ue1.ms 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. .AM
  2. .TL
  3. Analysis UE1
  4. .AU
  5. strlst
  6. .NH
  7. .EQ
  8. gsize -1
  9. define so `smallover`
  10. define is `~=~`
  11. define limntoinf `lim from { n -> inf }`
  12. define implies `~~=>~~`
  13. define AND `size 24 { ~ sub ~ hat ~ }`
  14. delim $$
  15. .EN
  16. .PP
  17. Man finde ein Bildungsgesetz fu\*[:]r die unendlichen Folgen:
  18. .EQ
  19. roman { (a) } ~ 0.3;~0.09;~0.024;~...
  20. roman { (b) } ~ 1 so 2 ;~ 4 so 3 ;~ 9 so 4 ;~...
  21. roman { (b) } ~ 1 so 2 ;~ 2 so 4 ;~ 3 so 8 ;~...
  22. .EN
  23. .PP
  24. Wie gro\*[8] ist dann jeweils das zwo\*[:]lfte Folgenglied?
  25. .SH
  26. Lo\*[:]sung:
  27. .EQ
  28. (a) is left [
  29. pile { 0.3 above 0.09 above 0.027 above 0.0081 above ... above 5.31441 times 10 sup -7 }
  30. right ]
  31. ~
  32. pile { times 0.3 above times 0.3 above times 0.3 above times 0.3 sup 8 above ~ }
  33. ~~~~~~~
  34. (b) is
  35. ~
  36. pile { +2 above +2 }
  37. ~
  38. pile { +3 above +5 above +7 }
  39. ~
  40. left [
  41. pile { 1 ~~/~~ 2 above 4 ~~/~~ 3 above 9 ~~/~~ 4 above 16 ~~/~~ 5 }
  42. right ]
  43. ~
  44. pile { +1 above +1 above +1 }
  45. ~~~~~~~
  46. (c) is
  47. pile { +1 above +1 above +1 }
  48. ~
  49. left [
  50. pile { 1 ~~/~~ 2~ above 2 ~~/~~ 4~ above 3 ~~/~~ 8~ above 4 ~~/~~ 16 }
  51. right ]
  52. ~
  53. pile { times 2 above times 2 above times 2 }
  54. .EN
  55. .EQ
  56. b(n) mark is { (1 + n) sup 2 } over { 2 + n } ~~~ b(12) is { (1 + 12) sup 2 } over { 12 + 2 } is 13 sup 2 over 14 is 169 over 14
  57. .EN
  58. .EQ
  59. c(n) lineup is n+1 over 2 sup n+1 ~~~~~~~ c(12) is 12+1 over 2 sup 12+1 is 13 over 8192
  60. .EN
  61. .NH
  62. .PP
  63. Man untersuche nachstehende Folgen in Hinblick auf Monotonie, Beschraenktheit und moegliche Grenzwerte. Ferner veranschauliche man die Folgen auf der reellen Zahlengeraden:
  64. .EQ
  65. mark (a) ~~~~
  66. (a sub n ) is 1, 1 so 2 , 3, 1 so 4 , 5, 1 so 6 , ..., n, 1 so n+1 , ...
  67. .EN
  68. .EQ
  69. lineup (b) ~~~~
  70. (b sub n ) is n+5 over n-1 ,~~~ n >= 2
  71. .EN
  72. .EQ
  73. lineup (c) ~~~~
  74. (b sub n ) is (-1) sup n n+2 over n ,~~~ n >= 1
  75. .EN
  76. .SH
  77. Lo\*[:]sung:
  78. .NH 2
  79. .EQ
  80. (a sub n ) is left {
  81. rpile { 1 so n above ~ above n }
  82. ~~lpile { roman {~~~falls~ n~ gerade} above ~ above roman {~~~falls~ n~ ungerade} }
  83. ~~~~~~~~~~~~~~~
  84. pile { { limntoinf ~ a(n sub gerade ) is 0 } above { limntoinf ~ a(n sub ungerade ) is inf } }
  85. ~~~
  86. implies roman { Haeufungswerte~bei~" { " } 0, inf roman " } "
  87. .EN
  88. .PP
  89. $ (a sub n ) $ ist divergent!
  90. .EQ
  91. pile {
  92. a sub { n sub { gerade + 2}} < a sub { n sub {gerade}}
  93. above
  94. a sub { n sub { ungerade + 2}} > a sub { n sub {ungerade}}
  95. }
  96. ~~~
  97. implies (a sub n ) size 8 { ~nicht~monoton~steigend~oder~fallend }
  98. ~~~~~~~~~~~~~~~
  99. pile { { "sup" ~ a sub n mark is inf } above { "inf" ~ a sub n lineup is 0 } }
  100. .EN
  101. .PP
  102. $ (a sub n ) $ ist nicht monoton!
  103. .PP
  104. $ (a sub n ) $ hat ein Supremum und Inferium!
  105. .PP
  106. .PP
  107. .NH 2
  108. .EQ
  109. (b sub n ) is n+5 over n-1 ,~~~ n >= 2
  110. .EN
  111. .EQ
  112. n+5 over n-1 > n+1+5 over n+1-1 implies (n + 5) ~n > (n - 1)(n + 6) implies n sup 2 + 5n mark > n sup 2 - n + 6n - 6
  113. .EN
  114. .EQ
  115. n sup 2 + 5n lineup > n sup 2 - 5n - 6
  116. .EN
  117. .PP
  118. $ (b sub n ) $ streng monoton fallend!
  119. .PP
  120. $ (b sub 2 ) $ obere Schranke
  121. .EQ
  122. lim bar ~ (b sub n ) is b sub 2 is 2+5 over 2-1 is 7
  123. ~~~~~~~~~~~~~~~~
  124. lim under is limntoinf ~ (b sub n )
  125. .EN
  126. .EQ
  127. limntoinf ~ (b sub n ) is limntoinf n+5 over n-1 is limntoinf { n~({1 + 5 so n }) } over { n~({1 - 1 so n }) } is {1 + 5 so inf } over {1 - 1 so inf } is 1
  128. .EN
  129. .EQ
  130. 1 <= (b sub n ) <= 7
  131. .EN
  132. .PP
  133. $ (b sub n ) $ ist konvergent!
  134. .PP
  135. .PP
  136. .NH 2
  137. .EQ
  138. (c sub n ) is (-1) sup n n+2 over n ,~~~ n >= 1
  139. ~~~~~~~~~~~~~~~~~~~~~~~~
  140. (c sub n ) is left {
  141. rpile { +{ n+2 so n } above ~ above -{ n+2 so n } }
  142. ~~~~~~lpile { ~~~~~~ 2 ~|~ n above ~ above not~ 2 ~|~ n }
  143. .EN
  144. .EQ
  145. n+2 over n > (n+1)+2 over (n+1) implies (n+2)~(n+1) mark > n~(n+3)
  146. .EN
  147. .EQ
  148. n sup 2 + n + 2n + 2 lineup > n sup 2 + 3n
  149. .EN
  150. .EQ
  151. n sup 2 + 3n + 2 lineup > n sup 2 + 3n implies (c sub {n~pos} ) ~~ size 8 roman {streng~monoton~fallend}
  152. .EN
  153. .EQ
  154. - n+2 over n > - (n+1)+2 over (n+1) implies -1~(n+2)~(n+1) lineup > -n~(n+3)
  155. .EN
  156. .EQ
  157. n sup 2 - 3n - 2 lineup > n sup 2 - 3n implies (c sub {n~neg} ) ~~ size 8 roman {streng~monoton~steigend}
  158. .EN
  159. .EQ
  160. (c sub {n~pos} ) ~~ size 8 roman {streng~monoton~fallend} AND (c sub {n~neg} ) ~~ size 8 roman {streng~monoton~steigend} implies (c sub n ) ~~ size 8 roman {nicht~monoton}
  161. .EN
  162. .EQ
  163. lim ~ ( c sub {n~pos} ) is limntoinf ~ n+2 over n is limntoinf { n~(1 + 2 so n ) } over n is limntoinf ~ 1 + 2 over n is 1 + 2 over inf mark is 1
  164. .EN
  165. .EQ
  166. lim ~ ( c sub {n~neg} ) is limntoinf ~ - n+2 over n is ...
  167. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  168. lineup is 1
  169. .EN
  170. .PP
  171. $ roman "{" -1,~1 roman "}" $ sind Haeufungswerte $ implies (c sub n ) ~~ size 8 roman {divergent} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -1 < (c sub n ) < 1 $
  172. .PP
  173. .PP
  174. .NH
  175. .PP
  176. Gegeben sei die rekursiv definiterte Folge $ (a sub n ) $ mit $ a sub 0 is 1 $ und
  177. .EQ
  178. a sub n+1 is 1 over 2 ~ (a sub n + 5 so a sub n ) ,~~~ n >= 0
  179. .EN
  180. .PP
  181. Man berechne die Folgenglieder $ a sub n $ fuer $ n is 0,~...,~10 $, untersuche die Folge in Bezug auf Monotonie, Beschraenktheit sowie Konvergenz und berechne - wenn moeglich - den Grenzwert.
  182. .EQ
  183. define generic3 `1 over 2 ~ left ( { a sub $1 + 5 over a sub $1 } right )`
  184. define generic3inserted `1 over 2 ~ left ( { $1 + 5 over $1 } right )`
  185. define generic3fraction `1 over 2 ~ left ( $2 so $1 + 5 over { $2 so $1 } right )`
  186. define generic3expanded `1 over 2 ~ left ({ $2 sup 2 + 5 times $1 sup 2 } over { $1 times $2 } right )`
  187. a sub 1 mark is generic3(0) is generic3inserted(1) is 3
  188. ~~~~~~~~~~~~~~~
  189. a sub 2 is generic3(1) is generic3inserted(3) is 7 over 3
  190. .EN
  191. .EQ
  192. a sub 3 lineup is generic3fraction(3, 7) is generic3expanded(3, 7) is 1 over 2 ~ left ({49+45} over 21 right ) is 1 over 2 ~ left ( 94 over 21 right ) is 47 over 21
  193. .EN
  194. .EQ
  195. a sub 4 lineup is generic3fraction(47, 21) is generic3expanded(47, 21) approx ~ 2.23607
  196. .EN
  197. .EQ
  198. a sub 5 lineup is generic3inserted(2.23607) approx ~ 2.23607
  199. .EN
  200. .EQ NUMERIK
  201. .EN