = &block_buffer[block_index];
- if(block->steps_x != 0) x_active++;
- if(block->steps_y != 0) y_active++;
- if(block->steps_z != 0) z_active++;
- if(block->steps_e != 0) e_active++;
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
- }
- }
- if((DISABLE_X) && (x_active == 0)) disable_x();
- if((DISABLE_Y) && (y_active == 0)) disable_y();
- if((DISABLE_Z) && (z_active == 0)) disable_z();
- if((DISABLE_E) && (e_active == 0)) disable_e();
- }
- float junction_deviation = 0.1;
- // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
- // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
- // calculation the caller must also provide the physical length of the line in millimeters.
- void plan_buffer_line(float x, float y, float z, float e, float feed_rate)
- {
- // Calculate the buffer head after we push this byte
- int next_buffer_head = next_block_index(block_buffer_head);
- // If the buffer is full: good! That means we are well ahead of the robot.
- // Rest here until there is room in the buffer.
- while(block_buffer_tail == next_buffer_head) {
- manage_heater();
- manage_inactivity(1);
- }
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
- long target[4];
- target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
-
- // Prepare to set up new block
- block_t *block = &block_buffer[block_buffer_head];
-
- // Mark block as not busy (Not executed by the stepper interrupt)
- block->busy = false;
- // Number of steps for each axis
- block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
- block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
- block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
- block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
- block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
- // Bail if this is a zero-length block
- if (block->step_event_count <=dropsegments) { return; };
- // Compute direction bits for this block
- block->direction_bits = 0;
- if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
- if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
- if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
- if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
-
- #ifdef DELAY_ENABLE
- if(block->steps_x != 0)
- {
- enable_x();
- delayMicroseconds(DELAY_ENABLE);
- }
- if(block->steps_y != 0)
- {
- enable_y();
- delayMicroseconds(DELAY_ENABLE);
- }
- if(if(block->steps_z != 0))
- {
- enable_z();
- delayMicroseconds(DELAY_ENABLE);
- }
- if(if(block->steps_e != 0))
- {
- enable_e();
- delayMicroseconds(DELAY_ENABLE);
- }
- #else
- //enable active axes
- if(block->steps_x != 0) enable_x();
- if(block->steps_y != 0) enable_y();
- if(block->steps_z != 0) enable_z();
- if(block->steps_e != 0) enable_e();
- #endif
-
- if (block->steps_e == 0) {
- if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
- }
- else {
- if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
- }
- // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
- int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
- #ifdef SLOWDOWN
- if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
- #endif
- float delta_mm[4];
- delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
- delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
- delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
- delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
-
- if ( block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0 ) {
- block->millimeters = fabs(delta_mm[E_AXIS]);
- } else {
- block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
- }
-
- float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
-
- // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
- float inverse_second = feed_rate * inverse_millimeters;
-
- block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
- block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
-
-
-
- /*
- // segment time im micro seconds
- long segment_time = lround(1000000.0/inverse_second);
- if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
- if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
- }
- }
- else {
- if (segment_time<minsegmenttime) segment_time=minsegmenttime;
- }
- // END OF SLOW DOWN SECTION
- */
- // Calculate speed in mm/sec for each axis
- float current_speed[4];
- for(int i=0; i < 4; i++) {
- current_speed[i] = delta_mm[i] * inverse_second;
- }
- // Limit speed per axis
- float speed_factor = 1.0; //factor <=1 do decrease speed
- for(int i=0; i < 4; i++) {
- if(fabs(current_speed[i]) > max_feedrate[i])
- speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
- }
- // Correct the speed
- if( speed_factor < 1.0) {
- // Serial.print("speed factor : "); Serial.println(speed_factor);
- for(int i=0; i < 4; i++) {
- if(fabs(current_speed[i]) > max_feedrate[i])
- speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
- /*
- if(speed_factor < 0.1) {
- Serial.print("speed factor : "); Serial.println(speed_factor);
- Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
- }
- */
- }
- for(unsigned char i=0; i < 4; i++) {
- current_speed[i] *= speed_factor;
- }
- block->nominal_speed *= speed_factor;
- block->nominal_rate *= speed_factor;
- }
- // Compute and limit the acceleration rate for the trapezoid generator.
- float steps_per_mm = block->step_event_count/block->millimeters;
- if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
- block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
- }
- else {
- block->acceleration_st = ceil(move_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
- // Limit acceleration per axis
- if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
- }
- block->acceleration = block->acceleration_st / steps_per_mm;
- block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
-
- #if 0 // Use old jerk for now
- // Compute path unit vector
- double unit_vec[3];
- unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
- unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
- unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
-
- // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
- // Let a circle be tangent to both previous and current path line segments, where the junction
- // deviation is defined as the distance from the junction to the closest edge of the circle,
- // colinear with the circle center. The circular segment joining the two paths represents the
- // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
- // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
- // path width or max_jerk in the previous grbl version. This approach does not actually deviate
- // from path, but used as a robust way to compute cornering speeds, as it takes into account the
- // nonlinearities of both the junction angle and junction velocity.
- double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
- // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
- if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
- // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
- // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
- double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
-
- // Skip and use default max junction speed for 0 degree acute junction.
- if (cos_theta < 0.95) {
- vmax_junction = min(previous_nominal_speed,block->nominal_speed);
- // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
- if (cos_theta > -0.95) {
- // Compute maximum junction velocity based on maximum acceleration and junction deviation
- double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
- vmax_junction = min(vmax_junction,
- sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
- }
- }
- }
- #endif
- // Start with a safe speed
- float vmax_junction = max_xy_jerk/2;
- if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
- vmax_junction = max_z_jerk/2;
- vmax_junction = min(vmax_junction, block->nominal_speed);
- if ((moves_queued > 1) && (previous_nominal_speed > 0.0)) {
- float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
- if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
- vmax_junction = block->nominal_speed;
- }
- if (jerk > max_xy_jerk) {
- vmax_junction *= (max_xy_jerk/jerk);
- }
- if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
- vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
- }
- }
- block->max_entry_speed = vmax_junction;
-
- // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
- double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
- block->entry_speed = min(vmax_junction, v_allowable);
- // Initialize planner efficiency flags
- // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
- if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
- else { block->nominal_length_flag = false; }
- block->recalculate_flag = true; // Always calculate trapezoid for new block
-
- // Update previous path unit_vector and nominal speed
- memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
- previous_nominal_speed = block->nominal_speed;
-
- #ifdef ADVANCE
- // Calculate advance rate
- if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
- block->advance_rate = 0;
- block->advance = 0;
- }
- else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
- float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
- (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
- block->advance = advance;
- if(acc_dist == 0) {
- block->advance_rate = 0;
- }
- else {
- block->advance_rate = advance / (float)acc_dist;
- }
- }
- #endif // ADVANCE
- calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
- MINIMUM_PLANNER_SPEED/block->nominal_speed);
-
- // Move buffer head
- block_buffer_head = next_buffer_head;
-
- // Update position
- memcpy(position, target, sizeof(target)); // position[] = target[]
- planner_recalculate();
- #ifdef AUTOTEMP
- getHighESpeed();
- #endif
- st_wake_up();
- }
- void plan_set_position(float x, float y, float z, float e)
- {
- position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
- previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
- previous_speed[0] = 0.0;
- previous_speed[1] = 0.0;
- previous_speed[2] = 0.0;
- previous_speed[3] = 0.0;
- }
- #ifdef AUTOTEMP
- void getHighESpeed()
- {
- static float oldt=0;
- if(!autotemp_enabled)
- return;
- if((target_temp+2) < autotemp_min) //probably temperature set to zero.
- return; //do nothing
-
- float high=0;
- uint8_t block_index = block_buffer_tail;
-
- while(block_index != block_buffer_head)
- {
- float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate;
- //se; units steps/sec;
- if(se>high)
- {
- high=se;
- }
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
- }
-
- float t=autotemp_min+high*autotemp_factor;
-
- if(t<autotemp_min)
- t=autotemp_min;
-
- if(t>autotemp_max)
- t=autotemp_max;
-
- if(oldt>t)
- {
- t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
- }
- oldt=t;
- autotemp_setpoint = (int)t;
- }
- #endif
- // Stepper
- // intRes = intIn1 * intIn2 >> 16
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 24 bit result
- #define MultiU16X8toH16(intRes, charIn1, intIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %A1, %A2 \n\t" \
- "add %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r0 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (charIn1), \
- "d" (intIn2) \
- : \
- "r26" \
- )
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 48bit result
- #define MultiU24X24toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
- // Some useful constants
- #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
- #ifdef ENDSTOPS_ONLY_FOR_HOMING
- #define CHECK_ENDSTOPS if(check_endstops)
- #else
- #define CHECK_ENDSTOPS
- #endif
- static block_t *current_block; // A pointer to the block currently being traced
- // Variables used by The Stepper Driver Interrupt
- static unsigned char out_bits; // The next stepping-bits to be output
- static long counter_x, // Counter variables for the bresenham line tracer
- counter_y,
- counter_z,
- counter_e;
- static unsigned long step_events_completed; // The number of step events executed in the current block
- #ifdef ADVANCE
- static long advance_rate, advance, final_advance = 0;
- static short old_advance = 0;
- #endif
- static short e_steps;
- static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
- static long acceleration_time, deceleration_time;
- static unsigned short acc_step_rate; // needed for deccelaration start point
- static char step_loops;
- static unsigned short OCR1A_nominal;
- static volatile bool endstop_x_hit=false;
- static volatile bool endstop_y_hit=false;
- static volatile bool endstop_z_hit=false;
- static bool old_x_min_endstop=false;
- static bool old_x_max_endstop=false;
- static bool old_y_min_endstop=false;
- static bool old_y_max_endstop=false;
- static bool old_z_min_endstop=false;
- static bool old_z_max_endstop=false;
- // __________________________
- // /| |\ _________________ ^
- // / | | \ /| |\ |
- // / | | \ / | | \ s
- // / | | | | | \ p
- // / | | | | | \ e
- // +-----+------------------------+---+--+---------------+----+ e
- // | BLOCK 1 | BLOCK 2 | d
- //
- // time ----->
- //
- // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- // first block->accelerate_until step_events_completed, then keeps going at constant speed until
- // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- // The slope of acceleration is calculated with the leib ramp alghorithm.
- void st_wake_up()
- {
- // TCNT1 = 0;
- if(busy == false)
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- FORCE_INLINE unsigned short calc_timer(unsigned short step_rate)
- {
- unsigned short timer;
- if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
-
- if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
- step_rate = (step_rate >> 2)&0x3fff;
- step_loops = 4;
- }
- else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
- step_rate = (step_rate >> 1)&0x7fff;
- step_loops = 2;
- }
- else {
- step_loops = 1;
- }
-
- if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
- step_rate -= (F_CPU/500000); // Correct for minimal speed
-
- if(step_rate >= (8*256)) // higher step rate
- { // higher step rate
- unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
- unsigned char tmp_step_rate = (step_rate & 0x00ff);
- unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
- MultiU16X8toH16(timer, tmp_step_rate, gain);
- timer = (unsigned short)pgm_read_word_near(table_address) - timer;
- }
- else
- { // lower step rates
- unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
- table_address += ((step_rate)>>1) & 0xfffc;
- timer = (unsigned short)pgm_read_word_near(table_address);
- timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
- }
- if(timer < 100) { timer = 100; }//(20kHz this should never happen)
- return timer;
- }
- // Initializes the trapezoid generator from the current block. Called whenever a new
- // block begins.
- FORCE_INLINE void trapezoid_generator_reset()
- {
- #ifdef ADVANCE
- advance = current_block->initial_advance;
- final_advance = current_block->final_advance;
- // Do E steps + advance steps
- e_steps += ((advance >>8) - old_advance);
- old_advance = advance >>8;
- #endif
- deceleration_time = 0;
-
-
- // step_rate to timer interval
- acc_step_rate = current_block->initial_rate;
- acceleration_time = calc_timer(acc_step_rate);
- OCR1A = acceleration_time;
- OCR1A_nominal = calc_timer(current_block->nominal_rate);
-
- }
- // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
- // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
- ISR(TIMER1_COMPA_vect)
- {
- // If there is no current block, attempt to pop one from the buffer
- if (current_block == NULL) {
- // Anything in the buffer?
- current_block = plan_get_current_block();
- if (current_block != NULL) {
- trapezoid_generator_reset();
- counter_x = -(current_block->step_event_count >> 1);
- counter_y = counter_x;
- counter_z = counter_x;
- counter_e = counter_x;
- step_events_completed = 0;
- // #ifdef ADVANCE
- // e_steps = 0;
- // #endif
- }
- else {
- OCR1A=2000; // 1kHz.
- }
- }
- if (current_block != NULL) {
- // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
- out_bits = current_block->direction_bits;
- // Set direction en check limit switches
- if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
- WRITE(X_DIR_PIN, INVERT_X_DIR);
- CHECK_ENDSTOPS
- {
- #if X_MIN_PIN > -1
- bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOP_INVERT);
- if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
- endstop_x_hit=true;
- step_events_completed = current_block->step_event_count;
- }
- old_x_min_endstop = x_min_endstop;
- #endif
- }
- }
- else { // +direction
- WRITE(X_DIR_PIN,!INVERT_X_DIR);
- CHECK_ENDSTOPS
- {
- #if X_MAX_PIN > -1
- bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOP_INVERT);
- if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
- endstop_x_hit=true;
- step_events_completed = current_block->step_event_count;
- }
- old_x_max_endstop = x_max_endstop;
- #endif
- }
- }
- if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
- WRITE(Y_DIR_PIN,INVERT_Y_DIR);
- CHECK_ENDSTOPS
- {
- #if Y_MIN_PIN > -1
- bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT);
- if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
- endstop_y_hit=true;
- step_events_completed = current_block->step_event_count;
- }
- old_y_min_endstop = y_min_endstop;
- #endif
- }
- }
- else { // +direction
- WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
- CHECK_ENDSTOPS
- {
- #if Y_MAX_PIN > -1
- bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT);
- if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
- endstop_y_hit=true;
- step_events_completed = current_block->step_event_count;
- }
- old_y_max_endstop = y_max_endstop;
- #endif
- }
- }
- if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
- WRITE(Z_DIR_PIN,INVERT_Z_DIR);
- CHECK_ENDSTOPS
- {
- #if Z_MIN_PIN > -1
- bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT);
- if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
- endstop_z_hit=true;
- step_events_completed = current_block->step_event_count;
- }
- old_z_min_endstop = z_min_endstop;
- #endif
- }
- }
- else { // +direction
- WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
- CHECK_ENDSTOPS
- {
- #if Z_MAX_PIN > -1
- bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT);
- if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
- endstop_z_hit=true;
- step_events_completed = current_block->step_event_count;
- }
- old_z_max_endstop = z_max_endstop;
- #endif
- }
- }
- #ifndef ADVANCE
- if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
- WRITE(E_DIR_PIN,INVERT_E_DIR);
- }
- else { // +direction
- WRITE(E_DIR_PIN,!INVERT_E_DIR);
- }
- #endif //!ADVANCE
-
-
- for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
-
- #ifdef ADVANCE
- counter_e += current_block->steps_e;
- if (counter_e > 0) {
- counter_e -= current_block->step_event_count;
- if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
- e_steps--;
- }
- else {
- e_steps++;
- }
- }
- #endif //ADVANCE
-
- counter_x += current_block->steps_x;
- if (counter_x > 0) {
- WRITE(X_STEP_PIN, HIGH);
- counter_x -= current_block->step_event_count;
- WRITE(X_STEP_PIN, LOW);
- }
- counter_y += current_block->steps_y;
- if (counter_y > 0) {
- WRITE(Y_STEP_PIN, HIGH);
- counter_y -= current_block->step_event_count;
- WRITE(Y_STEP_PIN, LOW);
- }
- counter_z += current_block->steps_z;
- if (counter_z > 0) {
- WRITE(Z_STEP_PIN, HIGH);
- counter_z -= current_block->step_event_count;
- WRITE(Z_STEP_PIN, LOW);
- }
- #ifndef ADVANCE
- counter_e += current_block->steps_e;
- if (counter_e > 0) {
- WRITE(E_STEP_PIN, HIGH);
- counter_e -= current_block->step_event_count;
- WRITE(E_STEP_PIN, LOW);
- }
- #endif //!ADVANCE
- step_events_completed += 1;
- if(step_events_completed >= current_block->step_event_count) break;
- }
- // Calculare new timer value
- unsigned short timer;
- unsigned short step_rate;
- if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
-
- MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- acc_step_rate += current_block->initial_rate;
-
- // upper limit
- if(acc_step_rate > current_block->nominal_rate)
- acc_step_rate = current_block->nominal_rate;
- // step_rate to timer interval
- timer = calc_timer(acc_step_rate);
- OCR1A = timer;
- acceleration_time += timer;
- #ifdef ADVANCE
- for(int8_t i=0; i < step_loops; i++) {
- advance += advance_rate;
- }
- //if(advance > current_block->advance) advance = current_block->advance;
- // Do E steps + advance steps
- e_steps += ((advance >>8) - old_advance);
- old_advance = advance >>8;
-
- #endif
- }
- else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
- MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
-
- if(step_rate > acc_step_rate) { // Check step_rate stays positive
- step_rate = current_block->final_rate;
- }
- else {
- step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
- }
- // lower limit
- if(step_rate < current_block->final_rate)
- step_rate = current_block->final_rate;
- // step_rate to timer interval
- timer = calc_timer(step_rate);
- OCR1A = timer;
- deceleration_time += timer;
- #ifdef ADVANCE
- for(int8_t i=0; i < step_loops; i++) {
- advance -= advance_rate;
- }
- if(advance < final_advance) advance = final_advance;
- // Do E steps + advance steps
- e_steps += ((advance >>8) - old_advance);
- old_advance = advance >>8;
- #endif //ADVANCE
- }
- else {
- OCR1A = OCR1A_nominal;
- }
- // If current block is finished, reset pointer
- if (step_events_completed >= current_block->step_event_count) {
- current_block = NULL;
- plan_discard_current_block();
- }
- }
- }
- #ifdef ADVANCE
- unsigned char old_OCR0A;
- // Timer interrupt for E. e_steps is set in the main routine;
- // Timer 0 is shared with millies
- ISR(TIMER0_COMPA_vect)
- {
- old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
- OCR0A = old_OCR0A;
- // Set E direction (Depends on E direction + advance)
- for(unsigned char i=0; i<4;i++)
- {
- if (e_steps != 0)
- {
- WRITE(E0_STEP_PIN, LOW);
- if (e_steps < 0) {
- WRITE(E0_DIR_PIN, INVERT_E0_DIR);
- e_steps++;
- WRITE(E0_STEP_PIN, HIGH);
- }
- else if (e_steps > 0) {
- WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
- e_steps--;
- WRITE(E0_STEP_PIN, HIGH);
- }
- }
- }
- }
- #endif // ADVANCE
- void st_init()
- {
- // waveform generation = 0100 = CTC
- TCCR1B &= ~(1<<WGM13);
- TCCR1B |= (1<<WGM12);
- TCCR1A &= ~(1<<WGM11);
- TCCR1A &= ~(1<<WGM10);
- // output mode = 00 (disconnected)
- TCCR1A &= ~(3<<COM1A0);
- TCCR1A &= ~(3<<COM1B0);
- // Set the timer pre-scaler
- // Generally we use a divider of 8, resulting in a 2MHz timer
- // frequency on a 16MHz MCU. If you are going to change this, be
- // sure to regenerate speed_lookuptable.h with
- // create_speed_lookuptable.py
- TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
- OCR1A = 0x4000;
- TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- #ifdef ADVANCE
- #if defined(TCCR0A) && defined(WGM01)
- TCCR0A &= ~(1<<WGM01);
- TCCR0A &= ~(1<<WGM00);
- #endif
- e_steps = 0;
- TIMSK0 |= (1<<OCIE0A);
- #endif //ADVANCE
- #ifdef ENDSTOPS_ONLY_FOR_HOMING
- enable_endstops(false);
- #else
- enable_endstops(true);
- #endif
-
- sei();
- }
- // Block until all buffered steps are executed
- void st_synchronize()
- {
- while(blocks_queued()) {
- manage_heater();
- manage_inactivity(1);
- }
- }
- #ifdef DEBUG
- void log_message(char* message) {
- Serial.print("DEBUG"); Serial.println(message);
- }
- void log_bool(char* message, bool value) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
- }
- void log_int(char* message, int value) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
- }
- void log_long(char* message, long value) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
- }
- void log_float(char* message, float value) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
- }
- void log_uint(char* message, unsigned int value) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
- }
- void log_ulong(char* message, unsigned long value) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
- }
- void log_int_array(char* message, int value[], int array_lenght) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
- for(int i=0; i < array_lenght; i++){
- Serial.print(value[i]);
- if(i != array_lenght-1) Serial.print(", ");
- }
- Serial.println("}");
- }
- void log_long_array(char* message, long value[], int array_lenght) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
- for(int i=0; i < array_lenght; i++){
- Serial.print(value[i]);
- if(i != array_lenght-1) Serial.print(", ");
- }
- Serial.println("}");
- }
- void log_float_array(char* message, float value[], int array_lenght) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
- for(int i=0; i < array_lenght; i++){
- Serial.print(value[i]);
- if(i != array_lenght-1) Serial.print(", ");
- }
- Serial.println("}");
- }
- void log_uint_array(char* message, unsigned int value[], int array_lenght) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
- for(int i=0; i < array_lenght; i++){
- Serial.print(value[i]);
- if(i != array_lenght-1) Serial.print(", ");
- }
- Serial.println("}");
- }
- void log_ulong_array(char* message, unsigned long value[], int array_lenght) {
- Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
- for(int i=0; i < array_lenght; i++){
- Serial.print(value[i]);
- if(i != array_lenght-1) Serial.print(", ");
- }
- Serial.println("}");
- }
- #endif
|