123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- // Copyright 2012 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package bn256
- // For details of the algorithms used, see "Multiplication and Squaring on
- // Pairing-Friendly Fields, Devegili et al.
- // http://eprint.iacr.org/2006/471.pdf.
- import (
- "math/big"
- )
- // gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
- // and ξ=i+9.
- type gfP6 struct {
- x, y, z *gfP2 // value is xτ² + yτ + z
- }
- func newGFp6(pool *bnPool) *gfP6 {
- return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
- }
- func (e *gfP6) String() string {
- return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
- }
- func (e *gfP6) Put(pool *bnPool) {
- e.x.Put(pool)
- e.y.Put(pool)
- e.z.Put(pool)
- }
- func (e *gfP6) Set(a *gfP6) *gfP6 {
- e.x.Set(a.x)
- e.y.Set(a.y)
- e.z.Set(a.z)
- return e
- }
- func (e *gfP6) SetZero() *gfP6 {
- e.x.SetZero()
- e.y.SetZero()
- e.z.SetZero()
- return e
- }
- func (e *gfP6) SetOne() *gfP6 {
- e.x.SetZero()
- e.y.SetZero()
- e.z.SetOne()
- return e
- }
- func (e *gfP6) Minimal() {
- e.x.Minimal()
- e.y.Minimal()
- e.z.Minimal()
- }
- func (e *gfP6) IsZero() bool {
- return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
- }
- func (e *gfP6) IsOne() bool {
- return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
- }
- func (e *gfP6) Negative(a *gfP6) *gfP6 {
- e.x.Negative(a.x)
- e.y.Negative(a.y)
- e.z.Negative(a.z)
- return e
- }
- func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
- e.x.Conjugate(a.x)
- e.y.Conjugate(a.y)
- e.z.Conjugate(a.z)
- e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
- e.y.Mul(e.y, xiToPMinus1Over3, pool)
- return e
- }
- // FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
- func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
- // τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
- e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
- // τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
- e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
- e.z.Set(a.z)
- return e
- }
- func (e *gfP6) Add(a, b *gfP6) *gfP6 {
- e.x.Add(a.x, b.x)
- e.y.Add(a.y, b.y)
- e.z.Add(a.z, b.z)
- return e
- }
- func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
- e.x.Sub(a.x, b.x)
- e.y.Sub(a.y, b.y)
- e.z.Sub(a.z, b.z)
- return e
- }
- func (e *gfP6) Double(a *gfP6) *gfP6 {
- e.x.Double(a.x)
- e.y.Double(a.y)
- e.z.Double(a.z)
- return e
- }
- func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
- // "Multiplication and Squaring on Pairing-Friendly Fields"
- // Section 4, Karatsuba method.
- // http://eprint.iacr.org/2006/471.pdf
- v0 := newGFp2(pool)
- v0.Mul(a.z, b.z, pool)
- v1 := newGFp2(pool)
- v1.Mul(a.y, b.y, pool)
- v2 := newGFp2(pool)
- v2.Mul(a.x, b.x, pool)
- t0 := newGFp2(pool)
- t0.Add(a.x, a.y)
- t1 := newGFp2(pool)
- t1.Add(b.x, b.y)
- tz := newGFp2(pool)
- tz.Mul(t0, t1, pool)
- tz.Sub(tz, v1)
- tz.Sub(tz, v2)
- tz.MulXi(tz, pool)
- tz.Add(tz, v0)
- t0.Add(a.y, a.z)
- t1.Add(b.y, b.z)
- ty := newGFp2(pool)
- ty.Mul(t0, t1, pool)
- ty.Sub(ty, v0)
- ty.Sub(ty, v1)
- t0.MulXi(v2, pool)
- ty.Add(ty, t0)
- t0.Add(a.x, a.z)
- t1.Add(b.x, b.z)
- tx := newGFp2(pool)
- tx.Mul(t0, t1, pool)
- tx.Sub(tx, v0)
- tx.Add(tx, v1)
- tx.Sub(tx, v2)
- e.x.Set(tx)
- e.y.Set(ty)
- e.z.Set(tz)
- t0.Put(pool)
- t1.Put(pool)
- tx.Put(pool)
- ty.Put(pool)
- tz.Put(pool)
- v0.Put(pool)
- v1.Put(pool)
- v2.Put(pool)
- return e
- }
- func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
- e.x.Mul(a.x, b, pool)
- e.y.Mul(a.y, b, pool)
- e.z.Mul(a.z, b, pool)
- return e
- }
- func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
- e.x.MulScalar(a.x, b)
- e.y.MulScalar(a.y, b)
- e.z.MulScalar(a.z, b)
- return e
- }
- // MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
- func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
- tz := newGFp2(pool)
- tz.MulXi(a.x, pool)
- ty := newGFp2(pool)
- ty.Set(a.y)
- e.y.Set(a.z)
- e.x.Set(ty)
- e.z.Set(tz)
- tz.Put(pool)
- ty.Put(pool)
- }
- func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
- v0 := newGFp2(pool).Square(a.z, pool)
- v1 := newGFp2(pool).Square(a.y, pool)
- v2 := newGFp2(pool).Square(a.x, pool)
- c0 := newGFp2(pool).Add(a.x, a.y)
- c0.Square(c0, pool)
- c0.Sub(c0, v1)
- c0.Sub(c0, v2)
- c0.MulXi(c0, pool)
- c0.Add(c0, v0)
- c1 := newGFp2(pool).Add(a.y, a.z)
- c1.Square(c1, pool)
- c1.Sub(c1, v0)
- c1.Sub(c1, v1)
- xiV2 := newGFp2(pool).MulXi(v2, pool)
- c1.Add(c1, xiV2)
- c2 := newGFp2(pool).Add(a.x, a.z)
- c2.Square(c2, pool)
- c2.Sub(c2, v0)
- c2.Add(c2, v1)
- c2.Sub(c2, v2)
- e.x.Set(c2)
- e.y.Set(c1)
- e.z.Set(c0)
- v0.Put(pool)
- v1.Put(pool)
- v2.Put(pool)
- c0.Put(pool)
- c1.Put(pool)
- c2.Put(pool)
- xiV2.Put(pool)
- return e
- }
- func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
- // See "Implementing cryptographic pairings", M. Scott, section 3.2.
- // ftp://136.206.11.249/pub/crypto/pairings.pdf
- // Here we can give a short explanation of how it works: let j be a cubic root of
- // unity in GF(p²) so that 1+j+j²=0.
- // Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
- // = (xτ² + yτ + z)(Cτ²+Bτ+A)
- // = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
- //
- // On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
- // = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
- //
- // So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
- t1 := newGFp2(pool)
- A := newGFp2(pool)
- A.Square(a.z, pool)
- t1.Mul(a.x, a.y, pool)
- t1.MulXi(t1, pool)
- A.Sub(A, t1)
- B := newGFp2(pool)
- B.Square(a.x, pool)
- B.MulXi(B, pool)
- t1.Mul(a.y, a.z, pool)
- B.Sub(B, t1)
- C_ := newGFp2(pool)
- C_.Square(a.y, pool)
- t1.Mul(a.x, a.z, pool)
- C_.Sub(C_, t1)
- F := newGFp2(pool)
- F.Mul(C_, a.y, pool)
- F.MulXi(F, pool)
- t1.Mul(A, a.z, pool)
- F.Add(F, t1)
- t1.Mul(B, a.x, pool)
- t1.MulXi(t1, pool)
- F.Add(F, t1)
- F.Invert(F, pool)
- e.x.Mul(C_, F, pool)
- e.y.Mul(B, F, pool)
- e.z.Mul(A, F, pool)
- t1.Put(pool)
- A.Put(pool)
- B.Put(pool)
- C_.Put(pool)
- F.Put(pool)
- return e
- }
|