123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- .AM
- .TL
- Analysis UE1
- .AU
- strlst
- .NH
- .EQ
- gsize -1
- define so `smallover`
- define is `~=~`
- define limntoinf `lim from { n -> inf }`
- define implies `~~=>~~`
- define AND `size 24 { ~ sub ~ hat ~ }`
- delim $$
- .EN
- .PP
- Man finde ein Bildungsgesetz fu\*[:]r die unendlichen Folgen:
- .EQ
- roman { (a) } ~ 0.3;~0.09;~0.024;~...
- roman { (b) } ~ 1 so 2 ;~ 4 so 3 ;~ 9 so 4 ;~...
- roman { (b) } ~ 1 so 2 ;~ 2 so 4 ;~ 3 so 8 ;~...
- .EN
- .PP
- Wie gro\*[8] ist dann jeweils das zwo\*[:]lfte Folgenglied?
- .SH
- Lo\*[:]sung:
- .EQ
- (a) is left [
- pile { 0.3 above 0.09 above 0.027 above 0.0081 above ... above 5.31441 times 10 sup -7 }
- right ]
- ~
- pile { times 0.3 above times 0.3 above times 0.3 above times 0.3 sup 8 above ~ }
- ~~~~~~~
- (b) is
- ~
- pile { +2 above +2 }
- ~
- pile { +3 above +5 above +7 }
- ~
- left [
- pile { 1 ~~/~~ 2 above 4 ~~/~~ 3 above 9 ~~/~~ 4 above 16 ~~/~~ 5 }
- right ]
- ~
- pile { +1 above +1 above +1 }
- ~~~~~~~
- (c) is
- pile { +1 above +1 above +1 }
- ~
- left [
- pile { 1 ~~/~~ 2~ above 2 ~~/~~ 4~ above 3 ~~/~~ 8~ above 4 ~~/~~ 16 }
- right ]
- ~
- pile { times 2 above times 2 above times 2 }
- .EN
- .EQ
- b(n) mark is { (1 + n) sup 2 } over { 2 + n } ~~~ b(12) is { (1 + 12) sup 2 } over { 12 + 2 } is 13 sup 2 over 14 is 169 over 14
- .EN
- .EQ
- c(n) lineup is n+1 over 2 sup n+1 ~~~~~~~ c(12) is 12+1 over 2 sup 12+1 is 13 over 8192
- .EN
- .NH
- .PP
- Man untersuche nachstehende Folgen in Hinblick auf Monotonie, Beschraenktheit und moegliche Grenzwerte. Ferner veranschauliche man die Folgen auf der reellen Zahlengeraden:
- .EQ
- mark (a) ~~~~
- (a sub n ) is 1, 1 so 2 , 3, 1 so 4 , 5, 1 so 6 , ..., n, 1 so n+1 , ...
- .EN
- .EQ
- lineup (b) ~~~~
- (b sub n ) is n+5 over n-1 ,~~~ n >= 2
- .EN
- .EQ
- lineup (c) ~~~~
- (b sub n ) is (-1) sup n n+2 over n ,~~~ n >= 1
- .EN
- .SH
- Lo\*[:]sung:
- .NH 2
- .EQ
- (a sub n ) is left {
- rpile { 1 so n above ~ above n }
- ~~lpile { roman {~~~falls~ n~ gerade} above ~ above roman {~~~falls~ n~ ungerade} }
- ~~~~~~~~~~~~~~~
- pile { { limntoinf ~ a(n sub gerade ) is 0 } above { limntoinf ~ a(n sub ungerade ) is inf } }
- ~~~
- implies roman { Haeufungswerte~bei~" { " } 0, inf roman " } "
- .EN
- .PP
- $ (a sub n ) $ ist divergent!
- .EQ
- pile {
- a sub { n sub { gerade + 2}} < a sub { n sub {gerade}}
- above
- a sub { n sub { ungerade + 2}} > a sub { n sub {ungerade}}
- }
- ~~~
- implies (a sub n ) size 8 { ~nicht~monoton~steigend~oder~fallend }
- ~~~~~~~~~~~~~~~
- pile { { "sup" ~ a sub n mark is inf } above { "inf" ~ a sub n lineup is 0 } }
- .EN
- .PP
- $ (a sub n ) $ ist nicht monoton!
- .PP
- $ (a sub n ) $ hat ein Supremum und Inferium!
- .PP
-
- .PP
-
- .NH 2
- .EQ
- (b sub n ) is n+5 over n-1 ,~~~ n >= 2
- .EN
- .EQ
- n+5 over n-1 > n+1+5 over n+1-1 implies (n + 5) ~n > (n - 1)(n + 6) implies n sup 2 + 5n mark > n sup 2 - n + 6n - 6
- .EN
- .EQ
- n sup 2 + 5n lineup > n sup 2 - 5n - 6
- .EN
- .PP
- $ (b sub n ) $ streng monoton fallend!
- .PP
- $ (b sub 2 ) $ obere Schranke
- .EQ
- lim bar ~ (b sub n ) is b sub 2 is 2+5 over 2-1 is 7
- ~~~~~~~~~~~~~~~~
- lim under is limntoinf ~ (b sub n )
- .EN
- .EQ
- limntoinf ~ (b sub n ) is limntoinf n+5 over n-1 is limntoinf { n~({1 + 5 so n }) } over { n~({1 - 1 so n }) } is {1 + 5 so inf } over {1 - 1 so inf } is 1
- .EN
- .EQ
- 1 <= (b sub n ) <= 7
- .EN
- .PP
- $ (b sub n ) $ ist konvergent!
- .PP
-
- .PP
-
- .NH 2
- .EQ
- (c sub n ) is (-1) sup n n+2 over n ,~~~ n >= 1
- ~~~~~~~~~~~~~~~~~~~~~~~~
- (c sub n ) is left {
- rpile { +{ n+2 so n } above ~ above -{ n+2 so n } }
- ~~~~~~lpile { ~~~~~~ 2 ~|~ n above ~ above not~ 2 ~|~ n }
- .EN
- .EQ
- n+2 over n > (n+1)+2 over (n+1) implies (n+2)~(n+1) mark > n~(n+3)
- .EN
- .EQ
- n sup 2 + n + 2n + 2 lineup > n sup 2 + 3n
- .EN
- .EQ
- n sup 2 + 3n + 2 lineup > n sup 2 + 3n implies (c sub {n~pos} ) ~~ size 8 roman {streng~monoton~fallend}
- .EN
- .EQ
- - n+2 over n > - (n+1)+2 over (n+1) implies -1~(n+2)~(n+1) lineup > -n~(n+3)
- .EN
- .EQ
- n sup 2 - 3n - 2 lineup > n sup 2 - 3n implies (c sub {n~neg} ) ~~ size 8 roman {streng~monoton~steigend}
- .EN
- .EQ
- (c sub {n~pos} ) ~~ size 8 roman {streng~monoton~fallend} AND (c sub {n~neg} ) ~~ size 8 roman {streng~monoton~steigend} implies (c sub n ) ~~ size 8 roman {nicht~monoton}
- .EN
- .EQ
- lim ~ ( c sub {n~pos} ) is limntoinf ~ n+2 over n is limntoinf { n~(1 + 2 so n ) } over n is limntoinf ~ 1 + 2 over n is 1 + 2 over inf mark is 1
- .EN
- .EQ
- lim ~ ( c sub {n~neg} ) is limntoinf ~ - n+2 over n is ...
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- lineup is 1
- .EN
- .PP
- $ roman "{" -1,~1 roman "}" $ sind Haeufungswerte $ implies (c sub n ) ~~ size 8 roman {divergent} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -1 < (c sub n ) < 1 $
- .PP
-
- .PP
-
- .NH
- .PP
- Gegeben sei die rekursiv definiterte Folge $ (a sub n ) $ mit $ a sub 0 is 1 $ und
- .EQ
- a sub n+1 is 1 over 2 ~ (a sub n + 5 so a sub n ) ,~~~ n >= 0
- .EN
- .PP
- Man berechne die Folgenglieder $ a sub n $ fuer $ n is 0,~...,~10 $, untersuche die Folge in Bezug auf Monotonie, Beschraenktheit sowie Konvergenz und berechne - wenn moeglich - den Grenzwert.
- .EQ
- define generic3 `1 over 2 ~ left ( { a sub $1 + 5 over a sub $1 } right )`
- define generic3inserted `1 over 2 ~ left ( { $1 + 5 over $1 } right )`
- define generic3fraction `1 over 2 ~ left ( $2 so $1 + 5 over { $2 so $1 } right )`
- define generic3expanded `1 over 2 ~ left ({ $2 sup 2 + 5 times $1 sup 2 } over { $1 times $2 } right )`
- a sub 1 mark is generic3(0) is generic3inserted(1) is 3
- ~~~~~~~~~~~~~~~
- a sub 2 is generic3(1) is generic3inserted(3) is 7 over 3
- .EN
- .EQ
- a sub 3 lineup is generic3fraction(3, 7) is generic3expanded(3, 7) is 1 over 2 ~ left ({49+45} over 21 right ) is 1 over 2 ~ left ( 94 over 21 right ) is 47 over 21
- .EN
- .EQ
- a sub 4 lineup is generic3fraction(47, 21) is generic3expanded(47, 21) approx ~ 2.23607
- .EN
- .EQ
- a sub 5 lineup is generic3inserted(2.23607) approx ~ 2.23607
- .EN
- .EQ NUMERIK
- .EN
|