1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405 |
- /*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- CCL_NAMESPACE_BEGIN
- /* Events for probalistic scattering */
- typedef enum VolumeIntegrateResult {
- VOLUME_PATH_SCATTERED = 0,
- VOLUME_PATH_ATTENUATED = 1,
- VOLUME_PATH_MISSED = 2
- } VolumeIntegrateResult;
- /* Volume shader properties
- *
- * extinction coefficient = absorption coefficient + scattering coefficient
- * sigma_t = sigma_a + sigma_s */
- typedef struct VolumeShaderCoefficients {
- float3 sigma_t;
- float3 sigma_s;
- float3 emission;
- } VolumeShaderCoefficients;
- #ifdef __VOLUME__
- /* evaluate shader to get extinction coefficient at P */
- ccl_device_inline bool volume_shader_extinction_sample(KernelGlobals *kg,
- ShaderData *sd,
- ccl_addr_space PathState *state,
- float3 P,
- float3 *extinction)
- {
- sd->P = P;
- shader_eval_volume(kg, sd, state, state->volume_stack, PATH_RAY_SHADOW);
- if (sd->flag & SD_EXTINCTION) {
- *extinction = sd->closure_transparent_extinction;
- return true;
- }
- else {
- return false;
- }
- }
- /* evaluate shader to get absorption, scattering and emission at P */
- ccl_device_inline bool volume_shader_sample(KernelGlobals *kg,
- ShaderData *sd,
- ccl_addr_space PathState *state,
- float3 P,
- VolumeShaderCoefficients *coeff)
- {
- sd->P = P;
- shader_eval_volume(kg, sd, state, state->volume_stack, state->flag);
- if (!(sd->flag & (SD_EXTINCTION | SD_SCATTER | SD_EMISSION)))
- return false;
- coeff->sigma_s = make_float3(0.0f, 0.0f, 0.0f);
- coeff->sigma_t = (sd->flag & SD_EXTINCTION) ? sd->closure_transparent_extinction :
- make_float3(0.0f, 0.0f, 0.0f);
- coeff->emission = (sd->flag & SD_EMISSION) ? sd->closure_emission_background :
- make_float3(0.0f, 0.0f, 0.0f);
- if (sd->flag & SD_SCATTER) {
- for (int i = 0; i < sd->num_closure; i++) {
- const ShaderClosure *sc = &sd->closure[i];
- if (CLOSURE_IS_VOLUME(sc->type))
- coeff->sigma_s += sc->weight;
- }
- }
- return true;
- }
- #endif /* __VOLUME__ */
- ccl_device float3 volume_color_transmittance(float3 sigma, float t)
- {
- return exp3(-sigma * t);
- }
- ccl_device float kernel_volume_channel_get(float3 value, int channel)
- {
- return (channel == 0) ? value.x : ((channel == 1) ? value.y : value.z);
- }
- #ifdef __VOLUME__
- ccl_device bool volume_stack_is_heterogeneous(KernelGlobals *kg, ccl_addr_space VolumeStack *stack)
- {
- for (int i = 0; stack[i].shader != SHADER_NONE; i++) {
- int shader_flag = kernel_tex_fetch(__shaders, (stack[i].shader & SHADER_MASK)).flags;
- if (shader_flag & SD_HETEROGENEOUS_VOLUME) {
- return true;
- }
- else if (shader_flag & SD_NEED_ATTRIBUTES) {
- /* We want to render world or objects without any volume grids
- * as homogeneous, but can only verify this at run-time since other
- * heterogeneous volume objects may be using the same shader. */
- int object = stack[i].object;
- if (object != OBJECT_NONE) {
- int object_flag = kernel_tex_fetch(__object_flag, object);
- if (object_flag & SD_OBJECT_HAS_VOLUME_ATTRIBUTES) {
- return true;
- }
- }
- }
- }
- return false;
- }
- ccl_device int volume_stack_sampling_method(KernelGlobals *kg, VolumeStack *stack)
- {
- if (kernel_data.integrator.num_all_lights == 0)
- return 0;
- int method = -1;
- for (int i = 0; stack[i].shader != SHADER_NONE; i++) {
- int shader_flag = kernel_tex_fetch(__shaders, (stack[i].shader & SHADER_MASK)).flags;
- if (shader_flag & SD_VOLUME_MIS) {
- return SD_VOLUME_MIS;
- }
- else if (shader_flag & SD_VOLUME_EQUIANGULAR) {
- if (method == 0)
- return SD_VOLUME_MIS;
- method = SD_VOLUME_EQUIANGULAR;
- }
- else {
- if (method == SD_VOLUME_EQUIANGULAR)
- return SD_VOLUME_MIS;
- method = 0;
- }
- }
- return method;
- }
- ccl_device_inline void kernel_volume_step_init(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- float t,
- float *step_size,
- float *step_offset)
- {
- const int max_steps = kernel_data.integrator.volume_max_steps;
- float step = min(kernel_data.integrator.volume_step_size, t);
- /* compute exact steps in advance for malloc */
- if (t > max_steps * step) {
- step = t / (float)max_steps;
- }
- *step_size = step;
- *step_offset = path_state_rng_1D_hash(kg, state, 0x1e31d8a4) * step;
- }
- /* Volume Shadows
- *
- * These functions are used to attenuate shadow rays to lights. Both absorption
- * and scattering will block light, represented by the extinction coefficient. */
- /* homogeneous volume: assume shader evaluation at the starts gives
- * the extinction coefficient for the entire line segment */
- ccl_device void kernel_volume_shadow_homogeneous(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- Ray *ray,
- ShaderData *sd,
- float3 *throughput)
- {
- float3 sigma_t;
- if (volume_shader_extinction_sample(kg, sd, state, ray->P, &sigma_t))
- *throughput *= volume_color_transmittance(sigma_t, ray->t);
- }
- /* heterogeneous volume: integrate stepping through the volume until we
- * reach the end, get absorbed entirely, or run out of iterations */
- ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- Ray *ray,
- ShaderData *sd,
- float3 *throughput)
- {
- float3 tp = *throughput;
- const float tp_eps = 1e-6f; /* todo: this is likely not the right value */
- /* prepare for stepping */
- int max_steps = kernel_data.integrator.volume_max_steps;
- float step_offset, step_size;
- kernel_volume_step_init(kg, state, ray->t, &step_size, &step_offset);
- /* compute extinction at the start */
- float t = 0.0f;
- float3 sum = make_float3(0.0f, 0.0f, 0.0f);
- for (int i = 0; i < max_steps; i++) {
- /* advance to new position */
- float new_t = min(ray->t, (i + 1) * step_size);
- /* use random position inside this segment to sample shader, adjust
- * for last step that is shorter than other steps. */
- if (new_t == ray->t) {
- step_offset *= (new_t - t) / step_size;
- }
- float3 new_P = ray->P + ray->D * (t + step_offset);
- float3 sigma_t;
- /* compute attenuation over segment */
- if (volume_shader_extinction_sample(kg, sd, state, new_P, &sigma_t)) {
- /* Compute expf() only for every Nth step, to save some calculations
- * because exp(a)*exp(b) = exp(a+b), also do a quick tp_eps check then. */
- sum += (-sigma_t * (new_t - t));
- if ((i & 0x07) == 0) { /* ToDo: Other interval? */
- tp = *throughput * exp3(sum);
- /* stop if nearly all light is blocked */
- if (tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps)
- break;
- }
- }
- /* stop if at the end of the volume */
- t = new_t;
- if (t == ray->t) {
- /* Update throughput in case we haven't done it above */
- tp = *throughput * exp3(sum);
- break;
- }
- }
- *throughput = tp;
- }
- /* get the volume attenuation over line segment defined by ray, with the
- * assumption that there are no surfaces blocking light between the endpoints */
- ccl_device_noinline void kernel_volume_shadow(KernelGlobals *kg,
- ShaderData *shadow_sd,
- ccl_addr_space PathState *state,
- Ray *ray,
- float3 *throughput)
- {
- shader_setup_from_volume(kg, shadow_sd, ray);
- if (volume_stack_is_heterogeneous(kg, state->volume_stack))
- kernel_volume_shadow_heterogeneous(kg, state, ray, shadow_sd, throughput);
- else
- kernel_volume_shadow_homogeneous(kg, state, ray, shadow_sd, throughput);
- }
- #endif /* __VOLUME__ */
- /* Equi-angular sampling as in:
- * "Importance Sampling Techniques for Path Tracing in Participating Media" */
- ccl_device float kernel_volume_equiangular_sample(Ray *ray, float3 light_P, float xi, float *pdf)
- {
- float t = ray->t;
- float delta = dot((light_P - ray->P), ray->D);
- float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
- if (UNLIKELY(D == 0.0f)) {
- *pdf = 0.0f;
- return 0.0f;
- }
- float theta_a = -atan2f(delta, D);
- float theta_b = atan2f(t - delta, D);
- float t_ = D * tanf((xi * theta_b) + (1 - xi) * theta_a);
- if (UNLIKELY(theta_b == theta_a)) {
- *pdf = 0.0f;
- return 0.0f;
- }
- *pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
- return min(t, delta + t_); /* min is only for float precision errors */
- }
- ccl_device float kernel_volume_equiangular_pdf(Ray *ray, float3 light_P, float sample_t)
- {
- float delta = dot((light_P - ray->P), ray->D);
- float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
- if (UNLIKELY(D == 0.0f)) {
- return 0.0f;
- }
- float t = ray->t;
- float t_ = sample_t - delta;
- float theta_a = -atan2f(delta, D);
- float theta_b = atan2f(t - delta, D);
- if (UNLIKELY(theta_b == theta_a)) {
- return 0.0f;
- }
- float pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
- return pdf;
- }
- /* Distance sampling */
- ccl_device float kernel_volume_distance_sample(
- float max_t, float3 sigma_t, int channel, float xi, float3 *transmittance, float3 *pdf)
- {
- /* xi is [0, 1[ so log(0) should never happen, division by zero is
- * avoided because sample_sigma_t > 0 when SD_SCATTER is set */
- float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
- float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
- float sample_transmittance = kernel_volume_channel_get(full_transmittance, channel);
- float sample_t = min(max_t, -logf(1.0f - xi * (1.0f - sample_transmittance)) / sample_sigma_t);
- *transmittance = volume_color_transmittance(sigma_t, sample_t);
- *pdf = safe_divide_color(sigma_t * *transmittance,
- make_float3(1.0f, 1.0f, 1.0f) - full_transmittance);
- /* todo: optimization: when taken together with hit/miss decision,
- * the full_transmittance cancels out drops out and xi does not
- * need to be remapped */
- return sample_t;
- }
- ccl_device float3 kernel_volume_distance_pdf(float max_t, float3 sigma_t, float sample_t)
- {
- float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
- float3 transmittance = volume_color_transmittance(sigma_t, sample_t);
- return safe_divide_color(sigma_t * transmittance,
- make_float3(1.0f, 1.0f, 1.0f) - full_transmittance);
- }
- /* Emission */
- ccl_device float3 kernel_volume_emission_integrate(VolumeShaderCoefficients *coeff,
- int closure_flag,
- float3 transmittance,
- float t)
- {
- /* integral E * exp(-sigma_t * t) from 0 to t = E * (1 - exp(-sigma_t * t))/sigma_t
- * this goes to E * t as sigma_t goes to zero
- *
- * todo: we should use an epsilon to avoid precision issues near zero sigma_t */
- float3 emission = coeff->emission;
- if (closure_flag & SD_EXTINCTION) {
- float3 sigma_t = coeff->sigma_t;
- emission.x *= (sigma_t.x > 0.0f) ? (1.0f - transmittance.x) / sigma_t.x : t;
- emission.y *= (sigma_t.y > 0.0f) ? (1.0f - transmittance.y) / sigma_t.y : t;
- emission.z *= (sigma_t.z > 0.0f) ? (1.0f - transmittance.z) / sigma_t.z : t;
- }
- else
- emission *= t;
- return emission;
- }
- /* Volume Path */
- ccl_device int kernel_volume_sample_channel(float3 albedo,
- float3 throughput,
- float rand,
- float3 *pdf)
- {
- /* Sample color channel proportional to throughput and single scattering
- * albedo, to significantly reduce noise with many bounce, following:
- *
- * "Practical and Controllable Subsurface Scattering for Production Path
- * Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */
- float3 weights = fabs(throughput * albedo);
- float sum_weights = weights.x + weights.y + weights.z;
- float3 weights_pdf;
- if (sum_weights > 0.0f) {
- weights_pdf = weights / sum_weights;
- }
- else {
- weights_pdf = make_float3(1.0f / 3.0f, 1.0f / 3.0f, 1.0f / 3.0f);
- }
- *pdf = weights_pdf;
- /* OpenCL does not support -> on float3, so don't use pdf->x. */
- if (rand < weights_pdf.x) {
- return 0;
- }
- else if (rand < weights_pdf.x + weights_pdf.y) {
- return 1;
- }
- else {
- return 2;
- }
- }
- #ifdef __VOLUME__
- /* homogeneous volume: assume shader evaluation at the start gives
- * the volume shading coefficient for the entire line segment */
- ccl_device VolumeIntegrateResult
- kernel_volume_integrate_homogeneous(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- Ray *ray,
- ShaderData *sd,
- PathRadiance *L,
- ccl_addr_space float3 *throughput,
- bool probalistic_scatter)
- {
- VolumeShaderCoefficients coeff;
- if (!volume_shader_sample(kg, sd, state, ray->P, &coeff))
- return VOLUME_PATH_MISSED;
- int closure_flag = sd->flag;
- float t = ray->t;
- float3 new_tp;
- # ifdef __VOLUME_SCATTER__
- /* randomly scatter, and if we do t is shortened */
- if (closure_flag & SD_SCATTER) {
- /* Sample channel, use MIS with balance heuristic. */
- float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
- float3 albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
- float3 channel_pdf;
- int channel = kernel_volume_sample_channel(albedo, *throughput, rphase, &channel_pdf);
- /* decide if we will hit or miss */
- bool scatter = true;
- float xi = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
- if (probalistic_scatter) {
- float sample_sigma_t = kernel_volume_channel_get(coeff.sigma_t, channel);
- float sample_transmittance = expf(-sample_sigma_t * t);
- if (1.0f - xi >= sample_transmittance) {
- scatter = true;
- /* rescale random number so we can reuse it */
- xi = 1.0f - (1.0f - xi - sample_transmittance) / (1.0f - sample_transmittance);
- }
- else
- scatter = false;
- }
- if (scatter) {
- /* scattering */
- float3 pdf;
- float3 transmittance;
- float sample_t;
- /* distance sampling */
- sample_t = kernel_volume_distance_sample(
- ray->t, coeff.sigma_t, channel, xi, &transmittance, &pdf);
- /* modify pdf for hit/miss decision */
- if (probalistic_scatter)
- pdf *= make_float3(1.0f, 1.0f, 1.0f) - volume_color_transmittance(coeff.sigma_t, t);
- new_tp = *throughput * coeff.sigma_s * transmittance / dot(channel_pdf, pdf);
- t = sample_t;
- }
- else {
- /* no scattering */
- float3 transmittance = volume_color_transmittance(coeff.sigma_t, t);
- float pdf = dot(channel_pdf, transmittance);
- new_tp = *throughput * transmittance / pdf;
- }
- }
- else
- # endif
- if (closure_flag & SD_EXTINCTION) {
- /* absorption only, no sampling needed */
- float3 transmittance = volume_color_transmittance(coeff.sigma_t, t);
- new_tp = *throughput * transmittance;
- }
- else {
- new_tp = *throughput;
- }
- /* integrate emission attenuated by extinction */
- if (L && (closure_flag & SD_EMISSION)) {
- float3 transmittance = volume_color_transmittance(coeff.sigma_t, ray->t);
- float3 emission = kernel_volume_emission_integrate(
- &coeff, closure_flag, transmittance, ray->t);
- path_radiance_accum_emission(L, state, *throughput, emission);
- }
- /* modify throughput */
- if (closure_flag & SD_EXTINCTION) {
- *throughput = new_tp;
- /* prepare to scatter to new direction */
- if (t < ray->t) {
- /* adjust throughput and move to new location */
- sd->P = ray->P + t * ray->D;
- return VOLUME_PATH_SCATTERED;
- }
- }
- return VOLUME_PATH_ATTENUATED;
- }
- /* heterogeneous volume distance sampling: integrate stepping through the
- * volume until we reach the end, get absorbed entirely, or run out of
- * iterations. this does probabilistically scatter or get transmitted through
- * for path tracing where we don't want to branch. */
- ccl_device VolumeIntegrateResult
- kernel_volume_integrate_heterogeneous_distance(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- Ray *ray,
- ShaderData *sd,
- PathRadiance *L,
- ccl_addr_space float3 *throughput)
- {
- float3 tp = *throughput;
- const float tp_eps = 1e-6f; /* todo: this is likely not the right value */
- /* prepare for stepping */
- int max_steps = kernel_data.integrator.volume_max_steps;
- float step_offset, step_size;
- kernel_volume_step_init(kg, state, ray->t, &step_size, &step_offset);
- /* compute coefficients at the start */
- float t = 0.0f;
- float3 accum_transmittance = make_float3(1.0f, 1.0f, 1.0f);
- /* pick random color channel, we use the Veach one-sample
- * model with balance heuristic for the channels */
- float xi = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
- float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
- bool has_scatter = false;
- for (int i = 0; i < max_steps; i++) {
- /* advance to new position */
- float new_t = min(ray->t, (i + 1) * step_size);
- float dt = new_t - t;
- /* use random position inside this segment to sample shader,
- * for last shorter step we remap it to fit within the segment. */
- if (new_t == ray->t) {
- step_offset *= (new_t - t) / step_size;
- }
- float3 new_P = ray->P + ray->D * (t + step_offset);
- VolumeShaderCoefficients coeff;
- /* compute segment */
- if (volume_shader_sample(kg, sd, state, new_P, &coeff)) {
- int closure_flag = sd->flag;
- float3 new_tp;
- float3 transmittance;
- bool scatter = false;
- /* distance sampling */
- # ifdef __VOLUME_SCATTER__
- if ((closure_flag & SD_SCATTER) || (has_scatter && (closure_flag & SD_EXTINCTION))) {
- has_scatter = true;
- /* Sample channel, use MIS with balance heuristic. */
- float3 albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
- float3 channel_pdf;
- int channel = kernel_volume_sample_channel(albedo, tp, rphase, &channel_pdf);
- /* compute transmittance over full step */
- transmittance = volume_color_transmittance(coeff.sigma_t, dt);
- /* decide if we will scatter or continue */
- float sample_transmittance = kernel_volume_channel_get(transmittance, channel);
- if (1.0f - xi >= sample_transmittance) {
- /* compute sampling distance */
- float sample_sigma_t = kernel_volume_channel_get(coeff.sigma_t, channel);
- float new_dt = -logf(1.0f - xi) / sample_sigma_t;
- new_t = t + new_dt;
- /* transmittance and pdf */
- float3 new_transmittance = volume_color_transmittance(coeff.sigma_t, new_dt);
- float3 pdf = coeff.sigma_t * new_transmittance;
- /* throughput */
- new_tp = tp * coeff.sigma_s * new_transmittance / dot(channel_pdf, pdf);
- scatter = true;
- }
- else {
- /* throughput */
- float pdf = dot(channel_pdf, transmittance);
- new_tp = tp * transmittance / pdf;
- /* remap xi so we can reuse it and keep thing stratified */
- xi = 1.0f - (1.0f - xi) / sample_transmittance;
- }
- }
- else
- # endif
- if (closure_flag & SD_EXTINCTION) {
- /* absorption only, no sampling needed */
- transmittance = volume_color_transmittance(coeff.sigma_t, dt);
- new_tp = tp * transmittance;
- }
- else {
- new_tp = tp;
- }
- /* integrate emission attenuated by absorption */
- if (L && (closure_flag & SD_EMISSION)) {
- float3 emission = kernel_volume_emission_integrate(
- &coeff, closure_flag, transmittance, dt);
- path_radiance_accum_emission(L, state, tp, emission);
- }
- /* modify throughput */
- if (closure_flag & SD_EXTINCTION) {
- tp = new_tp;
- /* stop if nearly all light blocked */
- if (tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps) {
- tp = make_float3(0.0f, 0.0f, 0.0f);
- break;
- }
- }
- /* prepare to scatter to new direction */
- if (scatter) {
- /* adjust throughput and move to new location */
- sd->P = ray->P + new_t * ray->D;
- *throughput = tp;
- return VOLUME_PATH_SCATTERED;
- }
- else {
- /* accumulate transmittance */
- accum_transmittance *= transmittance;
- }
- }
- /* stop if at the end of the volume */
- t = new_t;
- if (t == ray->t)
- break;
- }
- *throughput = tp;
- return VOLUME_PATH_ATTENUATED;
- }
- /* get the volume attenuation and emission over line segment defined by
- * ray, with the assumption that there are no surfaces blocking light
- * between the endpoints. distance sampling is used to decide if we will
- * scatter or not. */
- ccl_device_noinline VolumeIntegrateResult
- kernel_volume_integrate(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- ShaderData *sd,
- Ray *ray,
- PathRadiance *L,
- ccl_addr_space float3 *throughput,
- bool heterogeneous)
- {
- shader_setup_from_volume(kg, sd, ray);
- if (heterogeneous)
- return kernel_volume_integrate_heterogeneous_distance(kg, state, ray, sd, L, throughput);
- else
- return kernel_volume_integrate_homogeneous(kg, state, ray, sd, L, throughput, true);
- }
- # ifndef __SPLIT_KERNEL__
- /* Decoupled Volume Sampling
- *
- * VolumeSegment is list of coefficients and transmittance stored at all steps
- * through a volume. This can then later be used for decoupled sampling as in:
- * "Importance Sampling Techniques for Path Tracing in Participating Media"
- *
- * On the GPU this is only supported (but currently not enabled)
- * for homogeneous volumes (1 step), due to
- * no support for malloc/free and too much stack usage with a fix size array. */
- typedef struct VolumeStep {
- float3 sigma_s; /* scatter coefficient */
- float3 sigma_t; /* extinction coefficient */
- float3 accum_transmittance; /* accumulated transmittance including this step */
- float3 cdf_distance; /* cumulative density function for distance sampling */
- float t; /* distance at end of this step */
- float shade_t; /* jittered distance where shading was done in step */
- int closure_flag; /* shader evaluation closure flags */
- } VolumeStep;
- typedef struct VolumeSegment {
- VolumeStep stack_step; /* stack storage for homogeneous step, to avoid malloc */
- VolumeStep *steps; /* recorded steps */
- int numsteps; /* number of steps */
- int closure_flag; /* accumulated closure flags from all steps */
- float3 accum_emission; /* accumulated emission at end of segment */
- float3 accum_transmittance; /* accumulated transmittance at end of segment */
- float3 accum_albedo; /* accumulated average albedo over segment */
- int sampling_method; /* volume sampling method */
- } VolumeSegment;
- /* record volume steps to the end of the volume.
- *
- * it would be nice if we could only record up to the point that we need to scatter,
- * but the entire segment is needed to do always scattering, rather than probabilistically
- * hitting or missing the volume. if we don't know the transmittance at the end of the
- * volume we can't generate stratified distance samples up to that transmittance */
- # ifdef __VOLUME_DECOUPLED__
- ccl_device void kernel_volume_decoupled_record(KernelGlobals *kg,
- PathState *state,
- Ray *ray,
- ShaderData *sd,
- VolumeSegment *segment,
- bool heterogeneous)
- {
- const float tp_eps = 1e-6f; /* todo: this is likely not the right value */
- /* prepare for volume stepping */
- int max_steps;
- float step_size, step_offset;
- if (heterogeneous) {
- max_steps = kernel_data.integrator.volume_max_steps;
- kernel_volume_step_init(kg, state, ray->t, &step_size, &step_offset);
- # ifdef __KERNEL_CPU__
- /* NOTE: For the branched path tracing it's possible to have direct
- * and indirect light integration both having volume segments allocated.
- * We detect this using index in the pre-allocated memory. Currently we
- * only support two segments allocated at a time, if more needed some
- * modifications to the KernelGlobals will be needed.
- *
- * This gives us restrictions that decoupled record should only happen
- * in the stack manner, meaning if there's subsequent call of decoupled
- * record it'll need to free memory before it's caller frees memory.
- */
- const int index = kg->decoupled_volume_steps_index;
- assert(index < sizeof(kg->decoupled_volume_steps) / sizeof(*kg->decoupled_volume_steps));
- if (kg->decoupled_volume_steps[index] == NULL) {
- kg->decoupled_volume_steps[index] = (VolumeStep *)malloc(sizeof(VolumeStep) * max_steps);
- }
- segment->steps = kg->decoupled_volume_steps[index];
- ++kg->decoupled_volume_steps_index;
- # else
- segment->steps = (VolumeStep *)malloc(sizeof(VolumeStep) * max_steps);
- # endif
- }
- else {
- max_steps = 1;
- step_size = ray->t;
- step_offset = 0.0f;
- segment->steps = &segment->stack_step;
- }
- /* init accumulation variables */
- float3 accum_emission = make_float3(0.0f, 0.0f, 0.0f);
- float3 accum_transmittance = make_float3(1.0f, 1.0f, 1.0f);
- float3 accum_albedo = make_float3(0.0f, 0.0f, 0.0f);
- float3 cdf_distance = make_float3(0.0f, 0.0f, 0.0f);
- float t = 0.0f;
- segment->numsteps = 0;
- segment->closure_flag = 0;
- bool is_last_step_empty = false;
- VolumeStep *step = segment->steps;
- for (int i = 0; i < max_steps; i++, step++) {
- /* advance to new position */
- float new_t = min(ray->t, (i + 1) * step_size);
- float dt = new_t - t;
- /* use random position inside this segment to sample shader,
- * for last shorter step we remap it to fit within the segment. */
- if (new_t == ray->t) {
- step_offset *= (new_t - t) / step_size;
- }
- float3 new_P = ray->P + ray->D * (t + step_offset);
- VolumeShaderCoefficients coeff;
- /* compute segment */
- if (volume_shader_sample(kg, sd, state, new_P, &coeff)) {
- int closure_flag = sd->flag;
- float3 sigma_t = coeff.sigma_t;
- /* compute average albedo for channel sampling */
- if (closure_flag & SD_SCATTER) {
- accum_albedo += dt * safe_divide_color(coeff.sigma_s, sigma_t);
- }
- /* compute accumulated transmittance */
- float3 transmittance = volume_color_transmittance(sigma_t, dt);
- /* compute emission attenuated by absorption */
- if (closure_flag & SD_EMISSION) {
- float3 emission = kernel_volume_emission_integrate(
- &coeff, closure_flag, transmittance, dt);
- accum_emission += accum_transmittance * emission;
- }
- accum_transmittance *= transmittance;
- /* compute pdf for distance sampling */
- float3 pdf_distance = dt * accum_transmittance * coeff.sigma_s;
- cdf_distance = cdf_distance + pdf_distance;
- /* write step data */
- step->sigma_t = sigma_t;
- step->sigma_s = coeff.sigma_s;
- step->closure_flag = closure_flag;
- segment->closure_flag |= closure_flag;
- is_last_step_empty = false;
- segment->numsteps++;
- }
- else {
- if (is_last_step_empty) {
- /* consecutive empty step, merge */
- step--;
- }
- else {
- /* store empty step */
- step->sigma_t = make_float3(0.0f, 0.0f, 0.0f);
- step->sigma_s = make_float3(0.0f, 0.0f, 0.0f);
- step->closure_flag = 0;
- segment->numsteps++;
- is_last_step_empty = true;
- }
- }
- step->accum_transmittance = accum_transmittance;
- step->cdf_distance = cdf_distance;
- step->t = new_t;
- step->shade_t = t + step_offset;
- /* stop if at the end of the volume */
- t = new_t;
- if (t == ray->t)
- break;
- /* stop if nearly all light blocked */
- if (accum_transmittance.x < tp_eps && accum_transmittance.y < tp_eps &&
- accum_transmittance.z < tp_eps)
- break;
- }
- /* store total emission and transmittance */
- segment->accum_emission = accum_emission;
- segment->accum_transmittance = accum_transmittance;
- segment->accum_albedo = accum_albedo;
- /* normalize cumulative density function for distance sampling */
- VolumeStep *last_step = segment->steps + segment->numsteps - 1;
- if (!is_zero(last_step->cdf_distance)) {
- VolumeStep *step = &segment->steps[0];
- int numsteps = segment->numsteps;
- float3 inv_cdf_distance_sum = safe_invert_color(last_step->cdf_distance);
- for (int i = 0; i < numsteps; i++, step++)
- step->cdf_distance *= inv_cdf_distance_sum;
- }
- }
- ccl_device void kernel_volume_decoupled_free(KernelGlobals *kg, VolumeSegment *segment)
- {
- if (segment->steps != &segment->stack_step) {
- # ifdef __KERNEL_CPU__
- /* NOTE: We only allow free last allocated segment.
- * No random order of alloc/free is supported.
- */
- assert(kg->decoupled_volume_steps_index > 0);
- assert(segment->steps == kg->decoupled_volume_steps[kg->decoupled_volume_steps_index - 1]);
- --kg->decoupled_volume_steps_index;
- # else
- free(segment->steps);
- # endif
- }
- }
- # endif /* __VOLUME_DECOUPLED__ */
- /* scattering for homogeneous and heterogeneous volumes, using decoupled ray
- * marching.
- *
- * function is expected to return VOLUME_PATH_SCATTERED when probalistic_scatter is false */
- ccl_device VolumeIntegrateResult kernel_volume_decoupled_scatter(KernelGlobals *kg,
- PathState *state,
- Ray *ray,
- ShaderData *sd,
- float3 *throughput,
- float rphase,
- float rscatter,
- const VolumeSegment *segment,
- const float3 *light_P,
- bool probalistic_scatter)
- {
- kernel_assert(segment->closure_flag & SD_SCATTER);
- /* Sample color channel, use MIS with balance heuristic. */
- float3 channel_pdf;
- int channel = kernel_volume_sample_channel(
- segment->accum_albedo, *throughput, rphase, &channel_pdf);
- float xi = rscatter;
- /* probabilistic scattering decision based on transmittance */
- if (probalistic_scatter) {
- float sample_transmittance = kernel_volume_channel_get(segment->accum_transmittance, channel);
- if (1.0f - xi >= sample_transmittance) {
- /* rescale random number so we can reuse it */
- xi = 1.0f - (1.0f - xi - sample_transmittance) / (1.0f - sample_transmittance);
- }
- else {
- *throughput /= sample_transmittance;
- return VOLUME_PATH_MISSED;
- }
- }
- VolumeStep *step;
- float3 transmittance;
- float pdf, sample_t;
- float mis_weight = 1.0f;
- bool distance_sample = true;
- bool use_mis = false;
- if (segment->sampling_method && light_P) {
- if (segment->sampling_method == SD_VOLUME_MIS) {
- /* multiple importance sample: randomly pick between
- * equiangular and distance sampling strategy */
- if (xi < 0.5f) {
- xi *= 2.0f;
- }
- else {
- xi = (xi - 0.5f) * 2.0f;
- distance_sample = false;
- }
- use_mis = true;
- }
- else {
- /* only equiangular sampling */
- distance_sample = false;
- }
- }
- /* distance sampling */
- if (distance_sample) {
- /* find step in cdf */
- step = segment->steps;
- float prev_t = 0.0f;
- float3 step_pdf_distance = make_float3(1.0f, 1.0f, 1.0f);
- if (segment->numsteps > 1) {
- float prev_cdf = 0.0f;
- float step_cdf = 1.0f;
- float3 prev_cdf_distance = make_float3(0.0f, 0.0f, 0.0f);
- for (int i = 0;; i++, step++) {
- /* todo: optimize using binary search */
- step_cdf = kernel_volume_channel_get(step->cdf_distance, channel);
- if (xi < step_cdf || i == segment->numsteps - 1)
- break;
- prev_cdf = step_cdf;
- prev_t = step->t;
- prev_cdf_distance = step->cdf_distance;
- }
- /* remap xi so we can reuse it */
- xi = (xi - prev_cdf) / (step_cdf - prev_cdf);
- /* pdf for picking step */
- step_pdf_distance = step->cdf_distance - prev_cdf_distance;
- }
- /* determine range in which we will sample */
- float step_t = step->t - prev_t;
- /* sample distance and compute transmittance */
- float3 distance_pdf;
- sample_t = prev_t + kernel_volume_distance_sample(
- step_t, step->sigma_t, channel, xi, &transmittance, &distance_pdf);
- /* modify pdf for hit/miss decision */
- if (probalistic_scatter)
- distance_pdf *= make_float3(1.0f, 1.0f, 1.0f) - segment->accum_transmittance;
- pdf = dot(channel_pdf, distance_pdf * step_pdf_distance);
- /* multiple importance sampling */
- if (use_mis) {
- float equi_pdf = kernel_volume_equiangular_pdf(ray, *light_P, sample_t);
- mis_weight = 2.0f * power_heuristic(pdf, equi_pdf);
- }
- }
- /* equi-angular sampling */
- else {
- /* sample distance */
- sample_t = kernel_volume_equiangular_sample(ray, *light_P, xi, &pdf);
- /* find step in which sampled distance is located */
- step = segment->steps;
- float prev_t = 0.0f;
- float3 step_pdf_distance = make_float3(1.0f, 1.0f, 1.0f);
- if (segment->numsteps > 1) {
- float3 prev_cdf_distance = make_float3(0.0f, 0.0f, 0.0f);
- int numsteps = segment->numsteps;
- int high = numsteps - 1;
- int low = 0;
- int mid;
- while (low < high) {
- mid = (low + high) >> 1;
- if (sample_t < step[mid].t)
- high = mid;
- else if (sample_t >= step[mid + 1].t)
- low = mid + 1;
- else {
- /* found our interval in step[mid] .. step[mid+1] */
- prev_t = step[mid].t;
- prev_cdf_distance = step[mid].cdf_distance;
- step += mid + 1;
- break;
- }
- }
- if (low >= numsteps - 1) {
- prev_t = step[numsteps - 1].t;
- prev_cdf_distance = step[numsteps - 1].cdf_distance;
- step += numsteps - 1;
- }
- /* pdf for picking step with distance sampling */
- step_pdf_distance = step->cdf_distance - prev_cdf_distance;
- }
- /* determine range in which we will sample */
- float step_t = step->t - prev_t;
- float step_sample_t = sample_t - prev_t;
- /* compute transmittance */
- transmittance = volume_color_transmittance(step->sigma_t, step_sample_t);
- /* multiple importance sampling */
- if (use_mis) {
- float3 distance_pdf3 = kernel_volume_distance_pdf(step_t, step->sigma_t, step_sample_t);
- float distance_pdf = dot(channel_pdf, distance_pdf3 * step_pdf_distance);
- mis_weight = 2.0f * power_heuristic(pdf, distance_pdf);
- }
- }
- if (sample_t < 0.0f || pdf == 0.0f) {
- return VOLUME_PATH_MISSED;
- }
- /* compute transmittance up to this step */
- if (step != segment->steps)
- transmittance *= (step - 1)->accum_transmittance;
- /* modify throughput */
- *throughput *= step->sigma_s * transmittance * (mis_weight / pdf);
- /* evaluate shader to create closures at shading point */
- if (segment->numsteps > 1) {
- sd->P = ray->P + step->shade_t * ray->D;
- VolumeShaderCoefficients coeff;
- volume_shader_sample(kg, sd, state, sd->P, &coeff);
- }
- /* move to new position */
- sd->P = ray->P + sample_t * ray->D;
- return VOLUME_PATH_SCATTERED;
- }
- # endif /* __SPLIT_KERNEL */
- /* decide if we need to use decoupled or not */
- ccl_device bool kernel_volume_use_decoupled(KernelGlobals *kg,
- bool heterogeneous,
- bool direct,
- int sampling_method)
- {
- /* decoupled ray marching for heterogeneous volumes not supported on the GPU,
- * which also means equiangular and multiple importance sampling is not
- * support for that case */
- if (!kernel_data.integrator.volume_decoupled)
- return false;
- # ifdef __KERNEL_GPU__
- if (heterogeneous)
- return false;
- # endif
- /* equiangular and multiple importance sampling only implemented for decoupled */
- if (sampling_method != 0)
- return true;
- /* for all light sampling use decoupled, reusing shader evaluations is
- * typically faster in that case */
- if (direct)
- return kernel_data.integrator.sample_all_lights_direct;
- else
- return kernel_data.integrator.sample_all_lights_indirect;
- }
- /* Volume Stack
- *
- * This is an array of object/shared ID's that the current segment of the path
- * is inside of. */
- ccl_device void kernel_volume_stack_init(KernelGlobals *kg,
- ShaderData *stack_sd,
- ccl_addr_space const PathState *state,
- ccl_addr_space const Ray *ray,
- ccl_addr_space VolumeStack *stack)
- {
- /* NULL ray happens in the baker, does it need proper initialization of
- * camera in volume?
- */
- if (!kernel_data.cam.is_inside_volume || ray == NULL) {
- /* Camera is guaranteed to be in the air, only take background volume
- * into account in this case.
- */
- if (kernel_data.background.volume_shader != SHADER_NONE) {
- stack[0].shader = kernel_data.background.volume_shader;
- stack[0].object = PRIM_NONE;
- stack[1].shader = SHADER_NONE;
- }
- else {
- stack[0].shader = SHADER_NONE;
- }
- return;
- }
- kernel_assert(state->flag & PATH_RAY_CAMERA);
- Ray volume_ray = *ray;
- volume_ray.t = FLT_MAX;
- const uint visibility = (state->flag & PATH_RAY_ALL_VISIBILITY);
- int stack_index = 0, enclosed_index = 0;
- # ifdef __VOLUME_RECORD_ALL__
- Intersection hits[2 * VOLUME_STACK_SIZE + 1];
- uint num_hits = scene_intersect_volume_all(
- kg, &volume_ray, hits, 2 * VOLUME_STACK_SIZE, visibility);
- if (num_hits > 0) {
- int enclosed_volumes[VOLUME_STACK_SIZE];
- Intersection *isect = hits;
- qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
- for (uint hit = 0; hit < num_hits; ++hit, ++isect) {
- shader_setup_from_ray(kg, stack_sd, isect, &volume_ray);
- if (stack_sd->flag & SD_BACKFACING) {
- bool need_add = true;
- for (int i = 0; i < enclosed_index && need_add; ++i) {
- /* If ray exited the volume and never entered to that volume
- * it means that camera is inside such a volume.
- */
- if (enclosed_volumes[i] == stack_sd->object) {
- need_add = false;
- }
- }
- for (int i = 0; i < stack_index && need_add; ++i) {
- /* Don't add intersections twice. */
- if (stack[i].object == stack_sd->object) {
- need_add = false;
- break;
- }
- }
- if (need_add && stack_index < VOLUME_STACK_SIZE - 1) {
- stack[stack_index].object = stack_sd->object;
- stack[stack_index].shader = stack_sd->shader;
- ++stack_index;
- }
- }
- else {
- /* If ray from camera enters the volume, this volume shouldn't
- * be added to the stack on exit.
- */
- enclosed_volumes[enclosed_index++] = stack_sd->object;
- }
- }
- }
- # else
- int enclosed_volumes[VOLUME_STACK_SIZE];
- int step = 0;
- while (stack_index < VOLUME_STACK_SIZE - 1 && enclosed_index < VOLUME_STACK_SIZE - 1 &&
- step < 2 * VOLUME_STACK_SIZE) {
- Intersection isect;
- if (!scene_intersect_volume(kg, &volume_ray, &isect, visibility)) {
- break;
- }
- shader_setup_from_ray(kg, stack_sd, &isect, &volume_ray);
- if (stack_sd->flag & SD_BACKFACING) {
- /* If ray exited the volume and never entered to that volume
- * it means that camera is inside such a volume.
- */
- bool need_add = true;
- for (int i = 0; i < enclosed_index && need_add; ++i) {
- /* If ray exited the volume and never entered to that volume
- * it means that camera is inside such a volume.
- */
- if (enclosed_volumes[i] == stack_sd->object) {
- need_add = false;
- }
- }
- for (int i = 0; i < stack_index && need_add; ++i) {
- /* Don't add intersections twice. */
- if (stack[i].object == stack_sd->object) {
- need_add = false;
- break;
- }
- }
- if (need_add) {
- stack[stack_index].object = stack_sd->object;
- stack[stack_index].shader = stack_sd->shader;
- ++stack_index;
- }
- }
- else {
- /* If ray from camera enters the volume, this volume shouldn't
- * be added to the stack on exit.
- */
- enclosed_volumes[enclosed_index++] = stack_sd->object;
- }
- /* Move ray forward. */
- volume_ray.P = ray_offset(stack_sd->P, -stack_sd->Ng);
- ++step;
- }
- # endif
- /* stack_index of 0 means quick checks outside of the kernel gave false
- * positive, nothing to worry about, just we've wasted quite a few of
- * ticks just to come into conclusion that camera is in the air.
- *
- * In this case we're doing the same above -- check whether background has
- * volume.
- */
- if (stack_index == 0 && kernel_data.background.volume_shader == SHADER_NONE) {
- stack[0].shader = kernel_data.background.volume_shader;
- stack[0].object = PRIM_NONE;
- stack[1].shader = SHADER_NONE;
- }
- else {
- stack[stack_index].shader = SHADER_NONE;
- }
- }
- ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg,
- ShaderData *sd,
- ccl_addr_space VolumeStack *stack)
- {
- /* todo: we should have some way for objects to indicate if they want the
- * world shader to work inside them. excluding it by default is problematic
- * because non-volume objects can't be assumed to be closed manifolds */
- if (!(sd->flag & SD_HAS_VOLUME))
- return;
- if (sd->flag & SD_BACKFACING) {
- /* exit volume object: remove from stack */
- for (int i = 0; stack[i].shader != SHADER_NONE; i++) {
- if (stack[i].object == sd->object) {
- /* shift back next stack entries */
- do {
- stack[i] = stack[i + 1];
- i++;
- } while (stack[i].shader != SHADER_NONE);
- return;
- }
- }
- }
- else {
- /* enter volume object: add to stack */
- int i;
- for (i = 0; stack[i].shader != SHADER_NONE; i++) {
- /* already in the stack? then we have nothing to do */
- if (stack[i].object == sd->object)
- return;
- }
- /* if we exceed the stack limit, ignore */
- if (i >= VOLUME_STACK_SIZE - 1)
- return;
- /* add to the end of the stack */
- stack[i].shader = sd->shader;
- stack[i].object = sd->object;
- stack[i + 1].shader = SHADER_NONE;
- }
- }
- # ifdef __SUBSURFACE__
- ccl_device void kernel_volume_stack_update_for_subsurface(KernelGlobals *kg,
- ShaderData *stack_sd,
- Ray *ray,
- ccl_addr_space VolumeStack *stack)
- {
- kernel_assert(kernel_data.integrator.use_volumes);
- Ray volume_ray = *ray;
- # ifdef __VOLUME_RECORD_ALL__
- Intersection hits[2 * VOLUME_STACK_SIZE + 1];
- uint num_hits = scene_intersect_volume_all(
- kg, &volume_ray, hits, 2 * VOLUME_STACK_SIZE, PATH_RAY_ALL_VISIBILITY);
- if (num_hits > 0) {
- Intersection *isect = hits;
- qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
- for (uint hit = 0; hit < num_hits; ++hit, ++isect) {
- shader_setup_from_ray(kg, stack_sd, isect, &volume_ray);
- kernel_volume_stack_enter_exit(kg, stack_sd, stack);
- }
- }
- # else
- Intersection isect;
- int step = 0;
- float3 Pend = ray->P + ray->D * ray->t;
- while (step < 2 * VOLUME_STACK_SIZE &&
- scene_intersect_volume(kg, &volume_ray, &isect, PATH_RAY_ALL_VISIBILITY)) {
- shader_setup_from_ray(kg, stack_sd, &isect, &volume_ray);
- kernel_volume_stack_enter_exit(kg, stack_sd, stack);
- /* Move ray forward. */
- volume_ray.P = ray_offset(stack_sd->P, -stack_sd->Ng);
- if (volume_ray.t != FLT_MAX) {
- volume_ray.D = normalize_len(Pend - volume_ray.P, &volume_ray.t);
- }
- ++step;
- }
- # endif
- }
- # endif
- /* Clean stack after the last bounce.
- *
- * It is expected that all volumes are closed manifolds, so at the time when ray
- * hits nothing (for example, it is a last bounce which goes to environment) the
- * only expected volume in the stack is the world's one. All the rest volume
- * entries should have been exited already.
- *
- * This isn't always true because of ray intersection precision issues, which
- * could lead us to an infinite non-world volume in the stack, causing render
- * artifacts.
- *
- * Use this function after the last bounce to get rid of all volumes apart from
- * the world's one after the last bounce to avoid render artifacts.
- */
- ccl_device_inline void kernel_volume_clean_stack(KernelGlobals *kg,
- ccl_addr_space VolumeStack *volume_stack)
- {
- if (kernel_data.background.volume_shader != SHADER_NONE) {
- /* Keep the world's volume in stack. */
- volume_stack[1].shader = SHADER_NONE;
- }
- else {
- volume_stack[0].shader = SHADER_NONE;
- }
- }
- #endif /* __VOLUME__ */
- CCL_NAMESPACE_END
|