123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645 |
- /*
- * Adapted from OpenImageIO library with this license:
- *
- * Copyright 2008-2014 Larry Gritz and the other authors and contributors.
- * All Rights Reserved.
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of the software's owners nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * (This is the Modified BSD License)
- *
- * A few bits here are based upon code from NVIDIA that was also released
- * under the same modified BSD license, and marked as:
- * Copyright 2004 NVIDIA Corporation. All Rights Reserved.
- *
- * Some parts of this file were first open-sourced in Open Shading Language,
- * then later moved here. The original copyright notice was:
- * Copyright (c) 2009-2014 Sony Pictures Imageworks Inc., et al.
- *
- * Many of the math functions were copied from or inspired by other
- * public domain sources or open source packages with compatible licenses.
- * The individual functions give references were applicable.
- */
- #ifndef __UTIL_FAST_MATH__
- #define __UTIL_FAST_MATH__
- CCL_NAMESPACE_BEGIN
- ccl_device_inline float madd(const float a, const float b, const float c)
- {
- /* NOTE: In the future we may want to explicitly ask for a fused
- * multiply-add in a specialized version for float.
- *
- * NOTE: GCC/ICC will turn this (for float) into a FMA unless
- * explicitly asked not to, clang seems to leave the code alone.
- */
- return a * b + c;
- }
- ccl_device_inline float4 madd4(const float4 a, const float4 b, const float4 c)
- {
- return a * b + c;
- }
- /*
- * FAST & APPROXIMATE MATH
- *
- * The functions named "fast_*" provide a set of replacements to libm that
- * are much faster at the expense of some accuracy and robust handling of
- * extreme values. One design goal for these approximation was to avoid
- * branches as much as possible and operate on single precision values only
- * so that SIMD versions should be straightforward ports We also try to
- * implement "safe" semantics (ie: clamp to valid range where possible)
- * natively since wrapping these inline calls in another layer would be
- * wasteful.
- *
- * Some functions are fast_safe_*, which is both a faster approximation as
- * well as clamped input domain to ensure no NaN, Inf, or divide by zero.
- */
- /* Round to nearest integer, returning as an int. */
- ccl_device_inline int fast_rint(float x)
- {
- /* used by sin/cos/tan range reduction. */
- #ifdef __KERNEL_SSE4__
- /* Single roundps instruction on SSE4.1+ (for gcc/clang at least). */
- return float_to_int(rintf(x));
- #else
- /* emulate rounding by adding/substracting 0.5. */
- return float_to_int(x + copysignf(0.5f, x));
- #endif
- }
- ccl_device float fast_sinf(float x)
- {
- /* Very accurate argument reduction from SLEEF,
- * starts failing around x=262000
- *
- * Results on: [-2pi,2pi].
- *
- * Examined 2173837240 values of sin: 0.00662760244 avg ulp diff, 2 max ulp,
- * 1.19209e-07 max error
- */
- int q = fast_rint(x * M_1_PI_F);
- float qf = q;
- x = madd(qf, -0.78515625f * 4, x);
- x = madd(qf, -0.00024187564849853515625f * 4, x);
- x = madd(qf, -3.7747668102383613586e-08f * 4, x);
- x = madd(qf, -1.2816720341285448015e-12f * 4, x);
- x = M_PI_2_F - (M_PI_2_F - x); /* Crush denormals */
- float s = x * x;
- if ((q & 1) != 0)
- x = -x;
- /* This polynomial approximation has very low error on [-pi/2,+pi/2]
- * 1.19209e-07 max error in total over [-2pi,+2pi]. */
- float u = 2.6083159809786593541503e-06f;
- u = madd(u, s, -0.0001981069071916863322258f);
- u = madd(u, s, +0.00833307858556509017944336f);
- u = madd(u, s, -0.166666597127914428710938f);
- u = madd(s, u * x, x);
- /* For large x, the argument reduction can fail and the polynomial can be
- * evaluated with arguments outside the valid internal. Just clamp the bad
- * values away (setting to 0.0f means no branches need to be generated). */
- if (fabsf(u) > 1.0f) {
- u = 0.0f;
- }
- return u;
- }
- ccl_device float fast_cosf(float x)
- {
- /* Same argument reduction as fast_sinf(). */
- int q = fast_rint(x * M_1_PI_F);
- float qf = q;
- x = madd(qf, -0.78515625f * 4, x);
- x = madd(qf, -0.00024187564849853515625f * 4, x);
- x = madd(qf, -3.7747668102383613586e-08f * 4, x);
- x = madd(qf, -1.2816720341285448015e-12f * 4, x);
- x = M_PI_2_F - (M_PI_2_F - x); /* Crush denormals. */
- float s = x * x;
- /* Polynomial from SLEEF's sincosf, max error is
- * 4.33127e-07 over [-2pi,2pi] (98% of values are "exact"). */
- float u = -2.71811842367242206819355e-07f;
- u = madd(u, s, +2.47990446951007470488548e-05f);
- u = madd(u, s, -0.00138888787478208541870117f);
- u = madd(u, s, +0.0416666641831398010253906f);
- u = madd(u, s, -0.5f);
- u = madd(u, s, +1.0f);
- if ((q & 1) != 0) {
- u = -u;
- }
- if (fabsf(u) > 1.0f) {
- u = 0.0f;
- }
- return u;
- }
- ccl_device void fast_sincosf(float x, float *sine, float *cosine)
- {
- /* Same argument reduction as fast_sin. */
- int q = fast_rint(x * M_1_PI_F);
- float qf = q;
- x = madd(qf, -0.78515625f * 4, x);
- x = madd(qf, -0.00024187564849853515625f * 4, x);
- x = madd(qf, -3.7747668102383613586e-08f * 4, x);
- x = madd(qf, -1.2816720341285448015e-12f * 4, x);
- x = M_PI_2_F - (M_PI_2_F - x); // crush denormals
- float s = x * x;
- /* NOTE: same exact polynomials as fast_sinf() and fast_cosf() above. */
- if ((q & 1) != 0) {
- x = -x;
- }
- float su = 2.6083159809786593541503e-06f;
- su = madd(su, s, -0.0001981069071916863322258f);
- su = madd(su, s, +0.00833307858556509017944336f);
- su = madd(su, s, -0.166666597127914428710938f);
- su = madd(s, su * x, x);
- float cu = -2.71811842367242206819355e-07f;
- cu = madd(cu, s, +2.47990446951007470488548e-05f);
- cu = madd(cu, s, -0.00138888787478208541870117f);
- cu = madd(cu, s, +0.0416666641831398010253906f);
- cu = madd(cu, s, -0.5f);
- cu = madd(cu, s, +1.0f);
- if ((q & 1) != 0) {
- cu = -cu;
- }
- if (fabsf(su) > 1.0f) {
- su = 0.0f;
- }
- if (fabsf(cu) > 1.0f) {
- cu = 0.0f;
- }
- *sine = su;
- *cosine = cu;
- }
- /* NOTE: this approximation is only valid on [-8192.0,+8192.0], it starts
- * becoming really poor outside of this range because the reciprocal amplifies
- * errors.
- */
- ccl_device float fast_tanf(float x)
- {
- /* Derived from SLEEF implementation.
- *
- * Note that we cannot apply the "denormal crush" trick everywhere because
- * we sometimes need to take the reciprocal of the polynomial
- */
- int q = fast_rint(x * 2.0f * M_1_PI_F);
- float qf = q;
- x = madd(qf, -0.78515625f * 2, x);
- x = madd(qf, -0.00024187564849853515625f * 2, x);
- x = madd(qf, -3.7747668102383613586e-08f * 2, x);
- x = madd(qf, -1.2816720341285448015e-12f * 2, x);
- if ((q & 1) == 0) {
- /* Crush denormals (only if we aren't inverting the result later). */
- x = M_PI_4_F - (M_PI_4_F - x);
- }
- float s = x * x;
- float u = 0.00927245803177356719970703f;
- u = madd(u, s, 0.00331984995864331722259521f);
- u = madd(u, s, 0.0242998078465461730957031f);
- u = madd(u, s, 0.0534495301544666290283203f);
- u = madd(u, s, 0.133383005857467651367188f);
- u = madd(u, s, 0.333331853151321411132812f);
- u = madd(s, u * x, x);
- if ((q & 1) != 0) {
- u = -1.0f / u;
- }
- return u;
- }
- /* Fast, approximate sin(x*M_PI) with maximum absolute error of 0.000918954611.
- *
- * Adapted from http://devmaster.net/posts/9648/fast-and-accurate-sine-cosine#comment-76773
- */
- ccl_device float fast_sinpif(float x)
- {
- /* Fast trick to strip the integral part off, so our domain is [-1, 1]. */
- const float z = x - ((x + 25165824.0f) - 25165824.0f);
- const float y = z - z * fabsf(z);
- const float Q = 3.10396624f;
- const float P = 3.584135056f; /* P = 16-4*Q */
- return y * (Q + P * fabsf(y));
- /* The original article used used inferior constants for Q and P and
- * so had max error 1.091e-3.
- *
- * The optimal value for Q was determined by exhaustive search, minimizing
- * the absolute numerical error relative to float(std::sin(double(phi*M_PI)))
- * over the interval [0,2] (which is where most of the invocations happen).
- *
- * The basic idea of this approximation starts with the coarse approximation:
- * sin(pi*x) ~= f(x) = 4 * (x - x * abs(x))
- *
- * This approximation always _over_ estimates the target. On the other hand,
- * the curve:
- * sin(pi*x) ~= f(x) * abs(f(x)) / 4
- *
- * always lies _under_ the target. Thus we can simply numerically search for
- * the optimal constant to LERP these curves into a more precise
- * approximation.
- *
- * After folding the constants together and simplifying the resulting math,
- * we end up with the compact implementation above.
- *
- * NOTE: this function actually computes sin(x * pi) which avoids one or two
- * mults in many cases and guarantees exact values at integer periods.
- */
- }
- /* Fast approximate cos(x*M_PI) with ~0.1% absolute error. */
- ccl_device_inline float fast_cospif(float x)
- {
- return fast_sinpif(x + 0.5f);
- }
- ccl_device float fast_acosf(float x)
- {
- const float f = fabsf(x);
- /* clamp and crush denormals. */
- const float m = (f < 1.0f) ? 1.0f - (1.0f - f) : 1.0f;
- /* Based on http://www.pouet.net/topic.php?which=9132&page=2
- * 85% accurate (ulp 0)
- * Examined 2130706434 values of acos:
- * 15.2000597 avg ulp diff, 4492 max ulp, 4.51803e-05 max error // without "denormal crush"
- * Examined 2130706434 values of acos:
- * 15.2007108 avg ulp diff, 4492 max ulp, 4.51803e-05 max error // with "denormal crush"
- */
- const float a = sqrtf(1.0f - m) *
- (1.5707963267f + m * (-0.213300989f + m * (0.077980478f + m * -0.02164095f)));
- return x < 0 ? M_PI_F - a : a;
- }
- ccl_device float fast_asinf(float x)
- {
- /* Based on acosf approximation above.
- * Max error is 4.51133e-05 (ulps are higher because we are consistently off
- * by a little amount).
- */
- const float f = fabsf(x);
- /* Clamp and crush denormals. */
- const float m = (f < 1.0f) ? 1.0f - (1.0f - f) : 1.0f;
- const float a = M_PI_2_F -
- sqrtf(1.0f - m) * (1.5707963267f +
- m * (-0.213300989f + m * (0.077980478f + m * -0.02164095f)));
- return copysignf(a, x);
- }
- ccl_device float fast_atanf(float x)
- {
- const float a = fabsf(x);
- const float k = a > 1.0f ? 1 / a : a;
- const float s = 1.0f - (1.0f - k); /* Crush denormals. */
- const float t = s * s;
- /* http://mathforum.org/library/drmath/view/62672.html
- * Examined 4278190080 values of atan:
- * 2.36864877 avg ulp diff, 302 max ulp, 6.55651e-06 max error // (with denormals)
- * Examined 4278190080 values of atan:
- * 171160502 avg ulp diff, 855638016 max ulp, 6.55651e-06 max error // (crush denormals)
- */
- float r = s * madd(0.43157974f, t, 1.0f) / madd(madd(0.05831938f, t, 0.76443945f), t, 1.0f);
- if (a > 1.0f) {
- r = M_PI_2_F - r;
- }
- return copysignf(r, x);
- }
- ccl_device float fast_atan2f(float y, float x)
- {
- /* Based on atan approximation above.
- *
- * The special cases around 0 and infinity were tested explicitly.
- *
- * The only case not handled correctly is x=NaN,y=0 which returns 0 instead
- * of nan.
- */
- const float a = fabsf(x);
- const float b = fabsf(y);
- const float k = (b == 0) ? 0.0f : ((a == b) ? 1.0f : (b > a ? a / b : b / a));
- const float s = 1.0f - (1.0f - k); /* Crush denormals */
- const float t = s * s;
- float r = s * madd(0.43157974f, t, 1.0f) / madd(madd(0.05831938f, t, 0.76443945f), t, 1.0f);
- if (b > a) {
- /* Account for arg reduction. */
- r = M_PI_2_F - r;
- }
- /* Test sign bit of x. */
- if (__float_as_uint(x) & 0x80000000u) {
- r = M_PI_F - r;
- }
- return copysignf(r, y);
- }
- /* Based on:
- *
- * https://github.com/LiraNuna/glsl-sse2/blob/master/source/vec4.h
- */
- ccl_device float fast_log2f(float x)
- {
- /* NOTE: clamp to avoid special cases and make result "safe" from large
- * negative values/nans. */
- x = clamp(x, FLT_MIN, FLT_MAX);
- unsigned bits = __float_as_uint(x);
- int exponent = (int)(bits >> 23) - 127;
- float f = __uint_as_float((bits & 0x007FFFFF) | 0x3f800000) - 1.0f;
- /* Examined 2130706432 values of log2 on [1.17549435e-38,3.40282347e+38]:
- * 0.0797524457 avg ulp diff, 3713596 max ulp, 7.62939e-06 max error.
- * ulp histogram:
- * 0 = 97.46%
- * 1 = 2.29%
- * 2 = 0.11%
- */
- float f2 = f * f;
- float f4 = f2 * f2;
- float hi = madd(f, -0.00931049621349f, 0.05206469089414f);
- float lo = madd(f, 0.47868480909345f, -0.72116591947498f);
- hi = madd(f, hi, -0.13753123777116f);
- hi = madd(f, hi, 0.24187369696082f);
- hi = madd(f, hi, -0.34730547155299f);
- lo = madd(f, lo, 1.442689881667200f);
- return ((f4 * hi) + (f * lo)) + exponent;
- }
- ccl_device_inline float fast_logf(float x)
- {
- /* Examined 2130706432 values of logf on [1.17549435e-38,3.40282347e+38]:
- * 0.313865375 avg ulp diff, 5148137 max ulp, 7.62939e-06 max error.
- */
- return fast_log2f(x) * M_LN2_F;
- }
- ccl_device_inline float fast_log10(float x)
- {
- /* Examined 2130706432 values of log10f on [1.17549435e-38,3.40282347e+38]:
- * 0.631237033 avg ulp diff, 4471615 max ulp, 3.8147e-06 max error.
- */
- return fast_log2f(x) * M_LN2_F / M_LN10_F;
- }
- ccl_device float fast_logb(float x)
- {
- /* Don't bother with denormals. */
- x = fabsf(x);
- x = clamp(x, FLT_MIN, FLT_MAX);
- unsigned bits = __float_as_uint(x);
- return (int)(bits >> 23) - 127;
- }
- ccl_device float fast_exp2f(float x)
- {
- /* Clamp to safe range for final addition. */
- x = clamp(x, -126.0f, 126.0f);
- /* Range reduction. */
- int m = (int)x;
- x -= m;
- x = 1.0f - (1.0f - x); /* Crush denormals (does not affect max ulps!). */
- /* 5th degree polynomial generated with sollya
- * Examined 2247622658 values of exp2 on [-126,126]: 2.75764912 avg ulp diff,
- * 232 max ulp.
- *
- * ulp histogram:
- * 0 = 87.81%
- * 1 = 4.18%
- */
- float r = 1.33336498402e-3f;
- r = madd(x, r, 9.810352697968e-3f);
- r = madd(x, r, 5.551834031939e-2f);
- r = madd(x, r, 0.2401793301105f);
- r = madd(x, r, 0.693144857883f);
- r = madd(x, r, 1.0f);
- /* Multiply by 2 ^ m by adding in the exponent. */
- /* NOTE: left-shift of negative number is undefined behavior. */
- return __uint_as_float(__float_as_uint(r) + ((unsigned)m << 23));
- }
- ccl_device_inline float fast_expf(float x)
- {
- /* Examined 2237485550 values of exp on [-87.3300018,87.3300018]:
- * 2.6666452 avg ulp diff, 230 max ulp.
- */
- return fast_exp2f(x / M_LN2_F);
- }
- #ifndef __KERNEL_GPU__
- ccl_device float4 fast_exp2f4(float4 x)
- {
- const float4 one = make_float4(1.0f);
- const float4 limit = make_float4(126.0f);
- x = clamp(x, -limit, limit);
- int4 m = make_int4(x);
- x = one - (one - (x - make_float4(m)));
- float4 r = make_float4(1.33336498402e-3f);
- r = madd4(x, r, make_float4(9.810352697968e-3f));
- r = madd4(x, r, make_float4(5.551834031939e-2f));
- r = madd4(x, r, make_float4(0.2401793301105f));
- r = madd4(x, r, make_float4(0.693144857883f));
- r = madd4(x, r, make_float4(1.0f));
- return __int4_as_float4(__float4_as_int4(r) + (m << 23));
- }
- ccl_device_inline float4 fast_expf4(float4 x)
- {
- return fast_exp2f4(x / M_LN2_F);
- }
- #endif
- ccl_device_inline float fast_exp10(float x)
- {
- /* Examined 2217701018 values of exp10 on [-37.9290009,37.9290009]:
- * 2.71732409 avg ulp diff, 232 max ulp.
- */
- return fast_exp2f(x * M_LN10_F / M_LN2_F);
- }
- ccl_device_inline float fast_expm1f(float x)
- {
- if (fabsf(x) < 1e-5f) {
- x = 1.0f - (1.0f - x); /* Crush denormals. */
- return madd(0.5f, x * x, x);
- }
- else {
- return fast_expf(x) - 1.0f;
- }
- }
- ccl_device float fast_sinhf(float x)
- {
- float a = fabsf(x);
- if (a > 1.0f) {
- /* Examined 53389559 values of sinh on [1,87.3300018]:
- * 33.6886442 avg ulp diff, 178 max ulp. */
- float e = fast_expf(a);
- return copysignf(0.5f * e - 0.5f / e, x);
- }
- else {
- a = 1.0f - (1.0f - a); /* Crush denorms. */
- float a2 = a * a;
- /* Degree 7 polynomial generated with sollya. */
- /* Examined 2130706434 values of sinh on [-1,1]: 1.19209e-07 max error. */
- float r = 2.03945513931e-4f;
- r = madd(r, a2, 8.32990277558e-3f);
- r = madd(r, a2, 0.1666673421859f);
- r = madd(r * a, a2, a);
- return copysignf(r, x);
- }
- }
- ccl_device_inline float fast_coshf(float x)
- {
- /* Examined 2237485550 values of cosh on [-87.3300018,87.3300018]:
- * 1.78256726 avg ulp diff, 178 max ulp.
- */
- float e = fast_expf(fabsf(x));
- return 0.5f * e + 0.5f / e;
- }
- ccl_device_inline float fast_tanhf(float x)
- {
- /* Examined 4278190080 values of tanh on [-3.40282347e+38,3.40282347e+38]:
- * 3.12924e-06 max error.
- */
- /* NOTE: ulp error is high because of sub-optimal handling around the origin. */
- float e = fast_expf(2.0f * fabsf(x));
- return copysignf(1.0f - 2.0f / (1.0f + e), x);
- }
- ccl_device float fast_safe_powf(float x, float y)
- {
- if (y == 0)
- return 1.0f; /* x^1=1 */
- if (x == 0)
- return 0.0f; /* 0^y=0 */
- float sign = 1.0f;
- if (x < 0.0f) {
- /* if x is negative, only deal with integer powers
- * powf returns NaN for non-integers, we will return 0 instead.
- */
- int ybits = __float_as_int(y) & 0x7fffffff;
- if (ybits >= 0x4b800000) {
- // always even int, keep positive
- }
- else if (ybits >= 0x3f800000) {
- /* Bigger than 1, check. */
- int k = (ybits >> 23) - 127; /* Get exponent. */
- int j = ybits >> (23 - k); /* Shift out possible fractional bits. */
- if ((j << (23 - k)) == ybits) { /* rebuild number and check for a match. */
- /* +1 for even, -1 for odd. */
- sign = __int_as_float(0x3f800000 | (j << 31));
- }
- else {
- /* Not an integer. */
- return 0.0f;
- }
- }
- else {
- /* Not an integer. */
- return 0.0f;
- }
- }
- return sign * fast_exp2f(y * fast_log2f(fabsf(x)));
- }
- /* TODO(sergey): Check speed with our erf functions implementation from
- * bsdf_microfacet.h.
- */
- ccl_device_inline float fast_erff(float x)
- {
- /* Examined 1082130433 values of erff on [0,4]: 1.93715e-06 max error. */
- /* Abramowitz and Stegun, 7.1.28. */
- const float a1 = 0.0705230784f;
- const float a2 = 0.0422820123f;
- const float a3 = 0.0092705272f;
- const float a4 = 0.0001520143f;
- const float a5 = 0.0002765672f;
- const float a6 = 0.0000430638f;
- const float a = fabsf(x);
- if (a >= 12.3f) {
- return copysignf(1.0f, x);
- }
- const float b = 1.0f - (1.0f - a); /* Crush denormals. */
- const float r = madd(
- madd(madd(madd(madd(madd(a6, b, a5), b, a4), b, a3), b, a2), b, a1), b, 1.0f);
- const float s = r * r; /* ^2 */
- const float t = s * s; /* ^4 */
- const float u = t * t; /* ^8 */
- const float v = u * u; /* ^16 */
- return copysignf(1.0f - 1.0f / v, x);
- }
- ccl_device_inline float fast_erfcf(float x)
- {
- /* Examined 2164260866 values of erfcf on [-4,4]: 1.90735e-06 max error.
- *
- * ulp histogram:
- *
- * 0 = 80.30%
- */
- return 1.0f - fast_erff(x);
- }
- ccl_device_inline float fast_ierff(float x)
- {
- /* From: Approximating the erfinv function by Mike Giles. */
- /* To avoid trouble at the limit, clamp input to 1-eps. */
- float a = fabsf(x);
- if (a > 0.99999994f) {
- a = 0.99999994f;
- }
- float w = -fast_logf((1.0f - a) * (1.0f + a)), p;
- if (w < 5.0f) {
- w = w - 2.5f;
- p = 2.81022636e-08f;
- p = madd(p, w, 3.43273939e-07f);
- p = madd(p, w, -3.5233877e-06f);
- p = madd(p, w, -4.39150654e-06f);
- p = madd(p, w, 0.00021858087f);
- p = madd(p, w, -0.00125372503f);
- p = madd(p, w, -0.00417768164f);
- p = madd(p, w, 0.246640727f);
- p = madd(p, w, 1.50140941f);
- }
- else {
- w = sqrtf(w) - 3.0f;
- p = -0.000200214257f;
- p = madd(p, w, 0.000100950558f);
- p = madd(p, w, 0.00134934322f);
- p = madd(p, w, -0.00367342844f);
- p = madd(p, w, 0.00573950773f);
- p = madd(p, w, -0.0076224613f);
- p = madd(p, w, 0.00943887047f);
- p = madd(p, w, 1.00167406f);
- p = madd(p, w, 2.83297682f);
- }
- return p * x;
- }
- CCL_NAMESPACE_END
- #endif /* __UTIL_FAST_MATH__ */
|