123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 |
- /*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- CCL_NAMESPACE_BEGIN
- #ifdef __VOLUME_SCATTER__
- ccl_device_inline void kernel_path_volume_connect_light(KernelGlobals *kg,
- ShaderData *sd,
- ShaderData *emission_sd,
- float3 throughput,
- ccl_addr_space PathState *state,
- PathRadiance *L)
- {
- # ifdef __EMISSION__
- if (!kernel_data.integrator.use_direct_light)
- return;
- /* sample illumination from lights to find path contribution */
- float light_u, light_v;
- path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
- Ray light_ray;
- BsdfEval L_light;
- LightSample ls;
- bool is_lamp;
- /* connect to light from given point where shader has been evaluated */
- light_ray.time = sd->time;
- if (light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
- float terminate = path_state_rng_light_termination(kg, state);
- if (direct_emission(
- kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
- /* trace shadow ray */
- float3 shadow;
- if (!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
- /* accumulate */
- path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp);
- }
- }
- }
- # endif /* __EMISSION__ */
- }
- # ifdef __KERNEL_GPU__
- ccl_device_noinline
- # else
- ccl_device
- # endif
- bool
- kernel_path_volume_bounce(KernelGlobals *kg,
- ShaderData *sd,
- ccl_addr_space float3 *throughput,
- ccl_addr_space PathState *state,
- PathRadianceState *L_state,
- ccl_addr_space Ray *ray)
- {
- /* sample phase function */
- float phase_pdf;
- BsdfEval phase_eval;
- float3 phase_omega_in;
- differential3 phase_domega_in;
- float phase_u, phase_v;
- path_state_rng_2D(kg, state, PRNG_BSDF_U, &phase_u, &phase_v);
- int label;
- label = shader_volume_phase_sample(
- kg, sd, phase_u, phase_v, &phase_eval, &phase_omega_in, &phase_domega_in, &phase_pdf);
- if (phase_pdf == 0.0f || bsdf_eval_is_zero(&phase_eval))
- return false;
- /* modify throughput */
- path_radiance_bsdf_bounce(kg, L_state, throughput, &phase_eval, phase_pdf, state->bounce, label);
- /* set labels */
- state->ray_pdf = phase_pdf;
- # ifdef __LAMP_MIS__
- state->ray_t = 0.0f;
- # endif
- state->min_ray_pdf = fminf(phase_pdf, state->min_ray_pdf);
- /* update path state */
- path_state_next(kg, state, label);
- /* Russian roulette termination of volume ray scattering. */
- float probability = path_state_continuation_probability(kg, state, *throughput);
- if (probability == 0.0f) {
- return false;
- }
- else if (probability != 1.0f) {
- /* Use dimension from the previous bounce, has not been used yet. */
- float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE - PRNG_BOUNCE_NUM);
- if (terminate >= probability) {
- return false;
- }
- *throughput /= probability;
- }
- /* setup ray */
- ray->P = sd->P;
- ray->D = phase_omega_in;
- ray->t = FLT_MAX;
- # ifdef __RAY_DIFFERENTIALS__
- ray->dP = sd->dP;
- ray->dD = phase_domega_in;
- # endif
- return true;
- }
- # ifndef __SPLIT_KERNEL__
- ccl_device void kernel_branched_path_volume_connect_light(KernelGlobals *kg,
- ShaderData *sd,
- ShaderData *emission_sd,
- float3 throughput,
- ccl_addr_space PathState *state,
- PathRadiance *L,
- bool sample_all_lights,
- Ray *ray,
- const VolumeSegment *segment)
- {
- # ifdef __EMISSION__
- if (!kernel_data.integrator.use_direct_light)
- return;
- Ray light_ray;
- BsdfEval L_light;
- bool is_lamp;
- light_ray.time = sd->time;
- if (sample_all_lights) {
- /* lamp sampling */
- for (int i = 0; i < kernel_data.integrator.num_all_lights; i++) {
- if (UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce)))
- continue;
- int num_samples = light_select_num_samples(kg, i);
- float num_samples_inv = 1.0f / (num_samples * kernel_data.integrator.num_all_lights);
- uint lamp_rng_hash = cmj_hash(state->rng_hash, i);
- for (int j = 0; j < num_samples; j++) {
- /* sample random position on given light */
- float light_u, light_v;
- path_branched_rng_2D(
- kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
- LightSample ls;
- lamp_light_sample(kg, i, light_u, light_v, ray->P, &ls);
- float3 tp = throughput;
- /* sample position on volume segment */
- float rphase = path_branched_rng_1D(
- kg, state->rng_hash, state, j, num_samples, PRNG_PHASE_CHANNEL);
- float rscatter = path_branched_rng_1D(
- kg, state->rng_hash, state, j, num_samples, PRNG_SCATTER_DISTANCE);
- VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
- state,
- ray,
- sd,
- &tp,
- rphase,
- rscatter,
- segment,
- (ls.t != FLT_MAX) ? &ls.P :
- NULL,
- false);
- /* todo: split up light_sample so we don't have to call it again with new position */
- if (result == VOLUME_PATH_SCATTERED &&
- lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls)) {
- if (kernel_data.integrator.pdf_triangles != 0.0f)
- ls.pdf *= 2.0f;
- float terminate = path_branched_rng_light_termination(
- kg, state->rng_hash, state, j, num_samples);
- if (direct_emission(
- kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
- /* trace shadow ray */
- float3 shadow;
- if (!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
- /* accumulate */
- path_radiance_accum_light(
- L, state, tp * num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
- }
- }
- }
- }
- }
- /* mesh light sampling */
- if (kernel_data.integrator.pdf_triangles != 0.0f) {
- int num_samples = kernel_data.integrator.mesh_light_samples;
- float num_samples_inv = 1.0f / num_samples;
- for (int j = 0; j < num_samples; j++) {
- /* sample random position on random triangle */
- float light_u, light_v;
- path_branched_rng_2D(
- kg, state->rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
- /* only sample triangle lights */
- if (kernel_data.integrator.num_all_lights)
- light_u = 0.5f * light_u;
- LightSample ls;
- light_sample(kg, light_u, light_v, sd->time, ray->P, state->bounce, &ls);
- float3 tp = throughput;
- /* sample position on volume segment */
- float rphase = path_branched_rng_1D(
- kg, state->rng_hash, state, j, num_samples, PRNG_PHASE_CHANNEL);
- float rscatter = path_branched_rng_1D(
- kg, state->rng_hash, state, j, num_samples, PRNG_SCATTER_DISTANCE);
- VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
- state,
- ray,
- sd,
- &tp,
- rphase,
- rscatter,
- segment,
- (ls.t != FLT_MAX) ? &ls.P :
- NULL,
- false);
- /* todo: split up light_sample so we don't have to call it again with new position */
- if (result == VOLUME_PATH_SCATTERED &&
- light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
- if (kernel_data.integrator.num_all_lights)
- ls.pdf *= 2.0f;
- float terminate = path_branched_rng_light_termination(
- kg, state->rng_hash, state, j, num_samples);
- if (direct_emission(
- kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
- /* trace shadow ray */
- float3 shadow;
- if (!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
- /* accumulate */
- path_radiance_accum_light(
- L, state, tp * num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
- }
- }
- }
- }
- }
- }
- else {
- /* sample random position on random light */
- float light_u, light_v;
- path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
- LightSample ls;
- light_sample(kg, light_u, light_v, sd->time, ray->P, state->bounce, &ls);
- float3 tp = throughput;
- /* sample position on volume segment */
- float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
- float rscatter = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
- VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
- state,
- ray,
- sd,
- &tp,
- rphase,
- rscatter,
- segment,
- (ls.t != FLT_MAX) ? &ls.P :
- NULL,
- false);
- /* todo: split up light_sample so we don't have to call it again with new position */
- if (result == VOLUME_PATH_SCATTERED &&
- light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
- /* sample random light */
- float terminate = path_state_rng_light_termination(kg, state);
- if (direct_emission(
- kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
- /* trace shadow ray */
- float3 shadow;
- if (!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
- /* accumulate */
- path_radiance_accum_light(L, state, tp, &L_light, shadow, 1.0f, is_lamp);
- }
- }
- }
- }
- # endif /* __EMISSION__ */
- }
- # endif /* __SPLIT_KERNEL__ */
- #endif /* __VOLUME_SCATTER__ */
- CCL_NAMESPACE_END
|