123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482 |
- // Package bn256 implements a particular bilinear group at the 128-bit security
- // level.
- //
- // Bilinear groups are the basis of many of the new cryptographic protocols that
- // have been proposed over the past decade. They consist of a triplet of groups
- // (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ
- // is a generator of the respective group). That function is called a pairing
- // function.
- //
- // This package specifically implements the Optimal Ate pairing over a 256-bit
- // Barreto-Naehrig curve as described in
- // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
- // with the implementation described in that paper.
- package bn256
- import (
- "crypto/rand"
- "errors"
- "io"
- "math/big"
- )
- func randomK(r io.Reader) (k *big.Int, err error) {
- for {
- k, err = rand.Int(r, Order)
- if k.Sign() > 0 || err != nil {
- return
- }
- }
- }
- // G1 is an abstract cyclic group. The zero value is suitable for use as the
- // output of an operation, but cannot be used as an input.
- type G1 struct {
- p *curvePoint
- }
- // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
- func RandomG1(r io.Reader) (*big.Int, *G1, error) {
- k, err := randomK(r)
- if err != nil {
- return nil, nil, err
- }
- return k, new(G1).ScalarBaseMult(k), nil
- }
- func (g *G1) String() string {
- return "bn256.G1" + g.p.String()
- }
- // ScalarBaseMult sets e to g*k where g is the generator of the group and then
- // returns e.
- func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
- if e.p == nil {
- e.p = &curvePoint{}
- }
- e.p.Mul(curveGen, k)
- return e
- }
- // ScalarMult sets e to a*k and then returns e.
- func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
- if e.p == nil {
- e.p = &curvePoint{}
- }
- e.p.Mul(a.p, k)
- return e
- }
- // Add sets e to a+b and then returns e.
- func (e *G1) Add(a, b *G1) *G1 {
- if e.p == nil {
- e.p = &curvePoint{}
- }
- e.p.Add(a.p, b.p)
- return e
- }
- // Neg sets e to -a and then returns e.
- func (e *G1) Neg(a *G1) *G1 {
- if e.p == nil {
- e.p = &curvePoint{}
- }
- e.p.Neg(a.p)
- return e
- }
- // Set sets e to a and then returns e.
- func (e *G1) Set(a *G1) *G1 {
- if e.p == nil {
- e.p = &curvePoint{}
- }
- e.p.Set(a.p)
- return e
- }
- // Marshal converts e to a byte slice.
- func (e *G1) Marshal() []byte {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- e.p.MakeAffine()
- ret := make([]byte, numBytes*2)
- if e.p.IsInfinity() {
- return ret
- }
- temp := &gfP{}
- montDecode(temp, &e.p.x)
- temp.Marshal(ret)
- montDecode(temp, &e.p.y)
- temp.Marshal(ret[numBytes:])
- return ret
- }
- // Unmarshal sets e to the result of converting the output of Marshal back into
- // a group element and then returns e.
- func (e *G1) Unmarshal(m []byte) ([]byte, error) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if len(m) < 2*numBytes {
- return nil, errors.New("bn256: not enough data")
- }
- // Unmarshal the points and check their caps
- if e.p == nil {
- e.p = &curvePoint{}
- } else {
- e.p.x, e.p.y = gfP{0}, gfP{0}
- }
- var err error
- if err = e.p.x.Unmarshal(m); err != nil {
- return nil, err
- }
- if err = e.p.y.Unmarshal(m[numBytes:]); err != nil {
- return nil, err
- }
- // Encode into Montgomery form and ensure it's on the curve
- montEncode(&e.p.x, &e.p.x)
- montEncode(&e.p.y, &e.p.y)
- zero := gfP{0}
- if e.p.x == zero && e.p.y == zero {
- // This is the point at infinity.
- e.p.y = *newGFp(1)
- e.p.z = gfP{0}
- e.p.t = gfP{0}
- } else {
- e.p.z = *newGFp(1)
- e.p.t = *newGFp(1)
- if !e.p.IsOnCurve() {
- return nil, errors.New("bn256: malformed point")
- }
- }
- return m[2*numBytes:], nil
- }
- // G2 is an abstract cyclic group. The zero value is suitable for use as the
- // output of an operation, but cannot be used as an input.
- type G2 struct {
- p *twistPoint
- }
- // RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
- func RandomG2(r io.Reader) (*big.Int, *G2, error) {
- k, err := randomK(r)
- if err != nil {
- return nil, nil, err
- }
- return k, new(G2).ScalarBaseMult(k), nil
- }
- func (e *G2) String() string {
- return "bn256.G2" + e.p.String()
- }
- // ScalarBaseMult sets e to g*k where g is the generator of the group and then
- // returns out.
- func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
- if e.p == nil {
- e.p = &twistPoint{}
- }
- e.p.Mul(twistGen, k)
- return e
- }
- // ScalarMult sets e to a*k and then returns e.
- func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
- if e.p == nil {
- e.p = &twistPoint{}
- }
- e.p.Mul(a.p, k)
- return e
- }
- // Add sets e to a+b and then returns e.
- func (e *G2) Add(a, b *G2) *G2 {
- if e.p == nil {
- e.p = &twistPoint{}
- }
- e.p.Add(a.p, b.p)
- return e
- }
- // Neg sets e to -a and then returns e.
- func (e *G2) Neg(a *G2) *G2 {
- if e.p == nil {
- e.p = &twistPoint{}
- }
- e.p.Neg(a.p)
- return e
- }
- // Set sets e to a and then returns e.
- func (e *G2) Set(a *G2) *G2 {
- if e.p == nil {
- e.p = &twistPoint{}
- }
- e.p.Set(a.p)
- return e
- }
- // Marshal converts e into a byte slice.
- func (e *G2) Marshal() []byte {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if e.p == nil {
- e.p = &twistPoint{}
- }
- e.p.MakeAffine()
- ret := make([]byte, numBytes*4)
- if e.p.IsInfinity() {
- return ret
- }
- temp := &gfP{}
- montDecode(temp, &e.p.x.x)
- temp.Marshal(ret)
- montDecode(temp, &e.p.x.y)
- temp.Marshal(ret[numBytes:])
- montDecode(temp, &e.p.y.x)
- temp.Marshal(ret[2*numBytes:])
- montDecode(temp, &e.p.y.y)
- temp.Marshal(ret[3*numBytes:])
- return ret
- }
- // Unmarshal sets e to the result of converting the output of Marshal back into
- // a group element and then returns e.
- func (e *G2) Unmarshal(m []byte) ([]byte, error) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if len(m) < 4*numBytes {
- return nil, errors.New("bn256: not enough data")
- }
- // Unmarshal the points and check their caps
- if e.p == nil {
- e.p = &twistPoint{}
- }
- var err error
- if err = e.p.x.x.Unmarshal(m); err != nil {
- return nil, err
- }
- if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
- return nil, err
- }
- // Encode into Montgomery form and ensure it's on the curve
- montEncode(&e.p.x.x, &e.p.x.x)
- montEncode(&e.p.x.y, &e.p.x.y)
- montEncode(&e.p.y.x, &e.p.y.x)
- montEncode(&e.p.y.y, &e.p.y.y)
- if e.p.x.IsZero() && e.p.y.IsZero() {
- // This is the point at infinity.
- e.p.y.SetOne()
- e.p.z.SetZero()
- e.p.t.SetZero()
- } else {
- e.p.z.SetOne()
- e.p.t.SetOne()
- if !e.p.IsOnCurve() {
- return nil, errors.New("bn256: malformed point")
- }
- }
- return m[4*numBytes:], nil
- }
- // GT is an abstract cyclic group. The zero value is suitable for use as the
- // output of an operation, but cannot be used as an input.
- type GT struct {
- p *gfP12
- }
- // Pair calculates an Optimal Ate pairing.
- func Pair(g1 *G1, g2 *G2) *GT {
- return >{optimalAte(g2.p, g1.p)}
- }
- // PairingCheck calculates the Optimal Ate pairing for a set of points.
- func PairingCheck(a []*G1, b []*G2) bool {
- acc := new(gfP12)
- acc.SetOne()
- for i := 0; i < len(a); i++ {
- if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
- continue
- }
- acc.Mul(acc, miller(b[i].p, a[i].p))
- }
- return finalExponentiation(acc).IsOne()
- }
- // Miller applies Miller's algorithm, which is a bilinear function from the
- // source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1,
- // g2).
- func Miller(g1 *G1, g2 *G2) *GT {
- return >{miller(g2.p, g1.p)}
- }
- func (g *GT) String() string {
- return "bn256.GT" + g.p.String()
- }
- // ScalarMult sets e to a*k and then returns e.
- func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
- if e.p == nil {
- e.p = &gfP12{}
- }
- e.p.Exp(a.p, k)
- return e
- }
- // Add sets e to a+b and then returns e.
- func (e *GT) Add(a, b *GT) *GT {
- if e.p == nil {
- e.p = &gfP12{}
- }
- e.p.Mul(a.p, b.p)
- return e
- }
- // Neg sets e to -a and then returns e.
- func (e *GT) Neg(a *GT) *GT {
- if e.p == nil {
- e.p = &gfP12{}
- }
- e.p.Conjugate(a.p)
- return e
- }
- // Set sets e to a and then returns e.
- func (e *GT) Set(a *GT) *GT {
- if e.p == nil {
- e.p = &gfP12{}
- }
- e.p.Set(a.p)
- return e
- }
- // Finalize is a linear function from F_p^12 to GT.
- func (e *GT) Finalize() *GT {
- ret := finalExponentiation(e.p)
- e.p.Set(ret)
- return e
- }
- // Marshal converts e into a byte slice.
- func (e *GT) Marshal() []byte {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- ret := make([]byte, numBytes*12)
- temp := &gfP{}
- montDecode(temp, &e.p.x.x.x)
- temp.Marshal(ret)
- montDecode(temp, &e.p.x.x.y)
- temp.Marshal(ret[numBytes:])
- montDecode(temp, &e.p.x.y.x)
- temp.Marshal(ret[2*numBytes:])
- montDecode(temp, &e.p.x.y.y)
- temp.Marshal(ret[3*numBytes:])
- montDecode(temp, &e.p.x.z.x)
- temp.Marshal(ret[4*numBytes:])
- montDecode(temp, &e.p.x.z.y)
- temp.Marshal(ret[5*numBytes:])
- montDecode(temp, &e.p.y.x.x)
- temp.Marshal(ret[6*numBytes:])
- montDecode(temp, &e.p.y.x.y)
- temp.Marshal(ret[7*numBytes:])
- montDecode(temp, &e.p.y.y.x)
- temp.Marshal(ret[8*numBytes:])
- montDecode(temp, &e.p.y.y.y)
- temp.Marshal(ret[9*numBytes:])
- montDecode(temp, &e.p.y.z.x)
- temp.Marshal(ret[10*numBytes:])
- montDecode(temp, &e.p.y.z.y)
- temp.Marshal(ret[11*numBytes:])
- return ret
- }
- // Unmarshal sets e to the result of converting the output of Marshal back into
- // a group element and then returns e.
- func (e *GT) Unmarshal(m []byte) ([]byte, error) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if len(m) < 12*numBytes {
- return nil, errors.New("bn256: not enough data")
- }
- if e.p == nil {
- e.p = &gfP12{}
- }
- var err error
- if err = e.p.x.x.x.Unmarshal(m); err != nil {
- return nil, err
- }
- if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil {
- return nil, err
- }
- if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil {
- return nil, err
- }
- montEncode(&e.p.x.x.x, &e.p.x.x.x)
- montEncode(&e.p.x.x.y, &e.p.x.x.y)
- montEncode(&e.p.x.y.x, &e.p.x.y.x)
- montEncode(&e.p.x.y.y, &e.p.x.y.y)
- montEncode(&e.p.x.z.x, &e.p.x.z.x)
- montEncode(&e.p.x.z.y, &e.p.x.z.y)
- montEncode(&e.p.y.x.x, &e.p.y.x.x)
- montEncode(&e.p.y.x.y, &e.p.y.x.y)
- montEncode(&e.p.y.y.x, &e.p.y.y.x)
- montEncode(&e.p.y.y.y, &e.p.y.y.y)
- montEncode(&e.p.y.z.x, &e.p.y.z.x)
- montEncode(&e.p.y.z.y, &e.p.y.z.y)
- return m[12*numBytes:], nil
- }
|