123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- /*
- * Parts adapted from Open Shading Language with this license:
- *
- * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
- * All Rights Reserved.
- *
- * Modifications Copyright 2011, Blender Foundation.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of Sony Pictures Imageworks nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifndef __KERNEL_MONTECARLO_CL__
- #define __KERNEL_MONTECARLO_CL__
- CCL_NAMESPACE_BEGIN
- /* distribute uniform xy on [0,1] over unit disk [-1,1] */
- ccl_device void to_unit_disk(float *x, float *y)
- {
- float phi = M_2PI_F * (*x);
- float r = sqrtf(*y);
- *x = r * cosf(phi);
- *y = r * sinf(phi);
- }
- /* return an orthogonal tangent and bitangent given a normal and tangent that
- * may not be exactly orthogonal */
- ccl_device void make_orthonormals_tangent(const float3 N, const float3 T, float3 *a, float3 *b)
- {
- *b = normalize(cross(N, T));
- *a = cross(*b, N);
- }
- /* sample direction with cosine weighted distributed in hemisphere */
- ccl_device_inline void sample_cos_hemisphere(
- const float3 N, float randu, float randv, float3 *omega_in, float *pdf)
- {
- to_unit_disk(&randu, &randv);
- float costheta = sqrtf(max(1.0f - randu * randu - randv * randv, 0.0f));
- float3 T, B;
- make_orthonormals(N, &T, &B);
- *omega_in = randu * T + randv * B + costheta * N;
- *pdf = costheta * M_1_PI_F;
- }
- /* sample direction uniformly distributed in hemisphere */
- ccl_device_inline void sample_uniform_hemisphere(
- const float3 N, float randu, float randv, float3 *omega_in, float *pdf)
- {
- float z = randu;
- float r = sqrtf(max(0.0f, 1.0f - z * z));
- float phi = M_2PI_F * randv;
- float x = r * cosf(phi);
- float y = r * sinf(phi);
- float3 T, B;
- make_orthonormals(N, &T, &B);
- *omega_in = x * T + y * B + z * N;
- *pdf = 0.5f * M_1_PI_F;
- }
- /* sample direction uniformly distributed in cone */
- ccl_device_inline void sample_uniform_cone(
- const float3 N, float angle, float randu, float randv, float3 *omega_in, float *pdf)
- {
- float z = cosf(angle * randu);
- float r = sqrtf(max(0.0f, 1.0f - z * z));
- float phi = M_2PI_F * randv;
- float x = r * cosf(phi);
- float y = r * sinf(phi);
- float3 T, B;
- make_orthonormals(N, &T, &B);
- *omega_in = x * T + y * B + z * N;
- *pdf = 0.5f * M_1_PI_F / (1.0f - cosf(angle));
- }
- /* sample uniform point on the surface of a sphere */
- ccl_device float3 sample_uniform_sphere(float u1, float u2)
- {
- float z = 1.0f - 2.0f * u1;
- float r = sqrtf(fmaxf(0.0f, 1.0f - z * z));
- float phi = M_2PI_F * u2;
- float x = r * cosf(phi);
- float y = r * sinf(phi);
- return make_float3(x, y, z);
- }
- ccl_device float balance_heuristic(float a, float b)
- {
- return (a) / (a + b);
- }
- ccl_device float balance_heuristic_3(float a, float b, float c)
- {
- return (a) / (a + b + c);
- }
- ccl_device float power_heuristic(float a, float b)
- {
- return (a * a) / (a * a + b * b);
- }
- ccl_device float power_heuristic_3(float a, float b, float c)
- {
- return (a * a) / (a * a + b * b + c * c);
- }
- ccl_device float max_heuristic(float a, float b)
- {
- return (a > b) ? 1.0f : 0.0f;
- }
- /* distribute uniform xy on [0,1] over unit disk [-1,1], with concentric mapping
- * to better preserve stratification for some RNG sequences */
- ccl_device float2 concentric_sample_disk(float u1, float u2)
- {
- float phi, r;
- float a = 2.0f * u1 - 1.0f;
- float b = 2.0f * u2 - 1.0f;
- if (a == 0.0f && b == 0.0f) {
- return make_float2(0.0f, 0.0f);
- }
- else if (a * a > b * b) {
- r = a;
- phi = M_PI_4_F * (b / a);
- }
- else {
- r = b;
- phi = M_PI_2_F - M_PI_4_F * (a / b);
- }
- return make_float2(r * cosf(phi), r * sinf(phi));
- }
- /* sample point in unit polygon with given number of corners and rotation */
- ccl_device float2 regular_polygon_sample(float corners, float rotation, float u, float v)
- {
- /* sample corner number and reuse u */
- float corner = floorf(u * corners);
- u = u * corners - corner;
- /* uniform sampled triangle weights */
- u = sqrtf(u);
- v = v * u;
- u = 1.0f - u;
- /* point in triangle */
- float angle = M_PI_F / corners;
- float2 p = make_float2((u + v) * cosf(angle), (u - v) * sinf(angle));
- /* rotate */
- rotation += corner * 2.0f * angle;
- float cr = cosf(rotation);
- float sr = sinf(rotation);
- return make_float2(cr * p.x - sr * p.y, sr * p.x + cr * p.y);
- }
- ccl_device float3 ensure_valid_reflection(float3 Ng, float3 I, float3 N)
- {
- float3 R = 2 * dot(N, I) * N - I;
- /* Reflection rays may always be at least as shallow as the incoming ray. */
- float threshold = min(0.9f * dot(Ng, I), 0.01f);
- if (dot(Ng, R) >= threshold) {
- return N;
- }
- /* Form coordinate system with Ng as the Z axis and N inside the X-Z-plane.
- * The X axis is found by normalizing the component of N that's orthogonal to Ng.
- * The Y axis isn't actually needed.
- */
- float NdotNg = dot(N, Ng);
- float3 X = normalize(N - NdotNg * Ng);
- /* Keep math expressions. */
- /* clang-format off */
- /* Calculate N.z and N.x in the local coordinate system.
- *
- * The goal of this computation is to find a N' that is rotated towards Ng just enough
- * to lift R' above the threshold (here called t), therefore dot(R', Ng) = t.
- *
- * According to the standard reflection equation,
- * this means that we want dot(2*dot(N', I)*N' - I, Ng) = t.
- *
- * Since the Z axis of our local coordinate system is Ng, dot(x, Ng) is just x.z, so we get
- * 2*dot(N', I)*N'.z - I.z = t.
- *
- * The rotation is simple to express in the coordinate system we formed -
- * since N lies in the X-Z-plane, we know that N' will also lie in the X-Z-plane,
- * so N'.y = 0 and therefore dot(N', I) = N'.x*I.x + N'.z*I.z .
- *
- * Furthermore, we want N' to be normalized, so N'.x = sqrt(1 - N'.z^2).
- *
- * With these simplifications,
- * we get the final equation 2*(sqrt(1 - N'.z^2)*I.x + N'.z*I.z)*N'.z - I.z = t.
- *
- * The only unknown here is N'.z, so we can solve for that.
- *
- * The equation has four solutions in general:
- *
- * N'.z = +-sqrt(0.5*(+-sqrt(I.x^2*(I.x^2 + I.z^2 - t^2)) + t*I.z + I.x^2 + I.z^2)/(I.x^2 + I.z^2))
- * We can simplify this expression a bit by grouping terms:
- *
- * a = I.x^2 + I.z^2
- * b = sqrt(I.x^2 * (a - t^2))
- * c = I.z*t + a
- * N'.z = +-sqrt(0.5*(+-b + c)/a)
- *
- * Two solutions can immediately be discarded because they're negative so N' would lie in the
- * lower hemisphere.
- */
- /* clang-format on */
- float Ix = dot(I, X), Iz = dot(I, Ng);
- float Ix2 = sqr(Ix), Iz2 = sqr(Iz);
- float a = Ix2 + Iz2;
- float b = safe_sqrtf(Ix2 * (a - sqr(threshold)));
- float c = Iz * threshold + a;
- /* Evaluate both solutions.
- * In many cases one can be immediately discarded (if N'.z would be imaginary or larger than
- * one), so check for that first. If no option is viable (might happen in extreme cases like N
- * being in the wrong hemisphere), give up and return Ng. */
- float fac = 0.5f / a;
- float N1_z2 = fac * (b + c), N2_z2 = fac * (-b + c);
- bool valid1 = (N1_z2 > 1e-5f) && (N1_z2 <= (1.0f + 1e-5f));
- bool valid2 = (N2_z2 > 1e-5f) && (N2_z2 <= (1.0f + 1e-5f));
- float2 N_new;
- if (valid1 && valid2) {
- /* If both are possible, do the expensive reflection-based check. */
- float2 N1 = make_float2(safe_sqrtf(1.0f - N1_z2), safe_sqrtf(N1_z2));
- float2 N2 = make_float2(safe_sqrtf(1.0f - N2_z2), safe_sqrtf(N2_z2));
- float R1 = 2 * (N1.x * Ix + N1.y * Iz) * N1.y - Iz;
- float R2 = 2 * (N2.x * Ix + N2.y * Iz) * N2.y - Iz;
- valid1 = (R1 >= 1e-5f);
- valid2 = (R2 >= 1e-5f);
- if (valid1 && valid2) {
- /* If both solutions are valid, return the one with the shallower reflection since it will be
- * closer to the input (if the original reflection wasn't shallow, we would not be in this
- * part of the function). */
- N_new = (R1 < R2) ? N1 : N2;
- }
- else {
- /* If only one reflection is valid (= positive), pick that one. */
- N_new = (R1 > R2) ? N1 : N2;
- }
- }
- else if (valid1 || valid2) {
- /* Only one solution passes the N'.z criterium, so pick that one. */
- float Nz2 = valid1 ? N1_z2 : N2_z2;
- N_new = make_float2(safe_sqrtf(1.0f - Nz2), safe_sqrtf(Nz2));
- }
- else {
- return Ng;
- }
- return N_new.x * X + N_new.y * Ng;
- }
- CCL_NAMESPACE_END
- #endif /* __KERNEL_MONTECARLO_CL__ */
|