123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- package bn256
- import (
- "math/big"
- )
- // twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
- // kept in Jacobian form and t=z² when valid. The group G₂ is the set of
- // n-torsion points of this curve over GF(p²) (where n = Order)
- type twistPoint struct {
- x, y, z, t gfP2
- }
- var twistB = &gfP2{
- gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d},
- gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d},
- }
- // twistGen is the generator of group G₂.
- var twistGen = &twistPoint{
- gfP2{
- gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b},
- gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b},
- },
- gfP2{
- gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482},
- gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206},
- },
- gfP2{*newGFp(0), *newGFp(1)},
- gfP2{*newGFp(0), *newGFp(1)},
- }
- func (c *twistPoint) String() string {
- c.MakeAffine()
- x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
- return "(" + x.String() + ", " + y.String() + ")"
- }
- func (c *twistPoint) Set(a *twistPoint) {
- c.x.Set(&a.x)
- c.y.Set(&a.y)
- c.z.Set(&a.z)
- c.t.Set(&a.t)
- }
- // IsOnCurve returns true iff c is on the curve.
- func (c *twistPoint) IsOnCurve() bool {
- c.MakeAffine()
- if c.IsInfinity() {
- return true
- }
- y2, x3 := &gfP2{}, &gfP2{}
- y2.Square(&c.y)
- x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
- if *y2 != *x3 {
- return false
- }
- cneg := &twistPoint{}
- cneg.Mul(c, Order)
- return cneg.z.IsZero()
- }
- func (c *twistPoint) SetInfinity() {
- c.x.SetZero()
- c.y.SetOne()
- c.z.SetZero()
- c.t.SetZero()
- }
- func (c *twistPoint) IsInfinity() bool {
- return c.z.IsZero()
- }
- func (c *twistPoint) Add(a, b *twistPoint) {
- // For additional comments, see the same function in curve.go.
- if a.IsInfinity() {
- c.Set(b)
- return
- }
- if b.IsInfinity() {
- c.Set(a)
- return
- }
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
- z12 := (&gfP2{}).Square(&a.z)
- z22 := (&gfP2{}).Square(&b.z)
- u1 := (&gfP2{}).Mul(&a.x, z22)
- u2 := (&gfP2{}).Mul(&b.x, z12)
- t := (&gfP2{}).Mul(&b.z, z22)
- s1 := (&gfP2{}).Mul(&a.y, t)
- t.Mul(&a.z, z12)
- s2 := (&gfP2{}).Mul(&b.y, t)
- h := (&gfP2{}).Sub(u2, u1)
- xEqual := h.IsZero()
- t.Add(h, h)
- i := (&gfP2{}).Square(t)
- j := (&gfP2{}).Mul(h, i)
- t.Sub(s2, s1)
- yEqual := t.IsZero()
- if xEqual && yEqual {
- c.Double(a)
- return
- }
- r := (&gfP2{}).Add(t, t)
- v := (&gfP2{}).Mul(u1, i)
- t4 := (&gfP2{}).Square(r)
- t.Add(v, v)
- t6 := (&gfP2{}).Sub(t4, j)
- c.x.Sub(t6, t)
- t.Sub(v, &c.x) // t7
- t4.Mul(s1, j) // t8
- t6.Add(t4, t4) // t9
- t4.Mul(r, t) // t10
- c.y.Sub(t4, t6)
- t.Add(&a.z, &b.z) // t11
- t4.Square(t) // t12
- t.Sub(t4, z12) // t13
- t4.Sub(t, z22) // t14
- c.z.Mul(t4, h)
- }
- func (c *twistPoint) Double(a *twistPoint) {
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
- A := (&gfP2{}).Square(&a.x)
- B := (&gfP2{}).Square(&a.y)
- C := (&gfP2{}).Square(B)
- t := (&gfP2{}).Add(&a.x, B)
- t2 := (&gfP2{}).Square(t)
- t.Sub(t2, A)
- t2.Sub(t, C)
- d := (&gfP2{}).Add(t2, t2)
- t.Add(A, A)
- e := (&gfP2{}).Add(t, A)
- f := (&gfP2{}).Square(e)
- t.Add(d, d)
- c.x.Sub(f, t)
- t.Add(C, C)
- t2.Add(t, t)
- t.Add(t2, t2)
- c.y.Sub(d, &c.x)
- t2.Mul(e, &c.y)
- c.y.Sub(t2, t)
- t.Mul(&a.y, &a.z)
- c.z.Add(t, t)
- }
- func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
- sum, t := &twistPoint{}, &twistPoint{}
- for i := scalar.BitLen(); i >= 0; i-- {
- t.Double(sum)
- if scalar.Bit(i) != 0 {
- sum.Add(t, a)
- } else {
- sum.Set(t)
- }
- }
- c.Set(sum)
- }
- func (c *twistPoint) MakeAffine() {
- if c.z.IsOne() {
- return
- } else if c.z.IsZero() {
- c.x.SetZero()
- c.y.SetOne()
- c.t.SetZero()
- return
- }
- zInv := (&gfP2{}).Invert(&c.z)
- t := (&gfP2{}).Mul(&c.y, zInv)
- zInv2 := (&gfP2{}).Square(zInv)
- c.y.Mul(t, zInv2)
- t.Mul(&c.x, zInv2)
- c.x.Set(t)
- c.z.SetOne()
- c.t.SetOne()
- }
- func (c *twistPoint) Neg(a *twistPoint) {
- c.x.Set(&a.x)
- c.y.Neg(&a.y)
- c.z.Set(&a.z)
- c.t.SetZero()
- }
|