123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- package bn256
- import (
- "math/big"
- )
- var half = new(big.Int).Rsh(Order, 1)
- var curveLattice = &lattice{
- vectors: [][]*big.Int{
- {bigFromBase10("147946756881789319000765030803803410728"), bigFromBase10("147946756881789319010696353538189108491")},
- {bigFromBase10("147946756881789319020627676272574806254"), bigFromBase10("-147946756881789318990833708069417712965")},
- },
- inverse: []*big.Int{
- bigFromBase10("147946756881789318990833708069417712965"),
- bigFromBase10("147946756881789319010696353538189108491"),
- },
- det: bigFromBase10("43776485743678550444492811490514550177096728800832068687396408373151616991234"),
- }
- var targetLattice = &lattice{
- vectors: [][]*big.Int{
- {bigFromBase10("9931322734385697761"), bigFromBase10("9931322734385697761"), bigFromBase10("9931322734385697763"), bigFromBase10("9931322734385697764")},
- {bigFromBase10("4965661367192848881"), bigFromBase10("4965661367192848881"), bigFromBase10("4965661367192848882"), bigFromBase10("-9931322734385697762")},
- {bigFromBase10("-9931322734385697762"), bigFromBase10("-4965661367192848881"), bigFromBase10("4965661367192848881"), bigFromBase10("-4965661367192848882")},
- {bigFromBase10("9931322734385697763"), bigFromBase10("-4965661367192848881"), bigFromBase10("-4965661367192848881"), bigFromBase10("-4965661367192848881")},
- },
- inverse: []*big.Int{
- bigFromBase10("734653495049373973658254490726798021314063399421879442165"),
- bigFromBase10("147946756881789319000765030803803410728"),
- bigFromBase10("-147946756881789319005730692170996259609"),
- bigFromBase10("1469306990098747947464455738335385361643788813749140841702"),
- },
- det: new(big.Int).Set(Order),
- }
- type lattice struct {
- vectors [][]*big.Int
- inverse []*big.Int
- det *big.Int
- }
- // decompose takes a scalar mod Order as input and finds a short, positive decomposition of it wrt to the lattice basis.
- func (l *lattice) decompose(k *big.Int) []*big.Int {
- n := len(l.inverse)
- // Calculate closest vector in lattice to <k,0,0,...> with Babai's rounding.
- c := make([]*big.Int, n)
- for i := 0; i < n; i++ {
- c[i] = new(big.Int).Mul(k, l.inverse[i])
- round(c[i], l.det)
- }
- // Transform vectors according to c and subtract <k,0,0,...>.
- out := make([]*big.Int, n)
- temp := new(big.Int)
- for i := 0; i < n; i++ {
- out[i] = new(big.Int)
- for j := 0; j < n; j++ {
- temp.Mul(c[j], l.vectors[j][i])
- out[i].Add(out[i], temp)
- }
- out[i].Neg(out[i])
- out[i].Add(out[i], l.vectors[0][i]).Add(out[i], l.vectors[0][i])
- }
- out[0].Add(out[0], k)
- return out
- }
- func (l *lattice) Precompute(add func(i, j uint)) {
- n := uint(len(l.vectors))
- total := uint(1) << n
- for i := uint(0); i < n; i++ {
- for j := uint(0); j < total; j++ {
- if (j>>i)&1 == 1 {
- add(i, j)
- }
- }
- }
- }
- func (l *lattice) Multi(scalar *big.Int) []uint8 {
- decomp := l.decompose(scalar)
- maxLen := 0
- for _, x := range decomp {
- if x.BitLen() > maxLen {
- maxLen = x.BitLen()
- }
- }
- out := make([]uint8, maxLen)
- for j, x := range decomp {
- for i := 0; i < maxLen; i++ {
- out[i] += uint8(x.Bit(i)) << uint(j)
- }
- }
- return out
- }
- // round sets num to num/denom rounded to the nearest integer.
- func round(num, denom *big.Int) {
- r := new(big.Int)
- num.DivMod(num, denom, r)
- if r.Cmp(half) == 1 {
- num.Add(num, big.NewInt(1))
- }
- }
|