3-sat.tex 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. % Options for packages loaded elsewhere
  2. \PassOptionsToPackage{unicode}{hyperref}
  3. \PassOptionsToPackage{hyphens}{url}
  4. %
  5. \documentclass[
  6. 12pt,
  7. ]{article}
  8. \usepackage{amsmath,amssymb}
  9. \usepackage{lmodern}
  10. \usepackage{ifxetex,ifluatex}
  11. \usepackage{pagecolor}
  12. \ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex
  13. \usepackage[T1]{fontenc}
  14. \usepackage[utf8]{inputenc}
  15. \usepackage{textcomp} % provide euro and other symbols
  16. \else % if luatex or xetex
  17. \usepackage{unicode-math}
  18. \defaultfontfeatures{Scale=MatchLowercase}
  19. \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1}
  20. \fi
  21. % Use upquote if available, for straight quotes in verbatim environments
  22. \IfFileExists{upquote.sty}{\usepackage{upquote}}{}
  23. \IfFileExists{microtype.sty}{% use microtype if available
  24. \usepackage[]{microtype}
  25. \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
  26. }{}
  27. \usepackage{xcolor}
  28. \makeatletter
  29. \@ifundefined{KOMAClassName}{% if non-KOMA class
  30. \IfFileExists{parskip.sty}{%
  31. \usepackage{parskip}
  32. }{% else
  33. \setlength{\parindent}{0pt}
  34. \setlength{\parskip}{6pt plus 2pt minus 1pt}}
  35. }{% if KOMA class
  36. \KOMAoptions{parskip=half}}
  37. \newcommand{\globalcolor}[1]{%
  38. \color{#1}\global\let\default@color\current@color
  39. }
  40. \makeatother
  41. \definecolor{myforeground}{HTML}{d9bdd7}
  42. \AtBeginDocument{\globalcolor{myforeground}}
  43. \IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available
  44. \IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}}
  45. \hypersetup{
  46. hidelinks,
  47. pdfcreator={LaTeX via pandoc}}
  48. \urlstyle{same} % disable monospaced font for URLs
  49. \usepackage[top=2cm, bottom=2cm]{geometry}
  50. \setlength{\emergencystretch}{3em} % prevent overfull lines
  51. \providecommand{\tightlist}{%
  52. \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
  53. \setcounter{secnumdepth}{-\maxdimen} % remove section numbering
  54. \usepackage{float}
  55. \let\origfigure\figure
  56. \let\endorigfigure\endfigure
  57. \renewenvironment{figure}[1][2] {
  58. \expandafter\origfigure\expandafter[H]
  59. } {
  60. \endorigfigure
  61. }
  62. \ifluatex
  63. \usepackage{selnolig} % disable illegal ligatures
  64. \fi
  65. \author{}
  66. \date{}
  67. \begin{document}
  68. \definecolor{mybackground}{HTML}{100410}
  69. \pagecolor{mybackground}
  70. \hypertarget{tseitin-transformation}{%
  71. \subsection{Tseitin transformation}\label{tseitin-transformation}}
  72. Let \(F\) be a formula in \(\text{conjunctive normal form}\) (CNF),
  73. i.e., a conjunction of clauses
  74. \begin{equation}
  75. \bigwedge\limits_i^{C} \bigvee\limits_j^{S_i} \ell_{i,j},\ \text{where}\ \ell_{i,j} \in \{ P, \neg P \mid P \text{ is an atom} \}
  76. \label{eq:clauses}\end{equation}
  77. Note that every clause \(C_i\) with \(m\) literals can be seen as a
  78. ``nested'' disjunction, i.e.,
  79. \begin{equation}
  80. C_i = (\ell_{i,1} \lor (\ell_{i,2} \lor (\text{...} \lor (\ell_{i,m-1} \lor \ell_{i,m})
  81. \label{eq:nested}\end{equation}
  82. Explain how you can use Tseitin's transformation to convert any
  83. arbitrary formula in CNF into an \textbf{\emph{equi-satisfiable}}
  84. formula in CNF whose clauses have at most 3 literals.
  85. \hypertarget{solution}{%
  86. \paragraph{solution}\label{solution}}
  87. A clause in the formula is with no loss of generality described by
  88. \begin{equation}
  89. C_i = (\ell_{i,1} \lor \ell_{i,2} \lor (\ell_{i,3} \lor (\ell_{i,4} \lor (F))),\ F = \bigvee_{j}^A \ell_{i,j},\ A = {S_i} \setminus \{1,2,3,4\}
  90. \label{eq:general-formula}\end{equation}
  91. We can introduce a new symbol for a satisfiability-equivalent formula
  92. \begin{equation}
  93. (\ell_{i,1} \lor \ell_{i,2} \lor O_1) \land (O_1 \Leftrightarrow (\ell_{i,3} \lor (\ell_{i,4} \lor (F)))
  94. \label{eq:equivalent-formula}\end{equation}
  95. and apply the corresponding Tseitin Encoding
  96. \begin{equation}
  97. \begin{aligned}
  98. (\ell_{i,1} \lor \ell_{i,2} \lor O_1)\land (\neg \ell_{i,3} \lor O_1) &\land \overbrace{(\neg(\ell_{i,4} \lor F) \lor O_1)}^{C_{i,const}} \\
  99. &\land \underbrace{(\neg O_1 \lor \ell_{i,3} \lor (\ell{i,4} \lor (F)))}_{C_i,recursive}
  100. \end{aligned}
  101. \label{eq:tseitin}\end{equation}
  102. Doing so yields two components for which we have to show that they
  103. contain at most 3 literals. The first of which represents a constant
  104. blow-up of conjuncts
  105. \begin{equation}
  106. \begin{aligned}
  107. C_{i,const} &= \neg (\ell_{i,4} \lor F) \lor O_1 \\
  108. &= (\neg \ell_{i,4} \land \neg F) \lor O_1 \\
  109. &= (\neg \ell_{i,4} \lor O_1) \land (\neg F \lor O_1) \\
  110. &= (\neg \ell_{i,4} \lor O_1) \land (\neg (\bigvee_j^A \ell_{i,j} ) \lor O_1) \\
  111. &= (\neg \ell_{i,4} \lor O_1) \land ((\bigwedge_j^A \neg \ell_{i,j} ) \lor O_1) \\
  112. &= (\neg \ell_{i,4} \lor O_1) \land (\bigwedge_j^A \neg \ell_{i,j} \lor O_1) \\
  113. \end{aligned}
  114. \label{eq:conjuncts}\end{equation}
  115. Note that {[}\ref{eq:conjuncts}{]} makes entensive use of the
  116. distributivity of conjuncts and disjuncts to expand \(C_{i,const}\) into
  117. sub-clauses that are short enough.
  118. The other remaining clause is \(C_{i,recursive}\), for which it remains
  119. to be shown that the formula is a disjunction with at most 3 literals.
  120. This term is the original expression \(C_i\) without the disjuncts
  121. \(\ell_{i,1}\) and \(\ell_{i,2}\). The expansion described in
  122. {[}\ref{eq:equivalent-formula}{]} and {[}\ref{eq:tseitin}{]} can thus be
  123. applied again until all clauses have been reduced to form an
  124. equi-satisfiable formula in CNF whose clauses have at most 3 literals.
  125. \end{document}