123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- /*
- * Parts adapted from Open Shading Language with this license:
- *
- * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
- * All Rights Reserved.
- *
- * Modifications Copyright 2011, Blender Foundation.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of Sony Pictures Imageworks nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifndef __KERNEL_PROJECTION_CL__
- #define __KERNEL_PROJECTION_CL__
- CCL_NAMESPACE_BEGIN
- /* Spherical coordinates <-> Cartesian direction */
- ccl_device float2 direction_to_spherical(float3 dir)
- {
- float theta = safe_acosf(dir.z);
- float phi = atan2f(dir.x, dir.y);
- return make_float2(theta, phi);
- }
- ccl_device float3 spherical_to_direction(float theta, float phi)
- {
- float sin_theta = sinf(theta);
- return make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cosf(theta));
- }
- /* Equirectangular coordinates <-> Cartesian direction */
- ccl_device float2 direction_to_equirectangular_range(float3 dir, float4 range)
- {
- if (is_zero(dir))
- return make_float2(0.0f, 0.0f);
- float u = (atan2f(dir.y, dir.x) - range.y) / range.x;
- float v = (acosf(dir.z / len(dir)) - range.w) / range.z;
- return make_float2(u, v);
- }
- ccl_device float3 equirectangular_range_to_direction(float u, float v, float4 range)
- {
- float phi = range.x * u + range.y;
- float theta = range.z * v + range.w;
- float sin_theta = sinf(theta);
- return make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cosf(theta));
- }
- ccl_device float2 direction_to_equirectangular(float3 dir)
- {
- return direction_to_equirectangular_range(dir, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
- }
- ccl_device float3 equirectangular_to_direction(float u, float v)
- {
- return equirectangular_range_to_direction(u, v, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
- }
- /* Fisheye <-> Cartesian direction */
- ccl_device float2 direction_to_fisheye(float3 dir, float fov)
- {
- float r = atan2f(sqrtf(dir.y * dir.y + dir.z * dir.z), dir.x) / fov;
- float phi = atan2f(dir.z, dir.y);
- float u = r * cosf(phi) + 0.5f;
- float v = r * sinf(phi) + 0.5f;
- return make_float2(u, v);
- }
- ccl_device float3 fisheye_to_direction(float u, float v, float fov)
- {
- u = (u - 0.5f) * 2.0f;
- v = (v - 0.5f) * 2.0f;
- float r = sqrtf(u * u + v * v);
- if (r > 1.0f)
- return make_float3(0.0f, 0.0f, 0.0f);
- float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);
- float theta = r * fov * 0.5f;
- if (v < 0.0f)
- phi = -phi;
- return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
- }
- ccl_device float2 direction_to_fisheye_equisolid(float3 dir, float lens, float width, float height)
- {
- float theta = safe_acosf(dir.x);
- float r = 2.0f * lens * sinf(theta * 0.5f);
- float phi = atan2f(dir.z, dir.y);
- float u = r * cosf(phi) / width + 0.5f;
- float v = r * sinf(phi) / height + 0.5f;
- return make_float2(u, v);
- }
- ccl_device_inline float3
- fisheye_equisolid_to_direction(float u, float v, float lens, float fov, float width, float height)
- {
- u = (u - 0.5f) * width;
- v = (v - 0.5f) * height;
- float rmax = 2.0f * lens * sinf(fov * 0.25f);
- float r = sqrtf(u * u + v * v);
- if (r > rmax)
- return make_float3(0.0f, 0.0f, 0.0f);
- float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);
- float theta = 2.0f * asinf(r / (2.0f * lens));
- if (v < 0.0f)
- phi = -phi;
- return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
- }
- /* Mirror Ball <-> Cartesion direction */
- ccl_device float3 mirrorball_to_direction(float u, float v)
- {
- /* point on sphere */
- float3 dir;
- dir.x = 2.0f * u - 1.0f;
- dir.z = 2.0f * v - 1.0f;
- if (dir.x * dir.x + dir.z * dir.z > 1.0f)
- return make_float3(0.0f, 0.0f, 0.0f);
- dir.y = -sqrtf(max(1.0f - dir.x * dir.x - dir.z * dir.z, 0.0f));
- /* reflection */
- float3 I = make_float3(0.0f, -1.0f, 0.0f);
- return 2.0f * dot(dir, I) * dir - I;
- }
- ccl_device float2 direction_to_mirrorball(float3 dir)
- {
- /* inverse of mirrorball_to_direction */
- dir.y -= 1.0f;
- float div = 2.0f * sqrtf(max(-0.5f * dir.y, 0.0f));
- if (div > 0.0f)
- dir /= div;
- float u = 0.5f * (dir.x + 1.0f);
- float v = 0.5f * (dir.z + 1.0f);
- return make_float2(u, v);
- }
- ccl_device_inline float3 panorama_to_direction(ccl_constant KernelCamera *cam, float u, float v)
- {
- switch (cam->panorama_type) {
- case PANORAMA_EQUIRECTANGULAR:
- return equirectangular_range_to_direction(u, v, cam->equirectangular_range);
- case PANORAMA_MIRRORBALL:
- return mirrorball_to_direction(u, v);
- case PANORAMA_FISHEYE_EQUIDISTANT:
- return fisheye_to_direction(u, v, cam->fisheye_fov);
- case PANORAMA_FISHEYE_EQUISOLID:
- default:
- return fisheye_equisolid_to_direction(
- u, v, cam->fisheye_lens, cam->fisheye_fov, cam->sensorwidth, cam->sensorheight);
- }
- }
- ccl_device_inline float2 direction_to_panorama(ccl_constant KernelCamera *cam, float3 dir)
- {
- switch (cam->panorama_type) {
- case PANORAMA_EQUIRECTANGULAR:
- return direction_to_equirectangular_range(dir, cam->equirectangular_range);
- case PANORAMA_MIRRORBALL:
- return direction_to_mirrorball(dir);
- case PANORAMA_FISHEYE_EQUIDISTANT:
- return direction_to_fisheye(dir, cam->fisheye_fov);
- case PANORAMA_FISHEYE_EQUISOLID:
- default:
- return direction_to_fisheye_equisolid(
- dir, cam->fisheye_lens, cam->sensorwidth, cam->sensorheight);
- }
- }
- ccl_device_inline void spherical_stereo_transform(ccl_constant KernelCamera *cam,
- float3 *P,
- float3 *D)
- {
- float interocular_offset = cam->interocular_offset;
- /* Interocular offset of zero means either non stereo, or stereo without
- * spherical stereo. */
- kernel_assert(interocular_offset != 0.0f);
- if (cam->pole_merge_angle_to > 0.0f) {
- const float pole_merge_angle_from = cam->pole_merge_angle_from,
- pole_merge_angle_to = cam->pole_merge_angle_to;
- float altitude = fabsf(safe_asinf((*D).z));
- if (altitude > pole_merge_angle_to) {
- interocular_offset = 0.0f;
- }
- else if (altitude > pole_merge_angle_from) {
- float fac = (altitude - pole_merge_angle_from) /
- (pole_merge_angle_to - pole_merge_angle_from);
- float fade = cosf(fac * M_PI_2_F);
- interocular_offset *= fade;
- }
- }
- float3 up = make_float3(0.0f, 0.0f, 1.0f);
- float3 side = normalize(cross(*D, up));
- float3 stereo_offset = side * interocular_offset;
- *P += stereo_offset;
- /* Convergence distance is FLT_MAX in the case of parallel convergence mode,
- * no need to modify direction in this case either. */
- const float convergence_distance = cam->convergence_distance;
- if (convergence_distance != FLT_MAX) {
- float3 screen_offset = convergence_distance * (*D);
- *D = normalize(screen_offset - stereo_offset);
- }
- }
- CCL_NAMESPACE_END
- #endif /* __KERNEL_PROJECTION_CL__ */
|