123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364 |
- package metrics
- import (
- "math/rand"
- "runtime"
- "testing"
- "time"
- )
- // Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively
- // expensive computations like Variance, the cost of copying the Sample, as
- // approximated by a make and copy, is much greater than the cost of the
- // computation for small samples and only slightly less for large samples.
- func BenchmarkCompute1000(b *testing.B) {
- s := make([]int64, 1000)
- for i := 0; i < len(s); i++ {
- s[i] = int64(i)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- SampleVariance(s)
- }
- }
- func BenchmarkCompute1000000(b *testing.B) {
- s := make([]int64, 1000000)
- for i := 0; i < len(s); i++ {
- s[i] = int64(i)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- SampleVariance(s)
- }
- }
- func BenchmarkCopy1000(b *testing.B) {
- s := make([]int64, 1000)
- for i := 0; i < len(s); i++ {
- s[i] = int64(i)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- sCopy := make([]int64, len(s))
- copy(sCopy, s)
- }
- }
- func BenchmarkCopy1000000(b *testing.B) {
- s := make([]int64, 1000000)
- for i := 0; i < len(s); i++ {
- s[i] = int64(i)
- }
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- sCopy := make([]int64, len(s))
- copy(sCopy, s)
- }
- }
- func BenchmarkExpDecaySample257(b *testing.B) {
- benchmarkSample(b, NewExpDecaySample(257, 0.015))
- }
- func BenchmarkExpDecaySample514(b *testing.B) {
- benchmarkSample(b, NewExpDecaySample(514, 0.015))
- }
- func BenchmarkExpDecaySample1028(b *testing.B) {
- benchmarkSample(b, NewExpDecaySample(1028, 0.015))
- }
- func BenchmarkUniformSample257(b *testing.B) {
- benchmarkSample(b, NewUniformSample(257))
- }
- func BenchmarkUniformSample514(b *testing.B) {
- benchmarkSample(b, NewUniformSample(514))
- }
- func BenchmarkUniformSample1028(b *testing.B) {
- benchmarkSample(b, NewUniformSample(1028))
- }
- func TestExpDecaySample10(t *testing.T) {
- rand.Seed(1)
- s := NewExpDecaySample(100, 0.99)
- for i := 0; i < 10; i++ {
- s.Update(int64(i))
- }
- if size := s.Count(); 10 != size {
- t.Errorf("s.Count(): 10 != %v\n", size)
- }
- if size := s.Size(); 10 != size {
- t.Errorf("s.Size(): 10 != %v\n", size)
- }
- if l := len(s.Values()); 10 != l {
- t.Errorf("len(s.Values()): 10 != %v\n", l)
- }
- for _, v := range s.Values() {
- if v > 10 || v < 0 {
- t.Errorf("out of range [0, 10): %v\n", v)
- }
- }
- }
- func TestExpDecaySample100(t *testing.T) {
- rand.Seed(1)
- s := NewExpDecaySample(1000, 0.01)
- for i := 0; i < 100; i++ {
- s.Update(int64(i))
- }
- if size := s.Count(); 100 != size {
- t.Errorf("s.Count(): 100 != %v\n", size)
- }
- if size := s.Size(); 100 != size {
- t.Errorf("s.Size(): 100 != %v\n", size)
- }
- if l := len(s.Values()); 100 != l {
- t.Errorf("len(s.Values()): 100 != %v\n", l)
- }
- for _, v := range s.Values() {
- if v > 100 || v < 0 {
- t.Errorf("out of range [0, 100): %v\n", v)
- }
- }
- }
- func TestExpDecaySample1000(t *testing.T) {
- rand.Seed(1)
- s := NewExpDecaySample(100, 0.99)
- for i := 0; i < 1000; i++ {
- s.Update(int64(i))
- }
- if size := s.Count(); 1000 != size {
- t.Errorf("s.Count(): 1000 != %v\n", size)
- }
- if size := s.Size(); 100 != size {
- t.Errorf("s.Size(): 100 != %v\n", size)
- }
- if l := len(s.Values()); 100 != l {
- t.Errorf("len(s.Values()): 100 != %v\n", l)
- }
- for _, v := range s.Values() {
- if v > 1000 || v < 0 {
- t.Errorf("out of range [0, 1000): %v\n", v)
- }
- }
- }
- // This test makes sure that the sample's priority is not amplified by using
- // nanosecond duration since start rather than second duration since start.
- // The priority becomes +Inf quickly after starting if this is done,
- // effectively freezing the set of samples until a rescale step happens.
- func TestExpDecaySampleNanosecondRegression(t *testing.T) {
- rand.Seed(1)
- s := NewExpDecaySample(100, 0.99)
- for i := 0; i < 100; i++ {
- s.Update(10)
- }
- time.Sleep(1 * time.Millisecond)
- for i := 0; i < 100; i++ {
- s.Update(20)
- }
- v := s.Values()
- avg := float64(0)
- for i := 0; i < len(v); i++ {
- avg += float64(v[i])
- }
- avg /= float64(len(v))
- if avg > 16 || avg < 14 {
- t.Errorf("out of range [14, 16]: %v\n", avg)
- }
- }
- func TestExpDecaySampleRescale(t *testing.T) {
- s := NewExpDecaySample(2, 0.001).(*ExpDecaySample)
- s.update(time.Now(), 1)
- s.update(time.Now().Add(time.Hour+time.Microsecond), 1)
- for _, v := range s.values.Values() {
- if v.k == 0.0 {
- t.Fatal("v.k == 0.0")
- }
- }
- }
- func TestExpDecaySampleSnapshot(t *testing.T) {
- now := time.Now()
- rand.Seed(1)
- s := NewExpDecaySample(100, 0.99)
- for i := 1; i <= 10000; i++ {
- s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
- }
- snapshot := s.Snapshot()
- s.Update(1)
- testExpDecaySampleStatistics(t, snapshot)
- }
- func TestExpDecaySampleStatistics(t *testing.T) {
- now := time.Now()
- rand.Seed(1)
- s := NewExpDecaySample(100, 0.99)
- for i := 1; i <= 10000; i++ {
- s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
- }
- testExpDecaySampleStatistics(t, s)
- }
- func TestUniformSample(t *testing.T) {
- rand.Seed(1)
- s := NewUniformSample(100)
- for i := 0; i < 1000; i++ {
- s.Update(int64(i))
- }
- if size := s.Count(); 1000 != size {
- t.Errorf("s.Count(): 1000 != %v\n", size)
- }
- if size := s.Size(); 100 != size {
- t.Errorf("s.Size(): 100 != %v\n", size)
- }
- if l := len(s.Values()); 100 != l {
- t.Errorf("len(s.Values()): 100 != %v\n", l)
- }
- for _, v := range s.Values() {
- if v > 1000 || v < 0 {
- t.Errorf("out of range [0, 100): %v\n", v)
- }
- }
- }
- func TestUniformSampleIncludesTail(t *testing.T) {
- rand.Seed(1)
- s := NewUniformSample(100)
- max := 100
- for i := 0; i < max; i++ {
- s.Update(int64(i))
- }
- v := s.Values()
- sum := 0
- exp := (max - 1) * max / 2
- for i := 0; i < len(v); i++ {
- sum += int(v[i])
- }
- if exp != sum {
- t.Errorf("sum: %v != %v\n", exp, sum)
- }
- }
- func TestUniformSampleSnapshot(t *testing.T) {
- s := NewUniformSample(100)
- for i := 1; i <= 10000; i++ {
- s.Update(int64(i))
- }
- snapshot := s.Snapshot()
- s.Update(1)
- testUniformSampleStatistics(t, snapshot)
- }
- func TestUniformSampleStatistics(t *testing.T) {
- rand.Seed(1)
- s := NewUniformSample(100)
- for i := 1; i <= 10000; i++ {
- s.Update(int64(i))
- }
- testUniformSampleStatistics(t, s)
- }
- func benchmarkSample(b *testing.B, s Sample) {
- var memStats runtime.MemStats
- runtime.ReadMemStats(&memStats)
- pauseTotalNs := memStats.PauseTotalNs
- b.ResetTimer()
- for i := 0; i < b.N; i++ {
- s.Update(1)
- }
- b.StopTimer()
- runtime.GC()
- runtime.ReadMemStats(&memStats)
- b.Logf("GC cost: %d ns/op", int(memStats.PauseTotalNs-pauseTotalNs)/b.N)
- }
- func testExpDecaySampleStatistics(t *testing.T, s Sample) {
- if count := s.Count(); 10000 != count {
- t.Errorf("s.Count(): 10000 != %v\n", count)
- }
- if min := s.Min(); 107 != min {
- t.Errorf("s.Min(): 107 != %v\n", min)
- }
- if max := s.Max(); 10000 != max {
- t.Errorf("s.Max(): 10000 != %v\n", max)
- }
- if mean := s.Mean(); 4965.98 != mean {
- t.Errorf("s.Mean(): 4965.98 != %v\n", mean)
- }
- if stdDev := s.StdDev(); 2959.825156930727 != stdDev {
- t.Errorf("s.StdDev(): 2959.825156930727 != %v\n", stdDev)
- }
- ps := s.Percentiles([]float64{0.5, 0.75, 0.99})
- if 4615 != ps[0] {
- t.Errorf("median: 4615 != %v\n", ps[0])
- }
- if 7672 != ps[1] {
- t.Errorf("75th percentile: 7672 != %v\n", ps[1])
- }
- if 9998.99 != ps[2] {
- t.Errorf("99th percentile: 9998.99 != %v\n", ps[2])
- }
- }
- func testUniformSampleStatistics(t *testing.T, s Sample) {
- if count := s.Count(); 10000 != count {
- t.Errorf("s.Count(): 10000 != %v\n", count)
- }
- if min := s.Min(); 37 != min {
- t.Errorf("s.Min(): 37 != %v\n", min)
- }
- if max := s.Max(); 9989 != max {
- t.Errorf("s.Max(): 9989 != %v\n", max)
- }
- if mean := s.Mean(); 4748.14 != mean {
- t.Errorf("s.Mean(): 4748.14 != %v\n", mean)
- }
- if stdDev := s.StdDev(); 2826.684117548333 != stdDev {
- t.Errorf("s.StdDev(): 2826.684117548333 != %v\n", stdDev)
- }
- ps := s.Percentiles([]float64{0.5, 0.75, 0.99})
- if 4599 != ps[0] {
- t.Errorf("median: 4599 != %v\n", ps[0])
- }
- if 7380.5 != ps[1] {
- t.Errorf("75th percentile: 7380.5 != %v\n", ps[1])
- }
- if 9986.429999999998 != ps[2] {
- t.Errorf("99th percentile: 9986.429999999998 != %v\n", ps[2])
- }
- }
- // TestUniformSampleConcurrentUpdateCount would expose data race problems with
- // concurrent Update and Count calls on Sample when test is called with -race
- // argument
- func TestUniformSampleConcurrentUpdateCount(t *testing.T) {
- if testing.Short() {
- t.Skip("skipping in short mode")
- }
- s := NewUniformSample(100)
- for i := 0; i < 100; i++ {
- s.Update(int64(i))
- }
- quit := make(chan struct{})
- go func() {
- t := time.NewTicker(10 * time.Millisecond)
- for {
- select {
- case <-t.C:
- s.Update(rand.Int63())
- case <-quit:
- t.Stop()
- return
- }
- }
- }()
- for i := 0; i < 1000; i++ {
- s.Count()
- time.Sleep(5 * time.Millisecond)
- }
- quit <- struct{}{}
- }
|