123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482 |
- /*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- CCL_NAMESPACE_BEGIN
- /* Perspective Camera */
- ccl_device float2 camera_sample_aperture(ccl_constant KernelCamera *cam, float u, float v)
- {
- float blades = cam->blades;
- float2 bokeh;
- if (blades == 0.0f) {
- /* sample disk */
- bokeh = concentric_sample_disk(u, v);
- }
- else {
- /* sample polygon */
- float rotation = cam->bladesrotation;
- bokeh = regular_polygon_sample(blades, rotation, u, v);
- }
- /* anamorphic lens bokeh */
- bokeh.x *= cam->inv_aperture_ratio;
- return bokeh;
- }
- ccl_device void camera_sample_perspective(KernelGlobals *kg,
- float raster_x,
- float raster_y,
- float lens_u,
- float lens_v,
- ccl_addr_space Ray *ray)
- {
- /* create ray form raster position */
- ProjectionTransform rastertocamera = kernel_data.cam.rastertocamera;
- float3 raster = make_float3(raster_x, raster_y, 0.0f);
- float3 Pcamera = transform_perspective(&rastertocamera, raster);
- #ifdef __CAMERA_MOTION__
- if (kernel_data.cam.have_perspective_motion) {
- /* TODO(sergey): Currently we interpolate projected coordinate which
- * gives nice looking result and which is simple, but is in fact a bit
- * different comparing to constructing projective matrix from an
- * interpolated field of view.
- */
- if (ray->time < 0.5f) {
- ProjectionTransform rastertocamera_pre = kernel_data.cam.perspective_pre;
- float3 Pcamera_pre = transform_perspective(&rastertocamera_pre, raster);
- Pcamera = interp(Pcamera_pre, Pcamera, ray->time * 2.0f);
- }
- else {
- ProjectionTransform rastertocamera_post = kernel_data.cam.perspective_post;
- float3 Pcamera_post = transform_perspective(&rastertocamera_post, raster);
- Pcamera = interp(Pcamera, Pcamera_post, (ray->time - 0.5f) * 2.0f);
- }
- }
- #endif
- float3 P = make_float3(0.0f, 0.0f, 0.0f);
- float3 D = Pcamera;
- /* modify ray for depth of field */
- float aperturesize = kernel_data.cam.aperturesize;
- if (aperturesize > 0.0f) {
- /* sample point on aperture */
- float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v) * aperturesize;
- /* compute point on plane of focus */
- float ft = kernel_data.cam.focaldistance / D.z;
- float3 Pfocus = D * ft;
- /* update ray for effect of lens */
- P = make_float3(lensuv.x, lensuv.y, 0.0f);
- D = normalize(Pfocus - P);
- }
- /* transform ray from camera to world */
- Transform cameratoworld = kernel_data.cam.cameratoworld;
- #ifdef __CAMERA_MOTION__
- if (kernel_data.cam.num_motion_steps) {
- transform_motion_array_interpolate(&cameratoworld,
- kernel_tex_array(__camera_motion),
- kernel_data.cam.num_motion_steps,
- ray->time);
- }
- #endif
- P = transform_point(&cameratoworld, P);
- D = normalize(transform_direction(&cameratoworld, D));
- bool use_stereo = kernel_data.cam.interocular_offset != 0.0f;
- if (!use_stereo) {
- /* No stereo */
- ray->P = P;
- ray->D = D;
- #ifdef __RAY_DIFFERENTIALS__
- float3 Dcenter = transform_direction(&cameratoworld, Pcamera);
- ray->dP = differential3_zero();
- ray->dD.dx = normalize(Dcenter + float4_to_float3(kernel_data.cam.dx)) - normalize(Dcenter);
- ray->dD.dy = normalize(Dcenter + float4_to_float3(kernel_data.cam.dy)) - normalize(Dcenter);
- #endif
- }
- else {
- /* Spherical stereo */
- spherical_stereo_transform(&kernel_data.cam, &P, &D);
- ray->P = P;
- ray->D = D;
- #ifdef __RAY_DIFFERENTIALS__
- /* Ray differentials, computed from scratch using the raster coordinates
- * because we don't want to be affected by depth of field. We compute
- * ray origin and direction for the center and two neighboring pixels
- * and simply take their differences. */
- float3 Pnostereo = transform_point(&cameratoworld, make_float3(0.0f, 0.0f, 0.0f));
- float3 Pcenter = Pnostereo;
- float3 Dcenter = Pcamera;
- Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
- spherical_stereo_transform(&kernel_data.cam, &Pcenter, &Dcenter);
- float3 Px = Pnostereo;
- float3 Dx = transform_perspective(&rastertocamera,
- make_float3(raster_x + 1.0f, raster_y, 0.0f));
- Dx = normalize(transform_direction(&cameratoworld, Dx));
- spherical_stereo_transform(&kernel_data.cam, &Px, &Dx);
- ray->dP.dx = Px - Pcenter;
- ray->dD.dx = Dx - Dcenter;
- float3 Py = Pnostereo;
- float3 Dy = transform_perspective(&rastertocamera,
- make_float3(raster_x, raster_y + 1.0f, 0.0f));
- Dy = normalize(transform_direction(&cameratoworld, Dy));
- spherical_stereo_transform(&kernel_data.cam, &Py, &Dy);
- ray->dP.dy = Py - Pcenter;
- ray->dD.dy = Dy - Dcenter;
- #endif
- }
- #ifdef __CAMERA_CLIPPING__
- /* clipping */
- float z_inv = 1.0f / normalize(Pcamera).z;
- float nearclip = kernel_data.cam.nearclip * z_inv;
- ray->P += nearclip * ray->D;
- ray->dP.dx += nearclip * ray->dD.dx;
- ray->dP.dy += nearclip * ray->dD.dy;
- ray->t = kernel_data.cam.cliplength * z_inv;
- #else
- ray->t = FLT_MAX;
- #endif
- }
- /* Orthographic Camera */
- ccl_device void camera_sample_orthographic(KernelGlobals *kg,
- float raster_x,
- float raster_y,
- float lens_u,
- float lens_v,
- ccl_addr_space Ray *ray)
- {
- /* create ray form raster position */
- ProjectionTransform rastertocamera = kernel_data.cam.rastertocamera;
- float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
- float3 P;
- float3 D = make_float3(0.0f, 0.0f, 1.0f);
- /* modify ray for depth of field */
- float aperturesize = kernel_data.cam.aperturesize;
- if (aperturesize > 0.0f) {
- /* sample point on aperture */
- float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v) * aperturesize;
- /* compute point on plane of focus */
- float3 Pfocus = D * kernel_data.cam.focaldistance;
- /* update ray for effect of lens */
- float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
- P = Pcamera + lensuvw;
- D = normalize(Pfocus - lensuvw);
- }
- else {
- P = Pcamera;
- }
- /* transform ray from camera to world */
- Transform cameratoworld = kernel_data.cam.cameratoworld;
- #ifdef __CAMERA_MOTION__
- if (kernel_data.cam.num_motion_steps) {
- transform_motion_array_interpolate(&cameratoworld,
- kernel_tex_array(__camera_motion),
- kernel_data.cam.num_motion_steps,
- ray->time);
- }
- #endif
- ray->P = transform_point(&cameratoworld, P);
- ray->D = normalize(transform_direction(&cameratoworld, D));
- #ifdef __RAY_DIFFERENTIALS__
- /* ray differential */
- ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
- ray->dP.dy = float4_to_float3(kernel_data.cam.dy);
- ray->dD = differential3_zero();
- #endif
- #ifdef __CAMERA_CLIPPING__
- /* clipping */
- ray->t = kernel_data.cam.cliplength;
- #else
- ray->t = FLT_MAX;
- #endif
- }
- /* Panorama Camera */
- ccl_device_inline void camera_sample_panorama(ccl_constant KernelCamera *cam,
- const ccl_global DecomposedTransform *cam_motion,
- float raster_x,
- float raster_y,
- float lens_u,
- float lens_v,
- ccl_addr_space Ray *ray)
- {
- ProjectionTransform rastertocamera = cam->rastertocamera;
- float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
- /* create ray form raster position */
- float3 P = make_float3(0.0f, 0.0f, 0.0f);
- float3 D = panorama_to_direction(cam, Pcamera.x, Pcamera.y);
- /* indicates ray should not receive any light, outside of the lens */
- if (is_zero(D)) {
- ray->t = 0.0f;
- return;
- }
- /* modify ray for depth of field */
- float aperturesize = cam->aperturesize;
- if (aperturesize > 0.0f) {
- /* sample point on aperture */
- float2 lensuv = camera_sample_aperture(cam, lens_u, lens_v) * aperturesize;
- /* compute point on plane of focus */
- float3 Dfocus = normalize(D);
- float3 Pfocus = Dfocus * cam->focaldistance;
- /* calculate orthonormal coordinates perpendicular to Dfocus */
- float3 U, V;
- U = normalize(make_float3(1.0f, 0.0f, 0.0f) - Dfocus.x * Dfocus);
- V = normalize(cross(Dfocus, U));
- /* update ray for effect of lens */
- P = U * lensuv.x + V * lensuv.y;
- D = normalize(Pfocus - P);
- }
- /* transform ray from camera to world */
- Transform cameratoworld = cam->cameratoworld;
- #ifdef __CAMERA_MOTION__
- if (cam->num_motion_steps) {
- transform_motion_array_interpolate(
- &cameratoworld, cam_motion, cam->num_motion_steps, ray->time);
- }
- #endif
- P = transform_point(&cameratoworld, P);
- D = normalize(transform_direction(&cameratoworld, D));
- /* Stereo transform */
- bool use_stereo = cam->interocular_offset != 0.0f;
- if (use_stereo) {
- spherical_stereo_transform(cam, &P, &D);
- }
- ray->P = P;
- ray->D = D;
- #ifdef __RAY_DIFFERENTIALS__
- /* Ray differentials, computed from scratch using the raster coordinates
- * because we don't want to be affected by depth of field. We compute
- * ray origin and direction for the center and two neighboring pixels
- * and simply take their differences. */
- float3 Pcenter = Pcamera;
- float3 Dcenter = panorama_to_direction(cam, Pcenter.x, Pcenter.y);
- Pcenter = transform_point(&cameratoworld, Pcenter);
- Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
- if (use_stereo) {
- spherical_stereo_transform(cam, &Pcenter, &Dcenter);
- }
- float3 Px = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
- float3 Dx = panorama_to_direction(cam, Px.x, Px.y);
- Px = transform_point(&cameratoworld, Px);
- Dx = normalize(transform_direction(&cameratoworld, Dx));
- if (use_stereo) {
- spherical_stereo_transform(cam, &Px, &Dx);
- }
- ray->dP.dx = Px - Pcenter;
- ray->dD.dx = Dx - Dcenter;
- float3 Py = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
- float3 Dy = panorama_to_direction(cam, Py.x, Py.y);
- Py = transform_point(&cameratoworld, Py);
- Dy = normalize(transform_direction(&cameratoworld, Dy));
- if (use_stereo) {
- spherical_stereo_transform(cam, &Py, &Dy);
- }
- ray->dP.dy = Py - Pcenter;
- ray->dD.dy = Dy - Dcenter;
- #endif
- #ifdef __CAMERA_CLIPPING__
- /* clipping */
- float nearclip = cam->nearclip;
- ray->P += nearclip * ray->D;
- ray->dP.dx += nearclip * ray->dD.dx;
- ray->dP.dy += nearclip * ray->dD.dy;
- ray->t = cam->cliplength;
- #else
- ray->t = FLT_MAX;
- #endif
- }
- /* Common */
- ccl_device_inline void camera_sample(KernelGlobals *kg,
- int x,
- int y,
- float filter_u,
- float filter_v,
- float lens_u,
- float lens_v,
- float time,
- ccl_addr_space Ray *ray)
- {
- /* pixel filter */
- int filter_table_offset = kernel_data.film.filter_table_offset;
- float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
- float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);
- #ifdef __CAMERA_MOTION__
- /* motion blur */
- if (kernel_data.cam.shuttertime == -1.0f) {
- ray->time = 0.5f;
- }
- else {
- /* TODO(sergey): Such lookup is unneeded when there's rolling shutter
- * effect in use but rolling shutter duration is set to 0.0.
- */
- const int shutter_table_offset = kernel_data.cam.shutter_table_offset;
- ray->time = lookup_table_read(kg, time, shutter_table_offset, SHUTTER_TABLE_SIZE);
- /* TODO(sergey): Currently single rolling shutter effect type only
- * where scan-lines are acquired from top to bottom and whole scanline
- * is acquired at once (no delay in acquisition happens between pixels
- * of single scan-line).
- *
- * Might want to support more models in the future.
- */
- if (kernel_data.cam.rolling_shutter_type) {
- /* Time corresponding to a fully rolling shutter only effect:
- * top of the frame is time 0.0, bottom of the frame is time 1.0.
- */
- const float time = 1.0f - (float)y / kernel_data.cam.height;
- const float duration = kernel_data.cam.rolling_shutter_duration;
- if (duration != 0.0f) {
- /* This isn't fully physical correct, but lets us to have simple
- * controls in the interface. The idea here is basically sort of
- * linear interpolation between how much rolling shutter effect
- * exist on the frame and how much of it is a motion blur effect.
- */
- ray->time = (ray->time - 0.5f) * duration;
- ray->time += (time - 0.5f) * (1.0f - duration) + 0.5f;
- }
- else {
- ray->time = time;
- }
- }
- }
- #endif
- /* sample */
- if (kernel_data.cam.type == CAMERA_PERSPECTIVE) {
- camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
- }
- else if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
- camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
- }
- else {
- const ccl_global DecomposedTransform *cam_motion = kernel_tex_array(__camera_motion);
- camera_sample_panorama(&kernel_data.cam, cam_motion, raster_x, raster_y, lens_u, lens_v, ray);
- }
- }
- /* Utilities */
- ccl_device_inline float3 camera_position(KernelGlobals *kg)
- {
- Transform cameratoworld = kernel_data.cam.cameratoworld;
- return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
- }
- ccl_device_inline float camera_distance(KernelGlobals *kg, float3 P)
- {
- Transform cameratoworld = kernel_data.cam.cameratoworld;
- float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
- if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
- float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
- return fabsf(dot((P - camP), camD));
- }
- else
- return len(P - camP);
- }
- ccl_device_inline float3 camera_direction_from_point(KernelGlobals *kg, float3 P)
- {
- Transform cameratoworld = kernel_data.cam.cameratoworld;
- if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
- float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
- return -camD;
- }
- else {
- float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
- return normalize(camP - P);
- }
- }
- ccl_device_inline float3 camera_world_to_ndc(KernelGlobals *kg, ShaderData *sd, float3 P)
- {
- if (kernel_data.cam.type != CAMERA_PANORAMA) {
- /* perspective / ortho */
- if (sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
- P += camera_position(kg);
- ProjectionTransform tfm = kernel_data.cam.worldtondc;
- return transform_perspective(&tfm, P);
- }
- else {
- /* panorama */
- Transform tfm = kernel_data.cam.worldtocamera;
- if (sd->object != OBJECT_NONE)
- P = normalize(transform_point(&tfm, P));
- else
- P = normalize(transform_direction(&tfm, P));
- float2 uv = direction_to_panorama(&kernel_data.cam, P);
- return make_float3(uv.x, uv.y, 0.0f);
- }
- }
- CCL_NAMESPACE_END
|