123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- % Options for packages loaded elsewhere
- \PassOptionsToPackage{unicode}{hyperref}
- \PassOptionsToPackage{hyphens}{url}
- %
- \documentclass[
- 12pt,
- ]{article}
- \usepackage{amsmath,amssymb}
- \usepackage{lmodern}
- \usepackage{ifxetex,ifluatex}
- \usepackage{pagecolor}
- \ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex
- \usepackage[T1]{fontenc}
- \usepackage[utf8]{inputenc}
- \usepackage{textcomp} % provide euro and other symbols
- \else % if luatex or xetex
- \usepackage{unicode-math}
- \defaultfontfeatures{Scale=MatchLowercase}
- \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1}
- \fi
- % Use upquote if available, for straight quotes in verbatim environments
- \IfFileExists{upquote.sty}{\usepackage{upquote}}{}
- \IfFileExists{microtype.sty}{% use microtype if available
- \usepackage[]{microtype}
- \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
- }{}
- \usepackage{xcolor}
- \makeatletter
- \@ifundefined{KOMAClassName}{% if non-KOMA class
- \IfFileExists{parskip.sty}{%
- \usepackage{parskip}
- }{% else
- \setlength{\parindent}{0pt}
- \setlength{\parskip}{6pt plus 2pt minus 1pt}}
- }{% if KOMA class
- \KOMAoptions{parskip=half}}
- \newcommand{\globalcolor}[1]{%
- \color{#1}\global\let\default@color\current@color
- }
- \makeatother
- \definecolor{myforeground}{HTML}{d9bdd7}
- \AtBeginDocument{\globalcolor{myforeground}}
- \IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available
- \IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}}
- \hypersetup{
- hidelinks,
- pdfcreator={LaTeX via pandoc}}
- \urlstyle{same} % disable monospaced font for URLs
- \usepackage[top=2cm, bottom=2cm]{geometry}
- \setlength{\emergencystretch}{3em} % prevent overfull lines
- \providecommand{\tightlist}{%
- \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
- \setcounter{secnumdepth}{-\maxdimen} % remove section numbering
- \usepackage{float}
- \let\origfigure\figure
- \let\endorigfigure\endfigure
- \renewenvironment{figure}[1][2] {
- \expandafter\origfigure\expandafter[H]
- } {
- \endorigfigure
- }
- \ifluatex
- \usepackage{selnolig} % disable illegal ligatures
- \fi
- \author{}
- \date{}
- \begin{document}
- \definecolor{mybackground}{HTML}{100410}
- \pagecolor{mybackground}
- \hypertarget{tseitin-transformation}{%
- \subsection{Tseitin transformation}\label{tseitin-transformation}}
- Let \(F\) be a formula in \(\text{conjunctive normal form}\) (CNF),
- i.e., a conjunction of clauses
- \begin{equation}
- \bigwedge\limits_i^{C} \bigvee\limits_j^{S_i} \ell_{i,j},\ \text{where}\ \ell_{i,j} \in \{ P, \neg P \mid P \text{ is an atom} \}
- \label{eq:clauses}\end{equation}
- Note that every clause \(C_i\) with \(m\) literals can be seen as a
- ``nested'' disjunction, i.e.,
- \begin{equation}
- C_i = (\ell_{i,1} \lor (\ell_{i,2} \lor (\text{...} \lor (\ell_{i,m-1} \lor \ell_{i,m})
- \label{eq:nested}\end{equation}
- Explain how you can use Tseitin's transformation to convert any
- arbitrary formula in CNF into an \textbf{\emph{equi-satisfiable}}
- formula in CNF whose clauses have at most 3 literals.
- \hypertarget{solution}{%
- \paragraph{solution}\label{solution}}
- A clause in the formula is with no loss of generality described by
- \begin{equation}
- C_i = (\ell_{i,1} \lor \ell_{i,2} \lor (\ell_{i,3} \lor (\ell_{i,4} \lor (F))),\ F = \bigvee_{j}^A \ell_{i,j},\ A = {S_i} \setminus \{1,2,3,4\}
- \label{eq:general-formula}\end{equation}
- We can introduce a new symbol for a satisfiability-equivalent formula
- \begin{equation}
- (\ell_{i,1} \lor \ell_{i,2} \lor O_1) \land (O_1 \Leftrightarrow (\ell_{i,3} \lor (\ell_{i,4} \lor (F)))
- \label{eq:equivalent-formula}\end{equation}
- and apply the corresponding Tseitin Encoding
- \begin{equation}
- \begin{aligned}
- (\ell_{i,1} \lor \ell_{i,2} \lor O_1)\land (\neg \ell_{i,3} \lor O_1) &\land \overbrace{(\neg(\ell_{i,4} \lor F) \lor O_1)}^{C_{i,const}} \\
- &\land \underbrace{(\neg O_1 \lor \ell_{i,3} \lor (\ell{i,4} \lor (F)))}_{C_i,recursive}
- \end{aligned}
- \label{eq:tseitin}\end{equation}
- Doing so yields two components for which we have to show that they
- contain at most 3 literals. The first of which represents a constant
- blow-up of conjuncts
- \begin{equation}
- \begin{aligned}
- C_{i,const} &= \neg (\ell_{i,4} \lor F) \lor O_1 \\
- &= (\neg \ell_{i,4} \land \neg F) \lor O_1 \\
- &= (\neg \ell_{i,4} \lor O_1) \land (\neg F \lor O_1) \\
- &= (\neg \ell_{i,4} \lor O_1) \land (\neg (\bigvee_j^A \ell_{i,j} ) \lor O_1) \\
- &= (\neg \ell_{i,4} \lor O_1) \land ((\bigwedge_j^A \neg \ell_{i,j} ) \lor O_1) \\
- &= (\neg \ell_{i,4} \lor O_1) \land (\bigwedge_j^A \neg \ell_{i,j} \lor O_1) \\
- \end{aligned}
- \label{eq:conjuncts}\end{equation}
- Note that {[}\ref{eq:conjuncts}{]} makes entensive use of the
- distributivity of conjuncts and disjuncts to expand \(C_{i,const}\) into
- sub-clauses that are short enough.
- The other remaining clause is \(C_{i,recursive}\), for which it remains
- to be shown that the formula is a disjunction with at most 3 literals.
- This term is the original expression \(C_i\) without the disjuncts
- \(\ell_{i,1}\) and \(\ell_{i,2}\). The expansion described in
- {[}\ref{eq:equivalent-formula}{]} and {[}\ref{eq:tseitin}{]} can thus be
- applied again until all clauses have been reduced to form an
- equi-satisfiable formula in CNF whose clauses have at most 3 literals.
- \end{document}
|