ue5.m 1.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. close all;
  2. clear;
  3. clc;
  4. %% 1
  5. A = [0 1; 0 0]
  6. B = [0; 1]
  7. cT = [1 0]
  8. d = [0]
  9. A = [3 3; 2 0]
  10. B = [0 3; 3 -1]
  11. cT = [1 -2]
  12. d = [0 0]
  13. syms Ta
  14. % Euler
  15. Phi1 = eye(2) + A*Ta
  16. Gamma1 = B
  17. % exakt
  18. Phi2 = expm(A*Ta)
  19. %Phi2 = eye(2) + A*Ta + A^2*Ta^2/2
  20. Gamma2 = int(Phi2, Ta, 0, Ta)*B
  21. Ta = 1
  22. Phi1subbed = subs(Phi1)
  23. Gamma1subbed = subs(Gamma1)
  24. Phi2subbed = subs(Phi2)
  25. Gamma2subbed = subs(Gamma2)
  26. %% 2
  27. Phi3 = [-14 -90 7 -56; 10 84 -10 55; 0 -18 -7 -12; -14 -126 14 -83]
  28. Gamma3 = [3; -2; 1; 3]
  29. R = [Gamma3, Phi3*Gamma3, Phi3^2*Gamma3, Phi3^3*Gamma3, Phi3^4*Gamma3, Phi3^5*Gamma3]
  30. rank(R)
  31. Rred = R(:,1:rank(R))
  32. % x = l1 * v1 + l2 * v2
  33. % e^T_n = Gamma^T_R = v^T_1 * R
  34. PhiS = [0 1; -6 -7]
  35. GammaS = [0; 1]
  36. poles = roots([1 -3/10 1/50])
  37. -acker(PhiS, GammaS, poles)
  38. %% 3
  39. Phi4 = [9/8 -21/8 7/2; 13/8 7/8 1/2; -3/8 27/8 -13/4]
  40. Gamma4 = [5; -1; -5]
  41. cT2 = [1 -1 2]
  42. Phi4g = [0 1 0; 0 0 1; 0 0 0]
  43. syms k1 k2 k3
  44. kT = [k1 k2 k3]
  45. Gamma4 * kT
  46. Phi4g - Phi4
  47. % Phi4 + Gamma4 * kT = Phi4g
  48. kT = -acker(Phi4', cT2', [0 0 0])
  49. e = [1;1;1];
  50. for i=0:3000
  51. e = Phi4*e;
  52. end
  53. norm(e)