123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- // Copyright 2012 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package bn256
- import (
- "math/big"
- )
- // twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
- // kept in Jacobian form and t=z² when valid. The group G₂ is the set of
- // n-torsion points of this curve over GF(p²) (where n = Order)
- type twistPoint struct {
- x, y, z, t *gfP2
- }
- var twistB = &gfP2{
- bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"),
- bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
- }
- // twistGen is the generator of group G₂.
- var twistGen = &twistPoint{
- &gfP2{
- bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"),
- bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
- },
- &gfP2{
- bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"),
- bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
- },
- &gfP2{
- bigFromBase10("0"),
- bigFromBase10("1"),
- },
- &gfP2{
- bigFromBase10("0"),
- bigFromBase10("1"),
- },
- }
- func newTwistPoint(pool *bnPool) *twistPoint {
- return &twistPoint{
- newGFp2(pool),
- newGFp2(pool),
- newGFp2(pool),
- newGFp2(pool),
- }
- }
- func (c *twistPoint) String() string {
- return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
- }
- func (c *twistPoint) Put(pool *bnPool) {
- c.x.Put(pool)
- c.y.Put(pool)
- c.z.Put(pool)
- c.t.Put(pool)
- }
- func (c *twistPoint) Set(a *twistPoint) {
- c.x.Set(a.x)
- c.y.Set(a.y)
- c.z.Set(a.z)
- c.t.Set(a.t)
- }
- // IsOnCurve returns true iff c is on the curve where c must be in affine form.
- func (c *twistPoint) IsOnCurve() bool {
- pool := new(bnPool)
- yy := newGFp2(pool).Square(c.y, pool)
- xxx := newGFp2(pool).Square(c.x, pool)
- xxx.Mul(xxx, c.x, pool)
- yy.Sub(yy, xxx)
- yy.Sub(yy, twistB)
- yy.Minimal()
- if yy.x.Sign() != 0 || yy.y.Sign() != 0 {
- return false
- }
- cneg := newTwistPoint(pool)
- cneg.Mul(c, Order, pool)
- return cneg.z.IsZero()
- }
- func (c *twistPoint) SetInfinity() {
- c.z.SetZero()
- }
- func (c *twistPoint) IsInfinity() bool {
- return c.z.IsZero()
- }
- func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
- // For additional comments, see the same function in curve.go.
- if a.IsInfinity() {
- c.Set(b)
- return
- }
- if b.IsInfinity() {
- c.Set(a)
- return
- }
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
- z1z1 := newGFp2(pool).Square(a.z, pool)
- z2z2 := newGFp2(pool).Square(b.z, pool)
- u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
- u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
- t := newGFp2(pool).Mul(b.z, z2z2, pool)
- s1 := newGFp2(pool).Mul(a.y, t, pool)
- t.Mul(a.z, z1z1, pool)
- s2 := newGFp2(pool).Mul(b.y, t, pool)
- h := newGFp2(pool).Sub(u2, u1)
- xEqual := h.IsZero()
- t.Add(h, h)
- i := newGFp2(pool).Square(t, pool)
- j := newGFp2(pool).Mul(h, i, pool)
- t.Sub(s2, s1)
- yEqual := t.IsZero()
- if xEqual && yEqual {
- c.Double(a, pool)
- return
- }
- r := newGFp2(pool).Add(t, t)
- v := newGFp2(pool).Mul(u1, i, pool)
- t4 := newGFp2(pool).Square(r, pool)
- t.Add(v, v)
- t6 := newGFp2(pool).Sub(t4, j)
- c.x.Sub(t6, t)
- t.Sub(v, c.x) // t7
- t4.Mul(s1, j, pool) // t8
- t6.Add(t4, t4) // t9
- t4.Mul(r, t, pool) // t10
- c.y.Sub(t4, t6)
- t.Add(a.z, b.z) // t11
- t4.Square(t, pool) // t12
- t.Sub(t4, z1z1) // t13
- t4.Sub(t, z2z2) // t14
- c.z.Mul(t4, h, pool)
- z1z1.Put(pool)
- z2z2.Put(pool)
- u1.Put(pool)
- u2.Put(pool)
- t.Put(pool)
- s1.Put(pool)
- s2.Put(pool)
- h.Put(pool)
- i.Put(pool)
- j.Put(pool)
- r.Put(pool)
- v.Put(pool)
- t4.Put(pool)
- t6.Put(pool)
- }
- func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
- A := newGFp2(pool).Square(a.x, pool)
- B := newGFp2(pool).Square(a.y, pool)
- C_ := newGFp2(pool).Square(B, pool)
- t := newGFp2(pool).Add(a.x, B)
- t2 := newGFp2(pool).Square(t, pool)
- t.Sub(t2, A)
- t2.Sub(t, C_)
- d := newGFp2(pool).Add(t2, t2)
- t.Add(A, A)
- e := newGFp2(pool).Add(t, A)
- f := newGFp2(pool).Square(e, pool)
- t.Add(d, d)
- c.x.Sub(f, t)
- t.Add(C_, C_)
- t2.Add(t, t)
- t.Add(t2, t2)
- c.y.Sub(d, c.x)
- t2.Mul(e, c.y, pool)
- c.y.Sub(t2, t)
- t.Mul(a.y, a.z, pool)
- c.z.Add(t, t)
- A.Put(pool)
- B.Put(pool)
- C_.Put(pool)
- t.Put(pool)
- t2.Put(pool)
- d.Put(pool)
- e.Put(pool)
- f.Put(pool)
- }
- func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
- sum := newTwistPoint(pool)
- sum.SetInfinity()
- t := newTwistPoint(pool)
- for i := scalar.BitLen(); i >= 0; i-- {
- t.Double(sum, pool)
- if scalar.Bit(i) != 0 {
- sum.Add(t, a, pool)
- } else {
- sum.Set(t)
- }
- }
- c.Set(sum)
- sum.Put(pool)
- t.Put(pool)
- return c
- }
- func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
- if c.z.IsOne() {
- return c
- }
- zInv := newGFp2(pool).Invert(c.z, pool)
- t := newGFp2(pool).Mul(c.y, zInv, pool)
- zInv2 := newGFp2(pool).Square(zInv, pool)
- c.y.Mul(t, zInv2, pool)
- t.Mul(c.x, zInv2, pool)
- c.x.Set(t)
- c.z.SetOne()
- c.t.SetOne()
- zInv.Put(pool)
- t.Put(pool)
- zInv2.Put(pool)
- return c
- }
- func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
- c.x.Set(a.x)
- c.y.SetZero()
- c.y.Sub(c.y, a.y)
- c.z.Set(a.z)
- c.t.SetZero()
- }
|