123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- package bn256
- import (
- "math/big"
- )
- // curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
- // form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
- type curvePoint struct {
- x, y, z, t gfP
- }
- var curveB = newGFp(3)
- // curveGen is the generator of G₁.
- var curveGen = &curvePoint{
- x: *newGFp(1),
- y: *newGFp(2),
- z: *newGFp(1),
- t: *newGFp(1),
- }
- func (c *curvePoint) String() string {
- c.MakeAffine()
- x, y := &gfP{}, &gfP{}
- montDecode(x, &c.x)
- montDecode(y, &c.y)
- return "(" + x.String() + ", " + y.String() + ")"
- }
- func (c *curvePoint) Set(a *curvePoint) {
- c.x.Set(&a.x)
- c.y.Set(&a.y)
- c.z.Set(&a.z)
- c.t.Set(&a.t)
- }
- // IsOnCurve returns true iff c is on the curve.
- func (c *curvePoint) IsOnCurve() bool {
- c.MakeAffine()
- if c.IsInfinity() {
- return true
- }
- y2, x3 := &gfP{}, &gfP{}
- gfpMul(y2, &c.y, &c.y)
- gfpMul(x3, &c.x, &c.x)
- gfpMul(x3, x3, &c.x)
- gfpAdd(x3, x3, curveB)
- return *y2 == *x3
- }
- func (c *curvePoint) SetInfinity() {
- c.x = gfP{0}
- c.y = *newGFp(1)
- c.z = gfP{0}
- c.t = gfP{0}
- }
- func (c *curvePoint) IsInfinity() bool {
- return c.z == gfP{0}
- }
- func (c *curvePoint) Add(a, b *curvePoint) {
- if a.IsInfinity() {
- c.Set(b)
- return
- }
- if b.IsInfinity() {
- c.Set(a)
- return
- }
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
- // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
- // by [u1:s1:z1·z2] and [u2:s2:z1·z2]
- // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
- z12, z22 := &gfP{}, &gfP{}
- gfpMul(z12, &a.z, &a.z)
- gfpMul(z22, &b.z, &b.z)
- u1, u2 := &gfP{}, &gfP{}
- gfpMul(u1, &a.x, z22)
- gfpMul(u2, &b.x, z12)
- t, s1 := &gfP{}, &gfP{}
- gfpMul(t, &b.z, z22)
- gfpMul(s1, &a.y, t)
- s2 := &gfP{}
- gfpMul(t, &a.z, z12)
- gfpMul(s2, &b.y, t)
- // Compute x = (2h)²(s²-u1-u2)
- // where s = (s2-s1)/(u2-u1) is the slope of the line through
- // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
- // This is also:
- // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
- // = r² - j - 2v
- // with the notations below.
- h := &gfP{}
- gfpSub(h, u2, u1)
- xEqual := *h == gfP{0}
- gfpAdd(t, h, h)
- // i = 4h²
- i := &gfP{}
- gfpMul(i, t, t)
- // j = 4h³
- j := &gfP{}
- gfpMul(j, h, i)
- gfpSub(t, s2, s1)
- yEqual := *t == gfP{0}
- if xEqual && yEqual {
- c.Double(a)
- return
- }
- r := &gfP{}
- gfpAdd(r, t, t)
- v := &gfP{}
- gfpMul(v, u1, i)
- // t4 = 4(s2-s1)²
- t4, t6 := &gfP{}, &gfP{}
- gfpMul(t4, r, r)
- gfpAdd(t, v, v)
- gfpSub(t6, t4, j)
- gfpSub(&c.x, t6, t)
- // Set y = -(2h)³(s1 + s*(x/4h²-u1))
- // This is also
- // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
- gfpSub(t, v, &c.x) // t7
- gfpMul(t4, s1, j) // t8
- gfpAdd(t6, t4, t4) // t9
- gfpMul(t4, r, t) // t10
- gfpSub(&c.y, t4, t6)
- // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
- gfpAdd(t, &a.z, &b.z) // t11
- gfpMul(t4, t, t) // t12
- gfpSub(t, t4, z12) // t13
- gfpSub(t4, t, z22) // t14
- gfpMul(&c.z, t4, h)
- }
- func (c *curvePoint) Double(a *curvePoint) {
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
- A, B, C := &gfP{}, &gfP{}, &gfP{}
- gfpMul(A, &a.x, &a.x)
- gfpMul(B, &a.y, &a.y)
- gfpMul(C, B, B)
- t, t2 := &gfP{}, &gfP{}
- gfpAdd(t, &a.x, B)
- gfpMul(t2, t, t)
- gfpSub(t, t2, A)
- gfpSub(t2, t, C)
- d, e, f := &gfP{}, &gfP{}, &gfP{}
- gfpAdd(d, t2, t2)
- gfpAdd(t, A, A)
- gfpAdd(e, t, A)
- gfpMul(f, e, e)
- gfpAdd(t, d, d)
- gfpSub(&c.x, f, t)
- gfpAdd(t, C, C)
- gfpAdd(t2, t, t)
- gfpAdd(t, t2, t2)
- gfpSub(&c.y, d, &c.x)
- gfpMul(t2, e, &c.y)
- gfpSub(&c.y, t2, t)
- gfpMul(t, &a.y, &a.z)
- gfpAdd(&c.z, t, t)
- }
- func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
- precomp := [1 << 2]*curvePoint{nil, {}, {}, {}}
- precomp[1].Set(a)
- precomp[2].Set(a)
- gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3)
- precomp[3].Add(precomp[1], precomp[2])
- multiScalar := curveLattice.Multi(scalar)
- sum := &curvePoint{}
- sum.SetInfinity()
- t := &curvePoint{}
- for i := len(multiScalar) - 1; i >= 0; i-- {
- t.Double(sum)
- if multiScalar[i] == 0 {
- sum.Set(t)
- } else {
- sum.Add(t, precomp[multiScalar[i]])
- }
- }
- c.Set(sum)
- }
- func (c *curvePoint) MakeAffine() {
- if c.z == *newGFp(1) {
- return
- } else if c.z == *newGFp(0) {
- c.x = gfP{0}
- c.y = *newGFp(1)
- c.t = gfP{0}
- return
- }
- zInv := &gfP{}
- zInv.Invert(&c.z)
- t, zInv2 := &gfP{}, &gfP{}
- gfpMul(t, &c.y, zInv)
- gfpMul(zInv2, zInv, zInv)
- gfpMul(&c.x, &c.x, zInv2)
- gfpMul(&c.y, t, zInv2)
- c.z = *newGFp(1)
- c.t = *newGFp(1)
- }
- func (c *curvePoint) Neg(a *curvePoint) {
- c.x.Set(&a.x)
- gfpNeg(&c.y, &a.y)
- c.z.Set(&a.z)
- c.t = gfP{0}
- }
|