123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- /*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- CCL_NAMESPACE_BEGIN
- /* See "Tracing Ray Differentials", Homan Igehy, 1999. */
- ccl_device void differential_transfer(ccl_addr_space differential3 *dP_,
- const differential3 dP,
- float3 D,
- const differential3 dD,
- float3 Ng,
- float t)
- {
- /* ray differential transfer through homogeneous medium, to
- * compute dPdx/dy at a shading point from the incoming ray */
- float3 tmp = D / dot(D, Ng);
- float3 tmpx = dP.dx + t * dD.dx;
- float3 tmpy = dP.dy + t * dD.dy;
- dP_->dx = tmpx - dot(tmpx, Ng) * tmp;
- dP_->dy = tmpy - dot(tmpy, Ng) * tmp;
- }
- ccl_device void differential_incoming(ccl_addr_space differential3 *dI, const differential3 dD)
- {
- /* compute dIdx/dy at a shading point, we just need to negate the
- * differential of the ray direction */
- dI->dx = -dD.dx;
- dI->dy = -dD.dy;
- }
- ccl_device void differential_dudv(ccl_addr_space differential *du,
- ccl_addr_space differential *dv,
- float3 dPdu,
- float3 dPdv,
- differential3 dP,
- float3 Ng)
- {
- /* now we have dPdx/dy from the ray differential transfer, and dPdu/dv
- * from the primitive, we can compute dudx/dy and dvdx/dy. these are
- * mainly used for differentials of arbitrary mesh attributes. */
- /* find most stable axis to project to 2D */
- float xn = fabsf(Ng.x);
- float yn = fabsf(Ng.y);
- float zn = fabsf(Ng.z);
- if (zn < xn || zn < yn) {
- if (yn < xn || yn < zn) {
- dPdu.x = dPdu.y;
- dPdv.x = dPdv.y;
- dP.dx.x = dP.dx.y;
- dP.dy.x = dP.dy.y;
- }
- dPdu.y = dPdu.z;
- dPdv.y = dPdv.z;
- dP.dx.y = dP.dx.z;
- dP.dy.y = dP.dy.z;
- }
- /* using Cramer's rule, we solve for dudx and dvdx in a 2x2 linear system,
- * and the same for dudy and dvdy. the denominator is the same for both
- * solutions, so we compute it only once.
- *
- * dP.dx = dPdu * dudx + dPdv * dvdx;
- * dP.dy = dPdu * dudy + dPdv * dvdy; */
- float det = (dPdu.x * dPdv.y - dPdv.x * dPdu.y);
- if (det != 0.0f)
- det = 1.0f / det;
- du->dx = (dP.dx.x * dPdv.y - dP.dx.y * dPdv.x) * det;
- dv->dx = (dP.dx.y * dPdu.x - dP.dx.x * dPdu.y) * det;
- du->dy = (dP.dy.x * dPdv.y - dP.dy.y * dPdv.x) * det;
- dv->dy = (dP.dy.y * dPdu.x - dP.dy.x * dPdu.y) * det;
- }
- ccl_device differential differential_zero()
- {
- differential d;
- d.dx = 0.0f;
- d.dy = 0.0f;
- return d;
- }
- ccl_device differential3 differential3_zero()
- {
- differential3 d;
- d.dx = make_float3(0.0f, 0.0f, 0.0f);
- d.dy = make_float3(0.0f, 0.0f, 0.0f);
- return d;
- }
- CCL_NAMESPACE_END
|